github.com/gonum/lapack@v0.0.0-20181123203213-e4cdc5a0bff9/native/dlatrd.go (about) 1 // Copyright ©2016 The gonum Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package native 6 7 import ( 8 "github.com/gonum/blas" 9 "github.com/gonum/blas/blas64" 10 ) 11 12 // Dlatrd reduces nb rows and columns of a real n×n symmetric matrix A to symmetric 13 // tridiagonal form. It computes the orthonormal similarity transformation 14 // Q^T * A * Q 15 // and returns the matrices V and W to apply to the unreduced part of A. If 16 // uplo == blas.Upper, the upper triangle is supplied and the last nb rows are 17 // reduced. If uplo == blas.Lower, the lower triangle is supplied and the first 18 // nb rows are reduced. 19 // 20 // a contains the symmetric matrix on entry with active triangular half specified 21 // by uplo. On exit, the nb columns have been reduced to tridiagonal form. The 22 // diagonal contains the diagonal of the reduced matrix, the off-diagonal is 23 // set to 1, and the remaining elements contain the data to construct Q. 24 // 25 // If uplo == blas.Upper, with n = 5 and nb = 2 on exit a is 26 // [ a a a v4 v5] 27 // [ a a v4 v5] 28 // [ a 1 v5] 29 // [ d 1] 30 // [ d] 31 // 32 // If uplo == blas.Lower, with n = 5 and nb = 2, on exit a is 33 // [ d ] 34 // [ 1 d ] 35 // [v1 1 a ] 36 // [v1 v2 a a ] 37 // [v1 v2 a a a] 38 // 39 // e contains the superdiagonal elements of the reduced matrix. If uplo == blas.Upper, 40 // e[n-nb:n-1] contains the last nb columns of the reduced matrix, while if 41 // uplo == blas.Lower, e[:nb] contains the first nb columns of the reduced matrix. 42 // e must have length at least n-1, and Dlatrd will panic otherwise. 43 // 44 // tau contains the scalar factors of the elementary reflectors needed to construct Q. 45 // The reflectors are stored in tau[n-nb:n-1] if uplo == blas.Upper, and in 46 // tau[:nb] if uplo == blas.Lower. tau must have length n-1, and Dlatrd will panic 47 // otherwise. 48 // 49 // w is an n×nb matrix. On exit it contains the data to update the unreduced part 50 // of A. 51 // 52 // The matrix Q is represented as a product of elementary reflectors. Each reflector 53 // H has the form 54 // I - tau * v * v^T 55 // If uplo == blas.Upper, 56 // Q = H_{n-1} * H_{n-2} * ... * H_{n-nb} 57 // where v[:i-1] is stored in A[:i-1,i], v[i-1] = 1, and v[i:n] = 0. 58 // 59 // If uplo == blas.Lower, 60 // Q = H_0 * H_1 * ... * H_{nb-1} 61 // where v[:i+1] = 0, v[i+1] = 1, and v[i+2:n] is stored in A[i+2:n,i]. 62 // 63 // The vectors v form the n×nb matrix V which is used with W to apply a 64 // symmetric rank-2 update to the unreduced part of A 65 // A = A - V * W^T - W * V^T 66 // 67 // Dlatrd is an internal routine. It is exported for testing purposes. 