github.com/gonum/lapack@v0.0.0-20181123203213-e4cdc5a0bff9/native/dlahr2.go (about) 1 // Copyright ©2016 The gonum Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package native 6 7 import ( 8 "github.com/gonum/blas" 9 "github.com/gonum/blas/blas64" 10 ) 11 12 // Dlahr2 reduces the first nb columns of a real general n×(n-k+1) matrix A so 13 // that elements below the k-th subdiagonal are zero. The reduction is performed 14 // by an orthogonal similarity transformation Q^T * A * Q. Dlahr2 returns the 15 // matrices V and T which determine Q as a block reflector I - V*T*V^T, and 16 // also the matrix Y = A * V * T. 17 // 18 // The matrix Q is represented as a product of nb elementary reflectors 19 // Q = H_0 * H_1 * ... * H_{nb-1}. 20 // Each H_i has the form 21 // H_i = I - tau[i] * v * v^T, 22 // where v is a real vector with v[0:i+k-1] = 0 and v[i+k-1] = 1. v[i+k:n] is 23 // stored on exit in A[i+k+1:n,i]. 24 // 25 // The elements of the vectors v together form the (n-k+1)×nb matrix 26 // V which is needed, with T and Y, to apply the transformation to the 27 // unreduced part of the matrix, using an update of the form 28 // A = (I - V*T*V^T) * (A - Y*V^T). 29 // 30 // On entry, a contains the n×(n-k+1) general matrix A. On return, the elements 31 // on and above the k-th subdiagonal in the first nb columns are overwritten 32 // with the corresponding elements of the reduced matrix; the elements below the 33 // k-th subdiagonal, with the slice tau, represent the matrix Q as a product of 34 // elementary reflectors. The other columns of A are unchanged. 35 // 36 // The contents of A on exit are illustrated by the following example 37 // with n = 7, k = 3 and nb = 2: 38 // [ a a a a a ] 39 // [ a a a a a ] 40 // [ a a a a a ] 41 // [ h h a a a ] 42 // [ v0 h a a a ] 43 // [ v0 v1 a a a ] 44 // [ v0 v1 a a a ] 45 // where a denotes an element of the original matrix A, h denotes a 46 // modified element of the upper Hessenberg matrix H, and vi denotes an 47 // element of the vector defining H_i. 48 // 49 // k is the offset for the reduction. Elements below the k-th subdiagonal in the 50 // first nb columns are reduced to zero. 51 // 52 // nb is the number of columns to be reduced. 53 // 54 // On entry, a represents the n×(n-k+1) matrix A. On return, the elements on and 55 // above the k-th subdiagonal in the first nb columns are overwritten with the 56 // corresponding elements of the reduced matrix. The elements below the k-th 57 // subdiagonal, with the slice tau, represent the matrix Q as a product of 58 // elementary reflectors. The other columns of A are unchanged. 59 // 60 // tau will contain the scalar factors of the elementary reflectors. It must 61 // have length at least nb. 62 // 63 // t and ldt represent the nb×nb upper triangular matrix T, and y and ldy 64 // represent the n×nb matrix Y. 65 // 66 // Dlahr2 is an internal routine. It is exported for testing purposes. 