github.com/gonum/lapack@v0.0.0-20181123203213-e4cdc5a0bff9/native/dgeql2.go (about) 1 // Copyright ©2016 The gonum Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package native 6 7 import "github.com/gonum/blas" 8 9 // Dgeql2 computes the QL factorization of the m×n matrix A. That is, Dgeql2 10 // computes Q and L such that 11 // A = Q * L 12 // where Q is an m×m orthonormal matrix and L is a lower trapezoidal matrix. 13 // 14 // Q is represented as a product of elementary reflectors, 15 // Q = H_{k-1} * ... * H_1 * H_0 16 // where k = min(m,n) and each H_i has the form 17 // H_i = I - tau[i] * v_i * v_i^T 18 // Vector v_i has v[m-k+i+1:m] = 0, v[m-k+i] = 1, and v[:m-k+i+1] is stored on 19 // exit in A[0:m-k+i-1, n-k+i]. 20 // 21 // tau must have length at least min(m,n), and Dgeql2 will panic otherwise. 22 // 23 // work is temporary memory storage and must have length at least n. 24 // 25 // Dgeql2 is an internal routine. It is exported for testing purposes. 26 func (impl Implementation) Dgeql2(m, n int, a []float64, lda int, tau, work []float64) { 27 checkMatrix(m, n, a, lda) 28 if len(tau) < min(m, n) { 29 panic(badTau) 30 } 31 if len(work) < n { 32 panic(badWork) 33 } 34 k := min(m, n) 35 var aii float64 36 for i := k - 1; i >= 0; i-- { 37 // Generate elementary reflector H_i to annihilate A[0:m-k+i-1, n-k+i]. 38 aii, tau[i] = impl.Dlarfg(m-k+i+1, a[(m-k+i)*lda+n-k+i], a[n-k+i:], lda) 39 40 // Apply H_i to A[0:m-k+i, 0:n-k+i-1] from the left. 41 a[(m-k+i)*lda+n-k+i] = 1 42 impl.Dlarf(blas.Left, m-k+i+1, n-k+i, a[n-k+i:], lda, tau[i], a, lda, work) 43 a[(m-k+i)*lda+n-k+i] = aii 44 } 45 }