github.com/gonum/lapack@v0.0.0-20181123203213-e4cdc5a0bff9/native/dlaln2.go (about)

     1  // Copyright ©2016 The gonum Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package native
     6  
     7  import "math"
     8  
     9  // Dlaln2 solves a linear equation or a system of 2 linear equations of the form
    10  //  (ca A   - w D) X = scale B,  if trans == false,
    11  //  (ca A^T - w D) X = scale B,  if trans == true,
    12  // where A is a na×na real matrix, ca is a real scalar, D is a na×na diagonal
    13  // real matrix, w is a scalar, real if nw == 1, complex if nw == 2, and X and B
    14  // are na×1 matrices, real if w is real, complex if w is complex.
    15  //
    16  // If w is complex, X and B are represented as na×2 matrices, the first column
    17  // of each being the real part and the second being the imaginary part.
    18  //
    19  // na and nw must be 1 or 2, otherwise Dlaln2 will panic.
    20  //
    21  // d1 and d2 are the diagonal elements of D. d2 is not used if na == 1.
    22  //
    23  // wr and wi represent the real and imaginary part, respectively, of the scalar
    24  // w. wi is not used if nw == 1.
    25  //
    26  // smin is the desired lower bound on the singular values of A. This should be
    27  // a safe distance away from underflow or overflow, say, between
    28  // (underflow/machine precision) and (overflow*machine precision).
    29  //
    30  // If both singular values of (ca A - w D) are less than smin, smin*identity
    31  // will be used instead of (ca A - w D). If only one singular value is less than
    32  // smin, one element of (ca A - w D) will be perturbed enough to make the
    33  // smallest singular value roughly smin. If both singular values are at least
    34  // smin, (ca A - w D) will not be perturbed. In any case, the perturbation will
    35  // be at most some small multiple of max(smin, ulp*norm(ca A - w D)). The
    36  // singular values are computed by infinity-norm approximations, and thus will
    37  // only be correct to a factor of 2 or so.
    38  //
    39  // All input quantities are assumed to be smaller than overflow by a reasonable
    40  // factor.
    41  //
    42  // scale is a scaling factor less than or equal to 1 which is chosen so that X
    43  // can be computed without overflow. X is further scaled if necessary to assure
    44  // that norm(ca A - w D)*norm(X) is less than overflow.
    45  //
    46  // xnorm contains the infinity-norm of X when X is regarded as a na×nw real
    47  // matrix.
    48  //
    49  // ok will be false if (ca A - w D) had to be perturbed to make its smallest
    50  // singular value greater than smin, otherwise ok will be true.
    51  //
    52  // Dlaln2 is an internal routine. It is exported for testing purposes.
    53  func (impl Implementation) Dlaln2(trans bool, na, nw int, smin, ca float64, a []float64, lda int, d1, d2 float64, b []float64, ldb int, wr, wi float64, x []float64, ldx int) (scale, xnorm float64, ok bool) {
    54  	// TODO(vladimir-ch): Consider splitting this function into two, one
    55  	// handling the real case (nw == 1) and the other handling the complex
    56  	// case (nw == 2). Given that Go has complex types, their signatures
    57  	// would be simpler and more natural, and the implementation not as
    58  	// convoluted.
    59  
    60  	if na != 1 && na != 2 {
    61  		panic("lapack: invalid value of na")
    62  	}
    63  	if nw != 1 && nw != 2 {
    64  		panic("lapack: invalid value of nw")
    65  	}
    66  	checkMatrix(na, na, a, lda)
    67  	checkMatrix(na, nw, b, ldb)
    68  	checkMatrix(na, nw, x, ldx)
    69  
    70  	smlnum := 2 * dlamchS
    71  	bignum := 1 / smlnum
    72  	smini := math.Max(smin, smlnum)
    73  
    74  	ok = true
    75  	scale = 1
    76  
    77  	if na == 1 {
    78  		// 1×1 (i.e., scalar) system C X = B.
    79  
    80  		if nw == 1 {
    81  			// Real 1×1 system.
    82  
    83  			// C = ca A - w D.
