github.com/gonum/lapack@v0.0.0-20181123203213-e4cdc5a0bff9/native/dgebal.go (about) 1 // Copyright ©2016 The gonum Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package native 6 7 import ( 8 "math" 9 10 "github.com/gonum/blas/blas64" 11 "github.com/gonum/lapack" 12 ) 13 14 // Dgebal balances an n×n matrix A. Balancing consists of two stages, permuting 15 // and scaling. Both steps are optional and depend on the value of job. 16 // 17 // Permuting consists of applying a permutation matrix P such that the matrix 18 // that results from P^T*A*P takes the upper block triangular form 19 // [ T1 X Y ] 20 // P^T A P = [ 0 B Z ], 21 // [ 0 0 T2 ] 22 // where T1 and T2 are upper triangular matrices and B contains at least one 23 // nonzero off-diagonal element in each row and column. The indices ilo and ihi 24 // mark the starting and ending columns of the submatrix B. The eigenvalues of A 25 // isolated in the first 0 to ilo-1 and last ihi+1 to n-1 elements on the 26 // diagonal can be read off without any roundoff error. 27 // 28 // Scaling consists of applying a diagonal similarity transformation D such that 29 // D^{-1}*B*D has the 1-norm of each row and its corresponding column nearly 30 // equal. The output matrix is 31 // [ T1 X*D Y ] 32 // [ 0 inv(D)*B*D inv(D)*Z ]. 33 // [ 0 0 T2 ] 34 // Scaling may reduce the 1-norm of the matrix, and improve the accuracy of 35 // the computed eigenvalues and/or eigenvectors. 36 // 37 // job specifies the operations that will be performed on A. 38 // If job is lapack.None, Dgebal sets scale[i] = 1 for all i and returns ilo=0, ihi=n-1. 39 // If job is lapack.Permute, only permuting will be done. 40 // If job is lapack.Scale, only scaling will be done. 41 // If job is lapack.PermuteScale, both permuting and scaling will be done. 42 // 43 // On return, if job is lapack.Permute or lapack.PermuteScale, it will hold that 44 // A[i,j] == 0, for i > j and j ∈ {0, ..., ilo-1, ihi+1, ..., n-1}. 45 // If job is lapack.None or lapack.Scale, or if n == 0, it will hold that 46 // ilo == 0 and ihi == n-1. 47 // 48 // On return, scale will contain information about the permutations and scaling 49 // factors applied to A. If π(j) denotes the index of the column interchanged 50 // with column j, and D[j,j] denotes the scaling factor applied to column j, 51 // then 52 // scale[j] == π(j), for j ∈ {0, ..., ilo-1, ihi+1, ..., n-1}, 53 // == D[j,j], for j ∈ {ilo, ..., ihi}. 54 // scale must have length equal to n, otherwise Dgebal will panic. 55 // 56 // Dgebal is an internal routine. It is exported for testing purposes. 57 func (impl Implementation) Dgebal(job lapack.Job, n int, a []float64, lda int, scale []float64) (ilo, ihi int) { 58 switch job { 59 default: 60 panic(badJob) 61 case lapack.None, lapack.Permute, lapack.Scale, lapack.PermuteScale: 62 } 63 checkMatrix(n, n, a, lda) 64 if len(scale) != n { 65 panic("lapack: bad length of scale") 66 } 67 68 ilo = 0 69 ihi = n - 1 70 71 if n == 0 || job == lapack.None { 72 for i := range scale { 73 scale[i] = 1 74 } 75 return ilo, ihi 76 } 77 78 bi := blas64.Implementation() 79 swapped := true 80 81 if job == lapack.Scale { 82 goto scaling 83 } 84 85 // Permutation to isolate eigenvalues if possible. 