67 func (impl Implementation) Dlahr2(n, k, nb int, a []float64, lda int, tau, t []float64, ldt int, y []float64, ldy int) { 68 checkMatrix(n, n-k+1, a, lda) 69 if len(tau) < nb { 70 panic(badTau) 71 } 72 checkMatrix(nb, nb, t, ldt) 73 checkMatrix(n, nb, y, ldy) 74 75 // Quick return if possible. 76 if n <= 1 { 77 return 78 } 79 80 bi := blas64.Implementation() 81 var ei float64 82 for i := 0; i < nb; i++ { 83 if i > 0 { 84 // Update A[k:n,i]. 85 86 // Update i-th column of A - Y * V^T. 87 bi.Dgemv(blas.NoTrans, n-k, i, 88 -1, y[k*ldy:], ldy, 89 a[(k+i-1)*lda:], 1, 90 1, a[k*lda+i:], lda) 91 92 // Apply I - V * T^T * V^T to this column (call it b) 93 // from the left, using the last column of T as 94 // workspace. 95 // Let V = [ V1 ] and b = [ b1 ] (first i rows) 96 // [ V2 ] [ b2 ] 97 // where V1 is unit lower triangular. 98 // 99 // w := V1^T * b1. 100 bi.Dcopy(i, a[k*lda+i:], lda, t[nb-1:], ldt) 101 bi.Dtrmv(blas.Lower, blas.Trans, blas.Unit, i, 102 a[k*lda:], lda, t[nb-1:], ldt) 103 104 // w := w + V2^T * b2. 105 bi.Dgemv(blas.Trans, n-k-i, i, 106 1, a[(k+i)*lda:], lda, 107 a[(k+i)*lda+i:], lda, 108 1, t[nb-1:], ldt) 109 110 // w := T^T * w. 111 bi.Dtrmv(blas.Upper, blas.Trans, blas.NonUnit, i, 112 t, ldt, t[nb-1:], ldt) 113 114 // b2 := b2 - V2*w. 115 bi.Dgemv(blas.NoTrans, n-k-i, i, 116 -1, a[(k+i)*lda:], lda, 117 t[nb-1:], ldt, 118 1, a[(k+i)*lda+i:], lda) 119 120 // b1 := b1 - V1*w. 121 bi.Dtrmv(blas.Lower, blas.NoTrans, blas.Unit, i, 122 a[k*lda:], lda, t[nb-1:], ldt) 123 bi.Daxpy(i, -1, t[nb-1:], ldt, a[k*lda+i:], lda) 124 125 a[(k+i-1)*lda+i-1] = ei 126 } 127 128 // Generate the elementary reflector H_i to annihilate 129 // A[k+i+1:n,i]. 130 ei, tau[i] = impl.Dlarfg(n-k-i, a[(k+i)*lda+i], a[min(k+i+1, n-1)*lda+i:], lda) 131 a[(k+i)*lda+i] = 1 132 133 // Compute Y[k:n,i]. 134 bi.Dgemv(blas.NoTrans, n-k, n-k-i, 135 1, a[k*lda+i+1:], lda, 136 a[(k+i)*lda+i:], lda, 137 0, y[k*ldy+i:], ldy) 138 bi.Dgemv(blas.Trans, n-k-i, i, 139 1, a[(k+i)*lda:], lda, 140 a[(k+i)*lda+i:], lda, 141 0, t[i:], ldt) 142 bi.Dgemv(blas.NoTrans, n-k, i, 143 -1, y[k*ldy:], ldy, 144 t[i:], ldt, 145 1, y[k*ldy+i:], ldy) 146 bi.Dscal(n-k, tau[i], y[k*ldy+i:], ldy) 147 148 // Compute T[0:i,i]. 149 bi.Dscal(i, -tau[i], t[i:], ldt) 150 bi.Dtrmv(blas.Upper, blas.NoTrans, blas.NonUnit, i, 151 t, ldt, t[i:], ldt) 152 153 t[i*ldt+i] = tau[i] 154 } 155 a[(k+nb-1)*lda+nb-1] = ei 156 157 // Compute Y[0:k,0:nb]. 158 impl.Dlacpy(blas.All, k, nb, a[1:], lda, y, ldy) 159 bi.Dtrmm(blas.Right, blas.Lower, blas.NoTrans, blas.Unit, k, nb, 160 1, a[k*lda:], lda, y, ldy) 161 if n > k+nb { 162 bi.Dgemm(blas.NoTrans, blas.NoTrans, k, nb, n-k-nb, 163 1, a[1+nb:], lda, 164 a[(k+nb)*lda:], lda, 165 1, y, ldy) 166 } 167 bi.Dtrmm(blas.Right, blas.Upper, blas.NoTrans, blas.NonUnit, k, nb, 168 1, t, ldt, y, ldy) 169 }