    84  			csr := ca*a[0] - wr*d1
    85  			cnorm := math.Abs(csr)
    86  
    87  			// If |C| < smini, use C = smini.
    88  			if cnorm < smini {
    89  				csr = smini
    90  				cnorm = smini
    91  				ok = false
    92  			}
    93  
    94  			// Check scaling for X = B / C.
    95  			bnorm := math.Abs(b[0])
    96  			if cnorm < 1 && bnorm > math.Max(1, bignum*cnorm) {
    97  				scale = 1 / bnorm
    98  			}
    99  
   100  			// Compute X.
   101  			x[0] = b[0] * scale / csr
   102  			xnorm = math.Abs(x[0])
   103  
   104  			return scale, xnorm, ok
   105  		}
   106  
   107  		// Complex 1×1 system (w is complex).
   108  
   109  		// C = ca A - w D.
   110  		csr := ca*a[0] - wr*d1
   111  		csi := -wi * d1
   112  		cnorm := math.Abs(csr) + math.Abs(csi)
   113  
   114  		// If |C| < smini, use C = smini.
   115  		if cnorm < smini {
   116  			csr = smini
   117  			csi = 0
   118  			cnorm = smini
   119  			ok = false
   120  		}
   121  
   122  		// Check scaling for X = B / C.
   123  		bnorm := math.Abs(b[0]) + math.Abs(b[1])
   124  		if cnorm < 1 && bnorm > math.Max(1, bignum*cnorm) {
   125  			scale = 1 / bnorm
   126  		}
   127  
   128  		// Compute X.
   129  		cx := complex(scale*b[0], scale*b[1]) / complex(csr, csi)
   130  		x[0], x[1] = real(cx), imag(cx)
   131  		xnorm = math.Abs(x[0]) + math.Abs(x[1])
   132  
   133  		return scale, xnorm, ok
   134  	}
   135  
   136  	// 2×2 system.
   137  
   138  	// Compute the real part of
   139  	//  C = ca A   - w D
   140  	// or
   141  	//  C = ca A^T - w D.
   142  	crv := [4]float64{
   143  		ca*a[0] - wr*d1,
   144  		ca * a[1],
   145  		ca * a[lda],
   146  		ca*a[lda+1] - wr*d2,
   147  	}
   148  	if trans {
   149  		crv[1] = ca * a[lda]
   150  		crv[2] = ca * a[1]
   151  	}
   152  
   153  	pivot := [4][4]int{
   154  		{0, 1, 2, 3},
   155  		{1, 0, 3, 2},
   156  		{2, 3, 0, 1},
   157  		{3, 2, 1, 0},
   158  	}
   159  
   160  	if nw == 1 {
   161  		// Real 2×2 system (w is real).
   162  
   163  		// Find the largest element in C.
   164  		var cmax float64
   165  		var icmax int
   166  		for j, v := range crv {
   167  			v = math.Abs(v)
   168  			if v > cmax {
   169  				cmax = v
   170  				icmax = j
   171  			}
   172  		}
   173  
   174  		// If norm(C) < smini, use smini*identity.
   175  		if cmax < smini {
   176  			bnorm := math.Max(math.Abs(b[0]), math.Abs(b[ldb]))
   177  			if smini < 1 && bnorm > math.Max(1, bignum*smini) {
   178  				scale = 1 / bnorm
   179  			}
   180  			temp := scale / smini
   181  			x[0] = temp * b[0]
   182  			x[ldx] = temp * b[ldb]
   183  			xnorm = temp * bnorm
   184  			ok = false
   185  
   186  			return scale, xnorm, ok
   187  		}
   188  
   189  		// Gaussian elimination with complete pivoting.
   190  		// Form upper triangular matrix
   191  		//  [ur11 ur12]
   192  		//  [   0 ur22]
   193  		ur11 := crv[icmax]
   194  		ur12 := crv[pivot[icmax][1]]
   195  		cr21 := crv[pivot[icmax][2]]
   196  		cr22 := crv[pivot[icmax][3]]
   197  		ur11r := 1 / ur11
   198  		lr21 := ur11r * cr21
   199  		ur22 := cr22 - ur12*lr21
   200  
   201  		// If smaller pivot < smini, use smini.