86 // 87 // Search for rows isolating an eigenvalue and push them down. 88 for swapped { 89 swapped = false 90 rows: 91 for i := ihi; i >= 0; i-- { 92 for j := 0; j <= ihi; j++ { 93 if i == j { 94 continue 95 } 96 if a[i*lda+j] != 0 { 97 continue rows 98 } 99 } 100 // Row i has only zero off-diagonal elements in the 101 // block A[ilo:ihi+1,ilo:ihi+1]. 102 scale[ihi] = float64(i) 103 if i != ihi { 104 bi.Dswap(ihi+1, a[i:], lda, a[ihi:], lda) 105 bi.Dswap(n, a[i*lda:], 1, a[ihi*lda:], 1) 106 } 107 if ihi == 0 { 108 scale[0] = 1 109 return ilo, ihi 110 } 111 ihi-- 112 swapped = true 113 break 114 } 115 } 116 // Search for columns isolating an eigenvalue and push them left. 117 swapped = true 118 for swapped { 119 swapped = false 120 columns: 121 for j := ilo; j <= ihi; j++ { 122 for i := ilo; i <= ihi; i++ { 123 if i == j { 124 continue 125 } 126 if a[i*lda+j] != 0 { 127 continue columns 128 } 129 } 130 // Column j has only zero off-diagonal elements in the 131 // block A[ilo:ihi+1,ilo:ihi+1]. 132 scale[ilo] = float64(j) 133 if j != ilo { 134 bi.Dswap(ihi+1, a[j:], lda, a[ilo:], lda) 135 bi.Dswap(n-ilo, a[j*lda+ilo:], 1, a[ilo*lda+ilo:], 1) 136 } 137 swapped = true 138 ilo++ 139 break 140 } 141 } 142 143 scaling: 144 for i := ilo; i <= ihi; i++ { 145 scale[i] = 1 146 } 147 148 if job == lapack.Permute { 149 return ilo, ihi 150 } 151 152 // Balance the submatrix in rows ilo to ihi. 153 154 const ( 155 // sclfac should be a power of 2 to avoid roundoff errors. 156 // Elements of scale are restricted to powers of sclfac, 157 // therefore the matrix will be only nearly balanced. 158 sclfac = 2 159 // factor determines the minimum reduction of the row and column 160 // norms that is considered non-negligible. It must be less than 1. 161 factor = 0.95 162 ) 163 sfmin1 := dlamchS / dlamchP 164 sfmax1 := 1 / sfmin1 165 sfmin2 := sfmin1 * sclfac 166 sfmax2 := 1 / sfmin2 167 168 // Iterative loop for norm reduction. 169 var conv bool 170 for !conv { 171 conv = true 172 for i := ilo; i <= ihi; i++ { 173 c := bi.Dnrm2(ihi-ilo+1, a[ilo*lda+i:], lda) 174 r := bi.Dnrm2(ihi-ilo+1, a[i*lda+ilo:], 1) 175 ica := bi.Idamax(ihi+1, a[i:], lda) 176 ca := math.Abs(a[ica*lda+i]) 177 ira := bi.Idamax(n-ilo, a[i*lda+ilo:], 1) 178 ra := math.Abs(a[i*lda+ilo+ira]) 179 180 // Guard against zero c or r due to underflow. 181 if c == 0 || r == 0 { 182 continue 183 } 184 g := r / sclfac 185 f := 1.0 186 s := c + r 187 for c < g && math.Max(f, math.Max(c, ca)) < sfmax2 && math.Min(r, math.Min(g, ra)) > sfmin2 { 188 if math.IsNaN(c + f + ca + r + g + ra) { 189 // Panic if NaN to avoid infinite loop. 190 panic("lapack: NaN") 191 } 192 f *= sclfac 193 c *= sclfac 194 ca *= sclfac 195 g /= sclfac 196 r /= sclfac 197 ra /= sclfac 198 } 199 g = c / sclfac 200 for r <= g && math.Max(r, ra) < sfmax2 && math.Min(math.Min(f, c), math.Min(g, ca)) > sfmin2 { 201 f /= sclfac 202 c /= sclfac 203 ca /= sclfac 204 g /= sclfac 205 r *= sclfac 206 ra *= sclfac 207 } 208 209 if c+r >= factor*s { 210 // Reduction would be negligible. 211 continue 212 } 213 if f < 1 && scale[i] < 1 && f*scale[i] <= sfmin1 { 214 continue 215 } 216 if f > 1 && scale[i] > 1 && scale[i] >= sfmax1/f { 217 continue 218 } 219 220 // Now balance. 221 scale[i] *= f 222 bi.Dscal(n-ilo, 1/f, a[i*lda+ilo:], 1) 223 bi.Dscal(ihi+1, f, a[i:], lda) 224 conv = false 225 } 226 } 227 return ilo, ihi 228 }