github.com/gonum/lapack@v0.0.0-20181123203213-e4cdc5a0bff9/native/dlasy2.go (about)

     1  // Copyright ©2016 The gonum Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package native
     6  
     7  import (
     8  	"math"
     9  
    10  	"github.com/gonum/blas/blas64"
    11  )
    12  
    13  // Dlasy2 solves the Sylvester matrix equation where the matrices are of order 1
    14  // or 2. It computes the unknown n1×n2 matrix X so that
    15  //  TL*X   + sgn*X*TR   = scale*B,  if tranl == false and tranr == false,
    16  //  TL^T*X + sgn*X*TR   = scale*B,  if tranl == true  and tranr == false,
    17  //  TL*X   + sgn*X*TR^T = scale*B,  if tranl == false and tranr == true,
    18  //  TL^T*X + sgn*X*TR^T = scale*B,  if tranl == true  and tranr == true,
    19  // where TL is n1×n1, TR is n2×n2, B is n1×n2, and 1 <= n1,n2 <= 2.
    20  //
    21  // isgn must be 1 or -1, and n1 and n2 must be 0, 1, or 2, but these conditions
    22  // are not checked.
    23  //
    24  // Dlasy2 returns three values, a scale factor that is chosen less than or equal
    25  // to 1 to prevent the solution overflowing, the infinity norm of the solution,
    26  // and an indicator of success. If ok is false, TL and TR have eigenvalues that
    27  // are too close, so TL or TR is perturbed to get a non-singular equation.
    28  //
    29  // Dlasy2 is an internal routine. It is exported for testing purposes.
    30  func (impl Implementation) Dlasy2(tranl, tranr bool, isgn, n1, n2 int, tl []float64, ldtl int, tr []float64, ldtr int, b []float64, ldb int, x []float64, ldx int) (scale, xnorm float64, ok bool) {
    31  	// TODO(vladimir-ch): Add input validation checks conditionally skipped
    32  	// using the build tag mechanism.
    33  
    34  	ok = true
    35  	// Quick return if possible.
    36  	if n1 == 0 || n2 == 0 {
    37  		return scale, xnorm, ok
    38  	}
    39  
    40  	// Set constants to control overflow.
    41  	eps := dlamchP
    42  	smlnum := dlamchS / eps
    43  	sgn := float64(isgn)
    44  
    45  	if n1 == 1 && n2 == 1 {
    46  		// 1×1 case: TL11*X + sgn*X*TR11 = B11.
    47  		tau1 := tl[0] + sgn*tr[0]
    48  		bet := math.Abs(tau1)
    49  		if bet <= smlnum {
    50  			tau1 = smlnum
    51  			bet = smlnum
    52  			ok = false
    53  		}
    54  		scale = 1
    55  		gam := math.Abs(b[0])
    56  		if smlnum*gam > bet {
    57  			scale = 1 / gam
    58  		}
    59  		x[0] = b[0] * scale / tau1
    60  		xnorm = math.Abs(x[0])
    61  		return scale, xnorm, ok
    62  	}
    63  
    64  	if n1+n2 == 3 {
    65  		// 1×2 or 2×1 case.
    66  		var (
    67  			smin float64
    68  			tmp  [4]float64 // tmp is used as a 2×2 row-major matrix.
    69  			btmp [2]float64
    70  		)
    71  		if n1 == 1 && n2 == 2 {
    72  			// 1×2 case: TL11*[X11 X12] + sgn*[X11 X12]*op[TR11 TR12] = [B11 B12].
    73  			//                                            [TR21 TR22]
    74  			smin = math.Abs(tl[0])
    75  			smin = math.Max(smin, math.Max(math.Abs(tr[0]), math.Abs(tr[1])))
    76  			smin = math.Max(smin, math.Max(math.Abs(tr[ldtr]), math.Abs(tr[ldtr+1])))
    77  			smin = math.Max(eps*smin, smlnum)
    78  			tmp[0] = tl[0] + sgn*tr[0]
    79  			tmp[3] = tl[0] + sgn*tr[ldtr+1]
    80  			if tranr {
    81  				tmp[1] = sgn * tr[1]
    82  				tmp[2] = sgn * tr[ldtr]
    83  			} else {
    84  				tmp[1] = sgn * tr[ldtr]
    85  				tmp[2] = sgn * tr[1]
    86  			}
    87  			btmp[0] = b[0]
    88  			btmp[1] = b[1]
    89  		} else {
    90  			// 2×1 case: op[TL11 TL12]*[X11] + sgn*[X11]*TR11 = [B11].