68 func (impl Implementation) Dlatrd(uplo blas.Uplo, n, nb int, a []float64, lda int, e, tau, w []float64, ldw int) { 69 checkMatrix(n, n, a, lda) 70 checkMatrix(n, nb, w, ldw) 71 if len(e) < n-1 { 72 panic(badE) 73 } 74 if len(tau) < n-1 { 75 panic(badTau) 76 } 77 if n <= 0 { 78 return 79 } 80 bi := blas64.Implementation() 81 if uplo == blas.Upper { 82 for i := n - 1; i >= n-nb; i-- { 83 iw := i - n + nb 84 if i < n-1 { 85 // Update A(0:i, i). 86 bi.Dgemv(blas.NoTrans, i+1, n-i-1, -1, a[i+1:], lda, 87 w[i*ldw+iw+1:], 1, 1, a[i:], lda) 88 bi.Dgemv(blas.NoTrans, i+1, n-i-1, -1, w[iw+1:], ldw, 89 a[i*lda+i+1:], 1, 1, a[i:], lda) 90 } 91 if i > 0 { 92 // Generate elementary reflector H_i to annihilate A(0:i-2,i). 93 e[i-1], tau[i-1] = impl.Dlarfg(i, a[(i-1)*lda+i], a[i:], lda) 94 a[(i-1)*lda+i] = 1 95 96 // Compute W(0:i-1, i). 97 bi.Dsymv(blas.Upper, i, 1, a, lda, a[i:], lda, 0, w[iw:], ldw) 98 if i < n-1 { 99 bi.Dgemv(blas.Trans, i, n-i-1, 1, w[iw+1:], ldw, 100 a[i:], lda, 0, w[(i+1)*ldw+iw:], ldw) 101 bi.Dgemv(blas.NoTrans, i, n-i-1, -1, a[i+1:], lda, 102 w[(i+1)*ldw+iw:], ldw, 1, w[iw:], ldw) 103 bi.Dgemv(blas.Trans, i, n-i-1, 1, a[i+1:], lda, 104 a[i:], lda, 0, w[(i+1)*ldw+iw:], ldw) 105 bi.Dgemv(blas.NoTrans, i, n-i-1, -1, w[iw+1:], ldw, 106 w[(i+1)*ldw+iw:], ldw, 1, w[iw:], ldw) 107 } 108 bi.Dscal(i, tau[i-1], w[iw:], ldw) 109 alpha := -0.5 * tau[i-1] * bi.Ddot(i, w[iw:], ldw, a[i:], lda) 110 bi.Daxpy(i, alpha, a[i:], lda, w[iw:], ldw) 111 } 112 } 113 } else { 114 // Reduce first nb columns of lower triangle. 115 for i := 0; i < nb; i++ { 116 // Update A(i:n, i) 117 bi.Dgemv(blas.NoTrans, n-i, i, -1, a[i*lda:], lda, 118 w[i*ldw:], 1, 1, a[i*lda+i:], lda) 119 bi.Dgemv(blas.NoTrans, n-i, i, -1, w[i*ldw:], ldw, 120 a[i*lda:], 1, 1, a[i*lda+i:], lda) 121 if i < n-1 { 122 // Generate elementary reflector H_i to annihilate A(i+2:n,i). 123 e[i], tau[i] = impl.Dlarfg(n-i-1, a[(i+1)*lda+i], a[min(i+2, n-1)*lda+i:], lda) 124 a[(i+1)*lda+i] = 1 125 126 // Compute W(i+1:n,i). 127 bi.Dsymv(blas.Lower, n-i-1, 1, a[(i+1)*lda+i+1:], lda, 128 a[(i+1)*lda+i:], lda, 0, w[(i+1)*ldw+i:], ldw) 129 bi.Dgemv(blas.Trans, n-i-1, i, 1, w[(i+1)*ldw:], ldw, 130 a[(i+1)*lda+i:], lda, 0, w[i:], ldw) 131 bi.Dgemv(blas.NoTrans, n-i-1, i, -1, a[(i+1)*lda:], lda, 132 w[i:], ldw, 1, w[(i+1)*ldw+i:], ldw) 133 bi.Dgemv(blas.Trans, n-i-1, i, 1, a[(i+1)*lda:], lda, 134 a[(i+1)*lda+i:], lda, 0, w[i:], ldw) 135 bi.Dgemv(blas.NoTrans, n-i-1, i, -1, w[(i+1)*ldw:], ldw, 136 w[i:], ldw, 1, w[(i+1)*ldw+i:], ldw) 137 bi.Dscal(n-i-1, tau[i], w[(i+1)*ldw+i:], ldw) 138 alpha := -0.5 * tau[i] * bi.Ddot(n-i-1, w[(i+1)*ldw+i:], ldw, 139 a[(i+1)*lda+i:], lda) 140 bi.Daxpy(n-i-1, alpha, a[(i+1)*lda+i:], lda, 141 w[(i+1)*ldw+i:], ldw) 142 } 143 } 144 } 145 }