github.com/gonum/lapack@v0.0.0-20181123203213-e4cdc5a0bff9/native/dtgsja.go (about)

     1  // Copyright ©2017 The gonum Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package native
     6  
     7  import (
     8  	"math"
     9  
    10  	"github.com/gonum/blas"
    11  	"github.com/gonum/blas/blas64"
    12  	"github.com/gonum/lapack"
    13  )
    14  
    15  // Dtgsja computes the generalized singular value decomposition (GSVD)
    16  // of two real upper triangular or trapezoidal matrices A and B.
    17  //
    18  // A and B have the following forms, which may be obtained by the
    19  // preprocessing subroutine Dggsvp from a general m×n matrix A and p×n
    20  // matrix B:
    21  //
    22  //            n-k-l  k    l
    23  //  A =    k [  0   A12  A13 ] if m-k-l >= 0;
    24  //         l [  0    0   A23 ]
    25  //     m-k-l [  0    0    0  ]
    26  //
    27  //            n-k-l  k    l
    28  //  A =    k [  0   A12  A13 ] if m-k-l < 0;
    29  //       m-k [  0    0   A23 ]
    30  //
    31  //            n-k-l  k    l
    32  //  B =    l [  0    0   B13 ]
    33  //       p-l [  0    0    0  ]
    34  //
    35  // where the k×k matrix A12 and l×l matrix B13 are non-singular
    36  // upper triangular. A23 is l×l upper triangular if m-k-l >= 0,
    37  // otherwise A23 is (m-k)×l upper trapezoidal.
    38  //
    39  // On exit,
    40  //
    41  //  U^T*A*Q = D1*[ 0 R ], V^T*B*Q = D2*[ 0 R ],
    42  //
    43  // where U, V and Q are orthogonal matrices.
    44  // R is a non-singular upper triangular matrix, and D1 and D2 are
    45  // diagonal matrices, which are of the following structures:
    46  //
    47  // If m-k-l >= 0,
    48  //
    49  //                    k  l
    50  //       D1 =     k [ I  0 ]
    51  //                l [ 0  C ]
    52  //            m-k-l [ 0  0 ]
    53  //
    54  //                  k  l
    55  //       D2 = l   [ 0  S ]
    56  //            p-l [ 0  0 ]
    57  //
    58  //               n-k-l  k    l
    59  //  [ 0 R ] = k [  0   R11  R12 ] k
    60  //            l [  0    0   R22 ] l
    61  //
    62  // where
    63  //
    64  //  C = diag( alpha_k, ... , alpha_{k+l} ),
    65  //  S = diag( beta_k,  ... , beta_{k+l} ),
    66  //  C^2 + S^2 = I.
    67  //
    68  // R is stored in
    69  //  A[0:k+l, n-k-l:n]
    70  // on exit.
    71  //
    72  // If m-k-l < 0,
    73  //
    74  //                 k m-k k+l-m
    75  //      D1 =   k [ I  0    0  ]
    76  //           m-k [ 0  C    0  ]
    77  //
    78  //                   k m-k k+l-m
    79  //      D2 =   m-k [ 0  S    0  ]
    80  //           k+l-m [ 0  0    I  ]
    81  //             p-l [ 0  0    0  ]
    82  //
    83  //                 n-k-l  k   m-k  k+l-m
    84  //  [ 0 R ] =    k [ 0    R11  R12  R13 ]
    85  //             m-k [ 0     0   R22  R23 ]
    86  //           k+l-m [ 0     0    0   R33 ]
    87  //
    88  // where
    89  //  C = diag( alpha_k, ... , alpha_m ),
    90  //  S = diag( beta_k,  ... , beta_m ),
    91  //  C^2 + S^2 = I.
    92  //
    93  //  R = [ R11 R12 R13 ] is stored in A[0:m, n-k-l:n]
    94  //      [  0  R22 R23 ]
    95  // and R33 is stored in
    96  //  B[m-k:l, n+m-k-l:n] on exit.
    97  //
    98  // The computation of the orthogonal transformation matrices U, V or Q
    99  // is optional. These matrices may either be formed explicitly, or they
   100  // may be post-multiplied into input matrices U1, V1, or Q1.
   101  //
   102  // Dtgsja essentially uses a variant of Kogbetliantz algorithm to reduce
   103  // min(l,m-k)×l triangular or trapezoidal matrix A23 and l×l
   104  // matrix B13 to the form:
   105  //
   106  //  U1^T*A13*Q1 = C1*R1; V1^T*B13*Q1 = S1*R1,
   107  //
   108  // where U1, V1 and Q1 are orthogonal matrices. C1 and S1 are diagonal
   109  // matrices satisfying
   110  //
   111  //  C1^2 + S1^2 = I,
   112  //
   113  // and R1 is an l×l non-singular upper triangular matrix.
