github.com/gonum/lapack@v0.0.0-20181123203213-e4cdc5a0bff9/native/dgelq2.go (about)

     1  // Copyright ©2015 The gonum Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package native
     6  
     7  import "github.com/gonum/blas"
     8  
     9  // Dgelq2 computes the LQ factorization of the m×n matrix A.
    10  //
    11  // In an LQ factorization, L is a lower triangular m×n matrix, and Q is an n×n
    12  // orthonormal matrix.
    13  //
    14  // a is modified to contain the information to construct L and Q.
    15  // The lower triangle of a contains the matrix L. The upper triangular elements
    16  // (not including the diagonal) contain the elementary reflectors. tau is modified
    17  // to contain the reflector scales. tau must have length of at least k = min(m,n)
    18  // and this function will panic otherwise.
    19  //
    20  // See Dgeqr2 for a description of the elementary reflectors and orthonormal
    21  // matrix Q. Q is constructed as a product of these elementary reflectors,
    22  // Q = H_{k-1} * ... * H_1 * H_0.
    23  //
    24  // work is temporary storage of length at least m and this function will panic otherwise.
    25  //
    26  // Dgelq2 is an internal routine. It is exported for testing purposes.
    27  func (impl Implementation) Dgelq2(m, n int, a []float64, lda int, tau, work []float64) {
    28  	checkMatrix(m, n, a, lda)
    29  	k := min(m, n)
    30  	if len(tau) < k {
    31  		panic(badTau)
    32  	}
    33  	if len(work) < m {
    34  		panic(badWork)
    35  	}
    36  	for i := 0; i < k; i++ {
    37  		a[i*lda+i], tau[i] = impl.Dlarfg(n-i, a[i*lda+i], a[i*lda+min(i+1, n-1):], 1)
    38  		if i < m-1 {
    39  			aii := a[i*lda+i]
    40  			a[i*lda+i] = 1
    41  			impl.Dlarf(blas.Right, m-i-1, n-i,
    42  				a[i*lda+i:], 1,
    43  				tau[i],
    44  				a[(i+1)*lda+i:], lda,
    45  				work)
    46  			a[i*lda+i] = aii
    47  		}
    48  	}
    49  }