   202  		if math.Abs(ur22) < smini {
   203  			ur22 = smini
   204  			ok = false
   205  		}
   206  
   207  		var br1, br2 float64
   208  		if icmax > 1 {
   209  			// If the pivot lies in the second row, swap the rows.
   210  			br1 = b[ldb]
   211  			br2 = b[0]
   212  		} else {
   213  			br1 = b[0]
   214  			br2 = b[ldb]
   215  		}
   216  		br2 -= lr21 * br1 // Apply the Gaussian elimination step to the right-hand side.
   217  
   218  		bbnd := math.Max(math.Abs(ur22*ur11r*br1), math.Abs(br2))
   219  		if bbnd > 1 && math.Abs(ur22) < 1 && bbnd >= bignum*math.Abs(ur22) {
   220  			scale = 1 / bbnd
   221  		}
   222  
   223  		// Solve the linear system ur*xr=br.
   224  		xr2 := br2 * scale / ur22
   225  		xr1 := scale*br1*ur11r - ur11r*ur12*xr2
   226  		if icmax&0x1 != 0 {
   227  			// If the pivot lies in the second column, swap the components of the solution.
   228  			x[0] = xr2
   229  			x[ldx] = xr1
   230  		} else {
   231  			x[0] = xr1
   232  			x[ldx] = xr2
   233  		}
   234  		xnorm = math.Max(math.Abs(xr1), math.Abs(xr2))
   235  
   236  		// Further scaling if norm(A)*norm(X) > overflow.
   237  		if xnorm > 1 && cmax > 1 && xnorm > bignum/cmax {
   238  			temp := cmax / bignum
   239  			x[0] *= temp
   240  			x[ldx] *= temp
   241  			xnorm *= temp
   242  			scale *= temp
   243  		}
   244  
   245  		return scale, xnorm, ok
   246  	}
   247  
   248  	// Complex 2×2 system (w is complex).
   249  
   250  	// Find the largest element in C.
   251  	civ := [4]float64{
   252  		-wi * d1,
   253  		0,
   254  		0,
   255  		-wi * d2,
   256  	}
   257  	var cmax float64
   258  	var icmax int
   259  	for j, v := range crv {
   260  		v := math.Abs(v)
   261  		if v+math.Abs(civ[j]) > cmax {
   262  			cmax = v + math.Abs(civ[j])
   263  			icmax = j
   264  		}
   265  	}
   266  
   267  	// If norm(C) < smini, use smini*identity.
   268  	if cmax < smini {
   269  		br1 := math.Abs(b[0]) + math.Abs(b[1])
   270  		br2 := math.Abs(b[ldb]) + math.Abs(b[ldb+1])
   271  		bnorm := math.Max(br1, br2)
   272  		if smini < 1 && bnorm > 1 && bnorm > bignum*smini {
   273  			scale = 1 / bnorm
   274  		}
   275  		temp := scale / smini
   276  		x[0] = temp * b[0]
   277  		x[1] = temp * b[1]
   278  		x[ldb] = temp * b[ldb]
   279  		x[ldb+1] = temp * b[ldb+1]
   280  		xnorm = temp * bnorm
   281  		ok = false
   282  
   283  		return scale, xnorm, ok
   284  	}
   285  
   286  	// Gaussian elimination with complete pivoting.
   287  	ur11 := crv[icmax]
   288  	ui11 := civ[icmax]
   289  	ur12 := crv[pivot[icmax][1]]
   290  	ui12 := civ[pivot[icmax][1]]
   291  	cr21 := crv[pivot[icmax][2]]
   292  	ci21 := civ[pivot[icmax][2]]
   293  	cr22 := crv[pivot[icmax][3]]
   294  	ci22 := civ[pivot[icmax][3]]
   295  	var (
   296  		ur11r, ui11r float64
   297  		lr21, li21   float64
   298  		ur12s, ui12s float64
   299  		ur22, ui22   float64
   300  	)
   301  	if icmax == 0 || icmax == 3 {
   302  		// Off-diagonals of pivoted C are real.
