github.com/gonum/lapack@v0.0.0-20181123203213-e4cdc5a0bff9/native/dlags2.go (about) 1 // Copyright ©2017 The gonum Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package native 6 7 import "math" 8 9 // Dlags2 computes 2-by-2 orthogonal matrices U, V and Q with the 10 // triangles of A and B specified by upper. 11 // 12 // If upper is true 13 // 14 // U^T*A*Q = U^T*[ a1 a2 ]*Q = [ x 0 ] 15 // [ 0 a3 ] [ x x ] 16 // and 17 // V^T*B*Q = V^T*[ b1 b2 ]*Q = [ x 0 ] 18 // [ 0 b3 ] [ x x ] 19 // 20 // otherwise 21 // 22 // U^T*A*Q = U^T*[ a1 0 ]*Q = [ x x ] 23 // [ a2 a3 ] [ 0 x ] 24 // and 25 // V^T*B*Q = V^T*[ b1 0 ]*Q = [ x x ] 26 // [ b2 b3 ] [ 0 x ]. 27 // 28 // The rows of the transformed A and B are parallel, where 29 // 30 // U = [ csu snu ], V = [ csv snv ], Q = [ csq snq ] 31 // [ -snu csu ] [ -snv csv ] [ -snq csq ] 32 // 33 // Dlags2 is an internal routine. It is exported for testing purposes. 34 func (impl Implementation) Dlags2(upper bool, a1, a2, a3, b1, b2, b3 float64) (csu, snu, csv, snv, csq, snq float64) { 35 if upper { 36 // Input matrices A and B are upper triangular matrices. 37 // 38 // Form matrix C = A*adj(B) = [ a b ] 39 // [ 0 d ] 40 a := a1 * b3 41 d := a3 * b1 42 b := a2*b1 - a1*b2 43 44 // The SVD of real 2-by-2 triangular C. 45 // 46 // [ csl -snl ]*[ a b ]*[ csr snr ] = [ r 0 ] 47 // [ snl csl ] [ 0 d ] [ -snr csr ] [ 0 t ] 48 _, _, snr, csr, snl, csl := impl.Dlasv2(a, b, d) 49 50 if math.Abs(csl) >= math.Abs(snl) || math.Abs(csr) >= math.Abs(snr) { 51 // Compute the [0, 0] and [0, 1] elements of U^T*A and V^T*B, 52 // and [0, 1] element of |U|^T*|A| and |V|^T*|B|. 53 54 ua11r := csl * a1 55 ua12 := csl*a2 + snl*a3 56 57 vb11r := csr * b1 58 vb12 := csr*b2 + snr*b3 59 60 aua12 := math.Abs(csl)*math.Abs(a2) + math.Abs(snl)*math.Abs(a3) 61 avb12 := math.Abs(csr)*math.Abs(b2) + math.Abs(snr)*math.Abs(b3) 62 63 // Zero [0, 1] elements of U^T*A and V^T*B. 64 if math.Abs(ua11r)+math.Abs(ua12) != 0 { 65 if aua12/(math.Abs(ua11r)+math.Abs(ua12)) <= avb12/(math.Abs(vb11r)+math.Abs(vb12)) { 66 csq, snq, _ = impl.Dlartg(-ua11r, ua12) 67 } else { 68 csq, snq, _ = impl.Dlartg(-vb11r, vb12) 69 } 70 } else { 71 csq, snq, _ = impl.Dlartg(-vb11r, vb12) 72 } 73 74 csu = csl 75 snu = -snl 76 csv = csr 77 snv = -snr 78 } else { 79 // Compute the [1, 0] and [1, 1] elements of U^T*A and V^T*B, 80 // and [1, 1] element of |U|^T*|A| and |V|^T*|B|. 