github.com/gonum/lapack@v0.0.0-20181123203213-e4cdc5a0bff9/native/dgeqp3.go (about)

     1  // Copyright ©2017 The gonum Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package native
     6  
     7  import (
     8  	"github.com/gonum/blas"
     9  	"github.com/gonum/blas/blas64"
    10  )
    11  
    12  // Dgeqp3 computes a QR factorization with column pivoting of the
    13  // m×n matrix A: A*P = Q*R using Level 3 BLAS.
    14  //
    15  // The matrix Q is represented as a product of elementary reflectors
    16  //  Q = H_0 H_1 . . . H_{k-1}, where k = min(m,n).
    17  // Each H_i has the form
    18  //  H_i = I - tau * v * v^T
    19  // where tau and v are real vectors with v[0:i-1] = 0 and v[i] = 1;
    20  // v[i:m] is stored on exit in A[i:m, i], and tau in tau[i].
    21  //
    22  // jpvt specifies a column pivot to be applied to A. If
    23  // jpvt[j] is at least zero, the jth column of A is permuted
    24  // to the front of A*P (a leading column), if jpvt[j] is -1
    25  // the jth column of A is a free column. If jpvt[j] < -1, Dgeqp3
    26  // will panic. On return, jpvt holds the permutation that was
    27  // applied; the jth column of A*P was the jpvt[j] column of A.
    28  // jpvt must have length n or Dgeqp3 will panic.
    29  //
    30  // tau holds the scalar factors of the elementary reflectors.
    31  // It must have length min(m, n), otherwise Dgeqp3 will panic.
    32  //
    33  // work must have length at least max(1,lwork), and lwork must be at least
    34  // 3*n+1, otherwise Dgeqp3 will panic. For optimal performance lwork must
    35  // be at least 2*n+(n+1)*nb, where nb is the optimal blocksize. On return,
    36  // work[0] will contain the optimal value of lwork.
    37  //
    38  // If lwork == -1, instead of performing Dgeqp3, only the optimal value of lwork
    39  // will be stored in work[0].
    40  //
    41  // Dgeqp3 is an internal routine. It is exported for testing purposes.
    42  func (impl Implementation) Dgeqp3(m, n int, a []float64, lda int, jpvt []int, tau, work []float64, lwork int) {
    43  	const (
    44  		inb    = 1
    45  		inbmin = 2
    46  		ixover = 3
    47  	)
    48  	checkMatrix(m, n, a, lda)
    49  
    50  	if len(jpvt) != n {
    51  		panic(badIpiv)
    52  	}
    53  	for _, v := range jpvt {
    54  		if v < -1 || n <= v {
    55  			panic("lapack: jpvt element out of range")
    56  		}
    57  	}
    58  	minmn := min(m, n)
    59  	if len(work) < max(1, lwork) {
    60  		panic(badWork)
    61  	}
    62  
    63  	var iws, lwkopt, nb int
    64  	if minmn == 0 {
    65  		iws = 1
    66  		lwkopt = 1
    67  	} else {
    68  		iws = 3*n + 1
    69  		nb = impl.Ilaenv(inb, "DGEQRF", " ", m, n, -1, -1)
    70  		lwkopt = 2*n + (n+1)*nb
    71  	}
    72  	work[0] = float64(lwkopt)
    73  
    74  	if lwork == -1 {
    75  		return
    76  	}
    77  
    78  	if len(tau) < minmn {
    79  		panic(badTau)
    80  	}
    81  
    82  	bi := blas64.Implementation()
    83  
    84  	// Move initial columns up front.
    85  	var nfxd int
    86  	for j := 0; j < n; j++ {
    87  		if jpvt[j] == -1 {
    88  			jpvt[j] = j
    89  			continue
    90  		}
    91  		if j != nfxd {
    92  			bi.Dswap(m, a[j:], lda, a[nfxd:], lda)
    93  			jpvt[j], jpvt[nfxd] = jpvt[nfxd], j
    94  		} else {
    95  			jpvt[j] = j
    96  		}
    97  		nfxd++
    98  	}
    99  
   100  	// Factorize nfxd columns.
   101  	//
   102  	// Compute the QR factorization of nfxd columns and update remaining columns.
   103  	if nfxd > 0 {
   104  		na := min(m, nfxd)
   105  		impl.Dgeqrf(m, na, a, lda, tau, work, lwork)
   106  		iws = max(iws, int(work[0]))
   107  		if na < n {
   108  			impl.Dormqr(blas.Left, blas.Trans, m, n-na, na, a, lda, tau[:na], a[na:], lda,
   109  				work, lwork)
   110  			iws = max(iws, int(work[0]))
   111  		}
   112  	}
   113  
   114  	if nfxd >= minmn {
   115  		work[0] = float64(iws)
   116  		return
   117  	}
   118  
   119  	// Factorize free columns.
   120  	sm := m - nfxd
   121  	sn := n - nfxd
   122  	sminmn := minmn - nfxd
   123  
   124  	// Determine the block size.
   125  	nb = impl.Ilaenv(inb, "DGEQRF", " ", sm, sn, -1, -1)
   126  	nbmin := 2
   127  	nx := 0
   128  
   129  	if 1 < nb && nb < sminmn {
   130  		// Determine when to cross over from blocked to unblocked code.
   131  		nx = max(0, impl.Ilaenv(ixover, "DGEQRF", " ", sm, sn, -1, -1))
   132  
   133  		if nx < sminmn {
   134  			// Determine if workspace is large enough for blocked code.
   135  			minws := 2*sn + (sn+1)*nb
   136  			iws = max(iws, minws)
   137  			if lwork < minws {
   138  				// Not enough workspace to use optimal nb. Reduce
   139  				// nb and determine the minimum value of nb.
   140  				nb = (lwork - 2*sn) / (sn + 1)
   141  				nbmin = max(2, impl.Ilaenv(inbmin, "DGEQRF", " ", sm, sn, -1, -1))
   142  			}
   143  		}
   144  	}
   145  
   146  	// Initialize partial column norms.
   147  	// The first n elements of work store the exact column norms.
   148  	for j := nfxd; j < n; j++ {
   149  		work[j] = bi.Dnrm2(sm, a[nfxd*lda+j:], lda)
   150  		work[n+j] = work[j]
   151  	}
   152  	j := nfxd
   153  	if nbmin <= nb && nb < sminmn && nx < sminmn {
   154  		// Use blocked code initially.
   155  
   156  		// Compute factorization.
   157  		var fjb int
   158  		for topbmn := minmn - nx; j < topbmn; j += fjb {
   159  			jb := min(nb, topbmn-j)
   160  
   161  			// Factorize jb columns among columns j:n.
   162  			fjb = impl.Dlaqps(m, n-j, j, jb, a[j:], lda, jpvt[j:], tau[j:],
   163  				work[j:n], work[j+n:2*n], work[2*n:2*n+jb], work[2*n+jb:], jb)
   164  		}
   165  	}
   166  
   167  	// Use unblocked code to factor the last or only block.
   168  	if j < minmn {
   169  		impl.Dlaqp2(m, n-j, j, a[j:], lda, jpvt[j:], tau[j:],
   170  			work[j:n], work[j+n:2*n], work[2*n:])
   171  	}
   172  
   173  	work[0] = float64(iws)
   174  }