   303  		if math.Abs(ur11) > math.Abs(ui11) {
   304  			temp := ui11 / ur11
   305  			ur11r = 1 / (ur11 * (1 + temp*temp))
   306  			ui11r = -temp * ur11r
   307  		} else {
   308  			temp := ur11 / ui11
   309  			ui11r = -1 / (ui11 * (1 + temp*temp))
   310  			ur11r = -temp * ui11r
   311  		}
   312  		lr21 = cr21 * ur11r
   313  		li21 = cr21 * ui11r
   314  		ur12s = ur12 * ur11r
   315  		ui12s = ur12 * ui11r
   316  		ur22 = cr22 - ur12*lr21
   317  		ui22 = ci22 - ur12*li21
   318  	} else {
   319  		// Diagonals of pivoted C are real.
   320  		ur11r = 1 / ur11
   321  		// ui11r is already 0.
   322  		lr21 = cr21 * ur11r
   323  		li21 = ci21 * ur11r
   324  		ur12s = ur12 * ur11r
   325  		ui12s = ui12 * ur11r
   326  		ur22 = cr22 - ur12*lr21 + ui12*li21
   327  		ui22 = -ur12*li21 - ui12*lr21
   328  	}
   329  	u22abs := math.Abs(ur22) + math.Abs(ui22)
   330  
   331  	// If smaller pivot < smini, use smini.
   332  	if u22abs < smini {
   333  		ur22 = smini
   334  		ui22 = 0
   335  		ok = false
   336  	}
   337  
   338  	var br1, bi1 float64
   339  	var br2, bi2 float64
   340  	if icmax > 1 {
   341  		// If the pivot lies in the second row, swap the rows.
   342  		br1 = b[ldb]
   343  		bi1 = b[ldb+1]
   344  		br2 = b[0]
   345  		bi2 = b[1]
   346  	} else {
   347  		br1 = b[0]
   348  		bi1 = b[1]
   349  		br2 = b[ldb]
   350  		bi2 = b[ldb+1]
   351  	}
   352  	br2 += -lr21*br1 + li21*bi1
   353  	bi2 += -li21*br1 - lr21*bi1
   354  
   355  	bbnd1 := u22abs * (math.Abs(ur11r) + math.Abs(ui11r)) * (math.Abs(br1) + math.Abs(bi1))
   356  	bbnd2 := math.Abs(br2) + math.Abs(bi2)
   357  	bbnd := math.Max(bbnd1, bbnd2)
   358  	if bbnd > 1 && u22abs < 1 && bbnd >= bignum*u22abs {
   359  		scale = 1 / bbnd
   360  		br1 *= scale
   361  		bi1 *= scale
   362  		br2 *= scale
   363  		bi2 *= scale
   364  	}
   365  
   366  	cx2 := complex(br2, bi2) / complex(ur22, ui22)
   367  	xr2, xi2 := real(cx2), imag(cx2)
   368  	xr1 := ur11r*br1 - ui11r*bi1 - ur12s*xr2 + ui12s*xi2
   369  	xi1 := ui11r*br1 + ur11r*bi1 - ui12s*xr2 - ur12s*xi2
   370  	if icmax&0x1 != 0 {
   371  		// If the pivot lies in the second column, swap the components of the solution.
   372  		x[0] = xr2
   373  		x[1] = xi2
   374  		x[ldx] = xr1
   375  		x[ldx+1] = xi1
   376  	} else {
   377  		x[0] = xr1
   378  		x[1] = xi1
   379  		x[ldx] = xr2
   380  		x[ldx+1] = xi2
   381  	}
   382  	xnorm = math.Max(math.Abs(xr1)+math.Abs(xi1), math.Abs(xr2)+math.Abs(xi2))
   383  
   384  	// Further scaling if norm(A)*norm(X) > overflow.
   385  	if xnorm > 1 && cmax > 1 && xnorm > bignum/cmax {
   386  		temp := cmax / bignum
   387  		x[0] *= temp
   388  		x[1] *= temp
   389  		x[ldx] *= temp
   390  		x[ldx+1] *= temp
   391  		xnorm *= temp
   392  		scale *= temp
   393  	}
   394  
   395  	return scale, xnorm, ok
   396  }