81 82 ua21 := -snl * a1 83 ua22 := -snl*a2 + csl*a3 84 85 vb21 := -snr * b1 86 vb22 := -snr*b2 + csr*b3 87 88 aua22 := math.Abs(snl)*math.Abs(a2) + math.Abs(csl)*math.Abs(a3) 89 avb22 := math.Abs(snr)*math.Abs(b2) + math.Abs(csr)*math.Abs(b3) 90 91 // Zero [1, 1] elements of U^T*A and V^T*B, and then swap. 92 if math.Abs(ua21)+math.Abs(ua22) != 0 { 93 if aua22/(math.Abs(ua21)+math.Abs(ua22)) <= avb22/(math.Abs(vb21)+math.Abs(vb22)) { 94 csq, snq, _ = impl.Dlartg(-ua21, ua22) 95 } else { 96 csq, snq, _ = impl.Dlartg(-vb21, vb22) 97 } 98 } else { 99 csq, snq, _ = impl.Dlartg(-vb21, vb22) 100 } 101 102 csu = snl 103 snu = csl 104 csv = snr 105 snv = csr 106 } 107 } else { 108 // Input matrices A and B are lower triangular matrices 109 // 110 // Form matrix C = A*adj(B) = [ a 0 ] 111 // [ c d ] 112 a := a1 * b3 113 d := a3 * b1 114 c := a2*b3 - a3*b2 115 116 // The SVD of real 2-by-2 triangular C 117 // 118 // [ csl -snl ]*[ a 0 ]*[ csr snr ] = [ r 0 ] 119 // [ snl csl ] [ c d ] [ -snr csr ] [ 0 t ] 120 _, _, snr, csr, snl, csl := impl.Dlasv2(a, c, d) 121 122 if math.Abs(csr) >= math.Abs(snr) || math.Abs(csl) >= math.Abs(snl) { 123 // Compute the [1, 0] and [1, 1] elements of U^T*A and V^T*B, 124 // and [1, 0] element of |U|^T*|A| and |V|^T*|B|. 125 126 ua21 := -snr*a1 + csr*a2 127 ua22r := csr * a3 128 129 vb21 := -snl*b1 + csl*b2 130 vb22r := csl * b3 131 132 aua21 := math.Abs(snr)*math.Abs(a1) + math.Abs(csr)*math.Abs(a2) 133 avb21 := math.Abs(snl)*math.Abs(b1) + math.Abs(csl)*math.Abs(b2) 134 135 // Zero [1, 0] elements of U^T*A and V^T*B. 136 if (math.Abs(ua21) + math.Abs(ua22r)) != 0 { 137 if aua21/(math.Abs(ua21)+math.Abs(ua22r)) <= avb21/(math.Abs(vb21)+math.Abs(vb22r)) { 138 csq, snq, _ = impl.Dlartg(ua22r, ua21) 139 } else { 140 csq, snq, _ = impl.Dlartg(vb22r, vb21) 141 } 142 } else { 143 csq, snq, _ = impl.Dlartg(vb22r, vb21) 144 } 145 146 csu = csr 147 snu = -snr 148 csv = csl 149 snv = -snl 150 } else { 151 // Compute the [0, 0] and [0, 1] elements of U^T *A and V^T *B, 152 // and [0, 0] element of |U|^T*|A| and |V|^T*|B|. 153 154 ua11 := csr*a1 + snr*a2 155 ua12 := snr * a3 156 157 vb11 := csl*b1 + snl*b2 158 vb12 := snl * b3 159 160 aua11 := math.Abs(csr)*math.Abs(a1) + math.Abs(snr)*math.Abs(a2) 161 avb11 := math.Abs(csl)*math.Abs(b1) + math.Abs(snl)*math.Abs(b2) 162 163 // Zero [0, 0] elements of U^T*A and V^T*B, and then swap. 164 if (math.Abs(ua11) + math.Abs(ua12)) != 0 { 165 if aua11/(math.Abs(ua11)+math.Abs(ua12)) <= avb11/(math.Abs(vb11)+math.Abs(vb12)) { 166 csq, snq, _ = impl.Dlartg(ua12, ua11) 167 } else { 168 csq, snq, _ = impl.Dlartg(vb12, vb11) 169 } 170 } else { 171 csq, snq, _ = impl.Dlartg(vb12, vb11) 172 } 173 174 csu = snr 175 snu = csr 176 csv = snl 177 snv = csl 178 } 179 } 180 181 return csu, snu, csv, snv, csq, snq 182 }