   114  //
   115  // jobU, jobV and jobQ are options for computing the orthogonal matrices. The behavior
   116  // is as follows
   117  //  jobU == lapack.GSVDU        Compute orthogonal matrix U
   118  //  jobU == lapack.GSVDUnit     Use unit-initialized matrix
   119  //  jobU == lapack.GSVDNone     Do not compute orthogonal matrix.
   120  // The behavior is the same for jobV and jobQ with the exception that instead of
   121  // lapack.GSVDU these accept lapack.GSVDV and lapack.GSVDQ respectively.
   122  // The matrices U, V and Q must be m×m, p×p and n×n respectively unless the
   123  // relevant job parameter is lapack.GSVDNone.
   124  //
   125  // k and l specify the sub-blocks in the input matrices A and B:
   126  //  A23 = A[k:min(k+l,m), n-l:n) and B13 = B[0:l, n-l:n]
   127  // of A and B, whose GSVD is going to be computed by Dtgsja.
   128  //
   129  // tola and tolb are the convergence criteria for the Jacobi-Kogbetliantz
   130  // iteration procedure. Generally, they are the same as used in the preprocessing
   131  // step, for example,
   132  //  tola = max(m, n)*norm(A)*eps,
   133  //  tolb = max(p, n)*norm(B)*eps,
   134  // where eps is the machine epsilon.
   135  //
   136  // work must have length at least 2*n, otherwise Dtgsja will panic.
   137  //
   138  // alpha and beta must have length n or Dtgsja will panic. On exit, alpha and
   139  // beta contain the generalized singular value pairs of A and B
   140  //   alpha[0:k] = 1,
   141  //   beta[0:k]  = 0,
   142  // if m-k-l >= 0,
   143  //   alpha[k:k+l] = diag(C),
   144  //   beta[k:k+l]  = diag(S),
   145  // if m-k-l < 0,
   146  //   alpha[k:m]= C, alpha[m:k+l]= 0
   147  //   beta[k:m] = S, beta[m:k+l] = 1.
   148  // if k+l < n,
   149  //   alpha[k+l:n] = 0 and
   150  //   beta[k+l:n]  = 0.
   151  //
   152  // On exit, A[n-k:n, 0:min(k+l,m)] contains the triangular matrix R or part of R
   153  // and if necessary, B[m-k:l, n+m-k-l:n] contains a part of R.
   154  //
   155  // Dtgsja returns whether the routine converged and the number of iteration cycles
   156  // that were run.
   157  //
   158  // Dtgsja is an internal routine. It is exported for testing purposes.
   159  func (impl Implementation) Dtgsja(jobU, jobV, jobQ lapack.GSVDJob, m, p, n, k, l int, a []float64, lda int, b []float64, ldb int, tola, tolb float64, alpha, beta, u []float64, ldu int, v []float64, ldv int, q []float64, ldq int, work []float64) (cycles int, ok bool) {
   160  	const maxit = 40
   161  
   162  	checkMatrix(m, n, a, lda)
   163  	checkMatrix(p, n, b, ldb)
   164  
   165  	if len(alpha) != n {
   166  		panic(badAlpha)
   167  	}
   168  	if len(beta) != n {
   169  		panic(badBeta)
   170  	}
   171  
   172  	initu := jobU == lapack.GSVDUnit
   173  	wantu := initu || jobU == lapack.GSVDU
   174  	if !initu && !wantu && jobU != lapack.GSVDNone {
   175  		panic(badGSVDJob + "U")
   176  	}
   177  	if jobU != lapack.GSVDNone {
   178  		checkMatrix(m, m, u, ldu)
   179  	}
   180  
   181  	initv := jobV == lapack.GSVDUnit
   182  	wantv := initv || jobV == lapack.GSVDV
   183  	if !initv && !wantv && jobV != lapack.GSVDNone {
   184  		panic(badGSVDJob + "V")
   185  	}
   186  	if jobV != lapack.GSVDNone {
   187  		checkMatrix(p, p, v, ldv)
   188  	}
   189  
   190  	initq := jobQ == lapack.GSVDUnit
   191  	wantq := initq || jobQ == lapack.GSVDQ
   192  	if !initq && !wantq && jobQ != lapack.GSVDNone {
   193  		panic(badGSVDJob + "Q")
   194  	}
   195  	if jobQ != lapack.GSVDNone {
   196  		checkMatrix(n, n, q, ldq)
   197  	}
   198  
   199  	if len(work) < 2*n {
   200  		panic(badWork)
   201  	}
   202  
   203  	// Initialize U, V and Q, if necessary
   204  	if initu {
   205  		impl.Dlaset(blas.All, m, m, 0, 1, u, ldu)
   206  	}
   207  	if initv {
   208  		impl.Dlaset(blas.All, p, p, 0, 1, v, ldv)
   209  	}
   210  	if initq {
   211  		impl.Dlaset(blas.All, n, n, 0, 1, q, ldq)
   212  	}
   213  
   214  	bi := blas64.Implementation()
   215  	minTol := math.Min(tola, tolb)
   216  
   217  	// Loop until convergence.
