github.com/gonum/lapack@v0.0.0-20181123203213-e4cdc5a0bff9/native/dorm2r.go (about) 1 // Copyright ©2015 The gonum Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package native 6 7 import "github.com/gonum/blas" 8 9 // Dorm2r multiplies a general matrix C by an orthogonal matrix from a QR factorization 10 // determined by Dgeqrf. 11 // C = Q * C if side == blas.Left and trans == blas.NoTrans 12 // C = Q^T * C if side == blas.Left and trans == blas.Trans 13 // C = C * Q if side == blas.Right and trans == blas.NoTrans 14 // C = C * Q^T if side == blas.Right and trans == blas.Trans 15 // If side == blas.Left, a is a matrix of size m×k, and if side == blas.Right 16 // a is of size n×k. 17 // 18 // tau contains the Householder factors and is of length at least k and this function 19 // will panic otherwise. 20 // 21 // work is temporary storage of length at least n if side == blas.Left 22 // and at least m if side == blas.Right and this function will panic otherwise. 23 // 24 // Dorm2r is an internal routine. It is exported for testing purposes. 25 func (impl Implementation) Dorm2r(side blas.Side, trans blas.Transpose, m, n, k int, a []float64, lda int, tau, c []float64, ldc int, work []float64) { 26 if side != blas.Left && side != blas.Right { 27 panic(badSide) 28 } 29 if trans != blas.Trans && trans != blas.NoTrans { 30 panic(badTrans) 31 } 32 33 left := side == blas.Left 34 notran := trans == blas.NoTrans 35 if left { 36 // Q is m x m 37 checkMatrix(m, k, a, lda) 38 if len(work) < n { 39 panic(badWork) 40 } 41 } else { 42 // Q is n x n 43 checkMatrix(n, k, a, lda) 44 if len(work) < m { 45 panic(badWork) 46 } 47 } 48 checkMatrix(m, n, c, ldc) 49 if m == 0 || n == 0 || k == 0 { 50 return 51 } 52 if len(tau) < k { 53 panic(badTau) 54 } 55 if left { 56 if notran { 57 for i := k - 1; i >= 0; i-- { 58 aii := a[i*lda+i] 59 a[i*lda+i] = 1 60 impl.Dlarf(side, m-i, n, a[i*lda+i:], lda, tau[i], c[i*ldc:], ldc, work) 61 a[i*lda+i] = aii 62 } 63 return 64 } 65 for i := 0; i < k; i++ { 66 aii := a[i*lda+i] 67 a[i*lda+i] = 1 68 impl.Dlarf(side, m-i, n, a[i*lda+i:], lda, tau[i], c[i*ldc:], ldc, work) 69 a[i*lda+i] = aii 70 } 71 return 72 } 73 if notran { 74 for i := 0; i < k; i++ { 75 aii := a[i*lda+i] 76 a[i*lda+i] = 1 77 impl.Dlarf(side, m, n-i, a[i*lda+i:], lda, tau[i], c[i:], ldc, work) 78 a[i*lda+i] = aii 79 } 80 return 81 } 82 for i := k - 1; i >= 0; i-- { 83 aii := a[i*lda+i] 84 a[i*lda+i] = 1 85 impl.Dlarf(side, m, n-i, a[i*lda+i:], lda, tau[i], c[i:], ldc, work) 86 a[i*lda+i] = aii 87 } 88 }