    91  			//             [TL21 TL22]*[X21]       [X21]        [B21]
    92  			smin = math.Abs(tr[0])
    93  			smin = math.Max(smin, math.Max(math.Abs(tl[0]), math.Abs(tl[1])))
    94  			smin = math.Max(smin, math.Max(math.Abs(tl[ldtl]), math.Abs(tl[ldtl+1])))
    95  			smin = math.Max(eps*smin, smlnum)
    96  			tmp[0] = tl[0] + sgn*tr[0]
    97  			tmp[3] = tl[ldtl+1] + sgn*tr[0]
    98  			if tranl {
    99  				tmp[1] = tl[ldtl]
   100  				tmp[2] = tl[1]
   101  			} else {
   102  				tmp[1] = tl[1]
   103  				tmp[2] = tl[ldtl]
   104  			}
   105  			btmp[0] = b[0]
   106  			btmp[1] = b[ldb]
   107  		}
   108  
   109  		// Solve 2×2 system using complete pivoting.
   110  		// Set pivots less than smin to smin.
   111  
   112  		bi := blas64.Implementation()
   113  		ipiv := bi.Idamax(len(tmp), tmp[:], 1)
   114  		// Compute the upper triangular matrix [u11 u12].
   115  		//                                     [  0 u22]
   116  		u11 := tmp[ipiv]
   117  		if math.Abs(u11) <= smin {
   118  			ok = false
   119  			u11 = smin
   120  		}
   121  		locu12 := [4]int{1, 0, 3, 2} // Index in tmp of the element on the same row as the pivot.
   122  		u12 := tmp[locu12[ipiv]]
   123  		locl21 := [4]int{2, 3, 0, 1} // Index in tmp of the element on the same column as the pivot.
   124  		l21 := tmp[locl21[ipiv]] / u11
   125  		locu22 := [4]int{3, 2, 1, 0} // Index in tmp of the remaining element.
   126  		u22 := tmp[locu22[ipiv]] - l21*u12
   127  		if math.Abs(u22) <= smin {
   128  			ok = false
   129  			u22 = smin
   130  		}
   131  		if ipiv&0x2 != 0 { // true for ipiv equal to 2 and 3.
   132  			// The pivot was in the second row, swap the elements of
   133  			// the right-hand side.
   134  			btmp[0], btmp[1] = btmp[1], btmp[0]-l21*btmp[1]
   135  		} else {
   136  			btmp[1] -= l21 * btmp[0]
   137  		}
   138  		scale = 1
   139  		if 2*smlnum*math.Abs(btmp[1]) > math.Abs(u22) || 2*smlnum*math.Abs(btmp[0]) > math.Abs(u11) {
   140  			scale = 0.5 / math.Max(math.Abs(btmp[0]), math.Abs(btmp[1]))
   141  			btmp[0] *= scale
   142  			btmp[1] *= scale
   143  		}
   144  		// Solve the system [u11 u12] [x21] = [ btmp[0] ].
   145  		//                  [  0 u22] [x22]   [ btmp[1] ]
   146  		x22 := btmp[1] / u22
   147  		x21 := btmp[0]/u11 - (u12/u11)*x22
   148  		if ipiv&0x1 != 0 { // true for ipiv equal to 1 and 3.
   149  			// The pivot was in the second column, swap the elements
   150  			// of the solution.
   151  			x21, x22 = x22, x21
   152  		}
   153  		x[0] = x21
   154  		if n1 == 1 {
   155  			x[1] = x22
   156  			xnorm = math.Abs(x[0]) + math.Abs(x[1])
   157  		} else {
   158  			x[ldx] = x22
   159  			xnorm = math.Max(math.Abs(x[0]), math.Abs(x[ldx]))
   160  		}
   161  		return scale, xnorm, ok
   162  	}
   163  
   164  	// 2×2 case: op[TL11 TL12]*[X11 X12] + SGN*[X11 X12]*op[TR11 TR12] = [B11 B12].
   165  	//             [TL21 TL22] [X21 X22]       [X21 X22]   [TR21 TR22]   [B21 B22]
   166  	//
   167  	// Solve equivalent 4×4 system using complete pivoting.
   168  	// Set pivots less than smin to smin.
