github.com/gonum/lapack@v0.0.0-20181123203213-e4cdc5a0bff9/native/dpotf2.go (about) 1 // Copyright ©2015 The gonum Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package native 6 7 import ( 8 "math" 9 10 "github.com/gonum/blas" 11 "github.com/gonum/blas/blas64" 12 ) 13 14 // Dpotf2 computes the Cholesky decomposition of the symmetric positive definite 15 // matrix a. If ul == blas.Upper, then a is stored as an upper-triangular matrix, 16 // and a = U^T U is stored in place into a. If ul == blas.Lower, then a = L L^T 17 // is computed and stored in-place into a. If a is not positive definite, false 18 // is returned. This is the unblocked version of the algorithm. 19 // 20 // Dpotf2 is an internal routine. It is exported for testing purposes. 21 func (Implementation) Dpotf2(ul blas.Uplo, n int, a []float64, lda int) (ok bool) { 22 if ul != blas.Upper && ul != blas.Lower { 23 panic(badUplo) 24 } 25 checkMatrix(n, n, a, lda) 26 27 if n == 0 { 28 return true 29 } 30 31 bi := blas64.Implementation() 32 if ul == blas.Upper { 33 for j := 0; j < n; j++ { 34 ajj := a[j*lda+j] 35 if j != 0 { 36 ajj -= bi.Ddot(j, a[j:], lda, a[j:], lda) 37 } 38 if ajj <= 0 || math.IsNaN(ajj) { 39 a[j*lda+j] = ajj 40 return false 41 } 42 ajj = math.Sqrt(ajj) 43 a[j*lda+j] = ajj 44 if j < n-1 { 45 bi.Dgemv(blas.Trans, j, n-j-1, 46 -1, a[j+1:], lda, a[j:], lda, 47 1, a[j*lda+j+1:], 1) 48 bi.Dscal(n-j-1, 1/ajj, a[j*lda+j+1:], 1) 49 } 50 } 51 return true 52 } 53 for j := 0; j < n; j++ { 54 ajj := a[j*lda+j] 55 if j != 0 { 56 ajj -= bi.Ddot(j, a[j*lda:], 1, a[j*lda:], 1) 57 } 58 if ajj <= 0 || math.IsNaN(ajj) { 59 a[j*lda+j] = ajj 60 return false 61 } 62 ajj = math.Sqrt(ajj) 63 a[j*lda+j] = ajj 64 if j < n-1 { 65 bi.Dgemv(blas.NoTrans, n-j-1, j, 66 -1, a[(j+1)*lda:], lda, a[j*lda:], 1, 67 1, a[(j+1)*lda+j:], lda) 68 bi.Dscal(n-j-1, 1/ajj, a[(j+1)*lda+j:], lda) 69 } 70 } 71 return true 72 }