   169  
   170  	smin := math.Max(math.Abs(tr[0]), math.Abs(tr[1]))
   171  	smin = math.Max(smin, math.Max(math.Abs(tr[ldtr]), math.Abs(tr[ldtr+1])))
   172  	smin = math.Max(smin, math.Max(math.Abs(tl[0]), math.Abs(tl[1])))
   173  	smin = math.Max(smin, math.Max(math.Abs(tl[ldtl]), math.Abs(tl[ldtl+1])))
   174  	smin = math.Max(eps*smin, smlnum)
   175  
   176  	var t [4][4]float64
   177  	t[0][0] = tl[0] + sgn*tr[0]
   178  	t[1][1] = tl[0] + sgn*tr[ldtr+1]
   179  	t[2][2] = tl[ldtl+1] + sgn*tr[0]
   180  	t[3][3] = tl[ldtl+1] + sgn*tr[ldtr+1]
   181  	if tranl {
   182  		t[0][2] = tl[ldtl]
   183  		t[1][3] = tl[ldtl]
   184  		t[2][0] = tl[1]
   185  		t[3][1] = tl[1]
   186  	} else {
   187  		t[0][2] = tl[1]
   188  		t[1][3] = tl[1]
   189  		t[2][0] = tl[ldtl]
   190  		t[3][1] = tl[ldtl]
   191  	}
   192  	if tranr {
   193  		t[0][1] = sgn * tr[1]
   194  		t[1][0] = sgn * tr[ldtr]
   195  		t[2][3] = sgn * tr[1]
   196  		t[3][2] = sgn * tr[ldtr]
   197  	} else {
   198  		t[0][1] = sgn * tr[ldtr]
   199  		t[1][0] = sgn * tr[1]
   200  		t[2][3] = sgn * tr[ldtr]
   201  		t[3][2] = sgn * tr[1]
   202  	}
   203  
   204  	var btmp [4]float64
   205  	btmp[0] = b[0]
   206  	btmp[1] = b[1]
   207  	btmp[2] = b[ldb]
   208  	btmp[3] = b[ldb+1]
   209  
   210  	// Perform elimination.
   211  	var jpiv [4]int // jpiv records any column swaps for pivoting.
   212  	for i := 0; i < 3; i++ {
   213  		var (
   214  			xmax       float64
   215  			ipsv, jpsv int
   216  		)
   217  		for ip := i; ip < 4; ip++ {
   218  			for jp := i; jp < 4; jp++ {
   219  				if math.Abs(t[ip][jp]) >= xmax {
   220  					xmax = math.Abs(t[ip][jp])
   221  					ipsv = ip
   222  					jpsv = jp
   223  				}
   224  			}
   225  		}
   226  		if ipsv != i {
   227  			// The pivot is not in the top row of the unprocessed
   228  			// block, swap rows ipsv and i of t and btmp.
   229  			t[ipsv], t[i] = t[i], t[ipsv]
   230  			btmp[ipsv], btmp[i] = btmp[i], btmp[ipsv]
   231  		}
   232  		if jpsv != i {
   233  			// The pivot is not in the left column of the
   234  			// unprocessed block, swap columns jpsv and i of t.
   235  			for k := 0; k < 4; k++ {
   236  				t[k][jpsv], t[k][i] = t[k][i], t[k][jpsv]
   237  			}
   238  		}
   239  		jpiv[i] = jpsv
   240  		if math.Abs(t[i][i]) < smin {
   241  			ok = false
   242  			t[i][i] = smin
   243  		}
   244  		for k := i + 1; k < 4; k++ {
   245  			t[k][i] /= t[i][i]
   246  			btmp[k] -= t[k][i] * btmp[i]
   247  			for j := i + 1; j < 4; j++ {
   248  				t[k][j] -= t[k][i] * t[i][j]
   249  			}
   250  		}
   251  	}
   252  	if math.Abs(t[3][3]) < smin {
   253  		ok = false
   254  		t[3][3] = smin
   255  	}
   256  	scale = 1
   257  	if 8*smlnum*math.Abs(btmp[0]) > math.Abs(t[0][0]) ||
   258  		8*smlnum*math.Abs(btmp[1]) > math.Abs(t[1][1]) ||
   259  		8*smlnum*math.Abs(btmp[2]) > math.Abs(t[2][2]) ||
   260  		8*smlnum*math.Abs(btmp[3]) > math.Abs(t[3][3]) {
   261  
   262  		maxbtmp := math.Max(math.Abs(btmp[0]), math.Abs(btmp[1]))
   263  		maxbtmp = math.Max(maxbtmp, math.Max(math.Abs(btmp[2]), math.Abs(btmp[3])))
   264  		scale = 1 / 8 / maxbtmp
   265  		btmp[0] *= scale
   266  		btmp[1] *= scale
   267  		btmp[2] *= scale
   268  		btmp[3] *= scale
   269  	}
   270  	// Compute the solution of the upper triangular system t * tmp = btmp.
   271  	var tmp [4]float64
   272  	for i := 3; i >= 0; i-- {
   273  		temp := 1 / t[i][i]
   274  		tmp[i] = btmp[i] * temp
   275  		for j := i + 1; j < 4; j++ {
   276  			tmp[i] -= temp * t[i][j] * tmp[j]
   277  		}
   278  	}
   279  	for i := 2; i >= 0; i-- {
   280  		if jpiv[i] != i {
   281  			tmp[i], tmp[jpiv[i]] = tmp[jpiv[i]], tmp[i]
   282  		}
   283  	}
   284  	x[0] = tmp[0]
   285  	x[1] = tmp[1]
   286  	x[ldx] = tmp[2]
   287  	x[ldx+1] = tmp[3]
   288  	xnorm = math.Max(math.Abs(tmp[0])+math.Abs(tmp[1]), math.Abs(tmp[2])+math.Abs(tmp[3]))
   289  	return scale, xnorm, ok
   290  }