   218  	upper := false
   219  	for cycles = 1; cycles <= maxit; cycles++ {
   220  		upper = !upper
   221  
   222  		for i := 0; i < l-1; i++ {
   223  			for j := i + 1; j < l; j++ {
   224  				var a1, a2, a3 float64
   225  				if k+i < m {
   226  					a1 = a[(k+i)*lda+n-l+i]
   227  				}
   228  				if k+j < m {
   229  					a3 = a[(k+j)*lda+n-l+j]
   230  				}
   231  
   232  				b1 := b[i*ldb+n-l+i]
   233  				b3 := b[j*ldb+n-l+j]
   234  
   235  				var b2 float64
   236  				if upper {
   237  					if k+i < m {
   238  						a2 = a[(k+i)*lda+n-l+j]
   239  					}
   240  					b2 = b[i*ldb+n-l+j]
   241  				} else {
   242  					if k+j < m {
   243  						a2 = a[(k+j)*lda+n-l+i]
   244  					}
   245  					b2 = b[j*ldb+n-l+i]
   246  				}
   247  
   248  				csu, snu, csv, snv, csq, snq := impl.Dlags2(upper, a1, a2, a3, b1, b2, b3)
   249  
   250  				// Update (k+i)-th and (k+j)-th rows of matrix A: U^T*A.
   251  				if k+j < m {
   252  					bi.Drot(l, a[(k+j)*lda+n-l:], 1, a[(k+i)*lda+n-l:], 1, csu, snu)
   253  				}
   254  
   255  				// Update i-th and j-th rows of matrix B: V^T*B.
   256  				bi.Drot(l, b[j*ldb+n-l:], 1, b[i*ldb+n-l:], 1, csv, snv)
   257  
   258  				// Update (n-l+i)-th and (n-l+j)-th columns of matrices
   259  				// A and B: A*Q and B*Q.
   260  				bi.Drot(min(k+l, m), a[n-l+j:], lda, a[n-l+i:], lda, csq, snq)
   261  				bi.Drot(l, b[n-l+j:], ldb, b[n-l+i:], ldb, csq, snq)
   262  
   263  				if upper {
   264  					if k+i < m {
   265  						a[(k+i)*lda+n-l+j] = 0
   266  					}
   267  					b[i*ldb+n-l+j] = 0
   268  				} else {
   269  					if k+j < m {
   270  						a[(k+j)*lda+n-l+i] = 0
   271  					}
   272  					b[j*ldb+n-l+i] = 0
   273  				}
   274  
   275  				// Update orthogonal matrices U, V, Q, if desired.
   276  				if wantu && k+j < m {
   277  					bi.Drot(m, u[k+j:], ldu, u[k+i:], ldu, csu, snu)
   278  				}
   279  				if wantv {
   280  					bi.Drot(p, v[j:], ldv, v[i:], ldv, csv, snv)
   281  				}
   282  				if wantq {
   283  					bi.Drot(n, q[n-l+j:], ldq, q[n-l+i:], ldq, csq, snq)
   284  				}
   285  			}
   286  		}
   287  
   288  		if !upper {
   289  			// The matrices A13 and B13 were lower triangular at the start
   290  			// of the cycle, and are now upper triangular.
   291  			//
   292  			// Convergence test: test the parallelism of the corresponding
   293  			// rows of A and B.
   294  			var error float64
   295  			for i := 0; i < min(l, m-k); i++ {
   296  				bi.Dcopy(l-i, a[(k+i)*lda+n-l+i:], 1, work, 1)
   297  				bi.Dcopy(l-i, b[i*ldb+n-l+i:], 1, work[l:], 1)
   298  				ssmin := impl.Dlapll(l-i, work, 1, work[l:], 1)
   299  				error = math.Max(error, ssmin)
   300  			}
   301  			if math.Abs(error) <= minTol {
   302  				// The algorithm has converged.
   303  				// Compute the generalized singular value pairs (alpha, beta)
   304  				// and set the triangular matrix R to array A.
   305  				for i := 0; i < k; i++ {
   306  					alpha[i] = 1
   307  					beta[i] = 0
   308  				}
   309  
   310  				for i := 0; i < min(l, m-k); i++ {
   311  					a1 := a[(k+i)*lda+n-l+i]
   312  					b1 := b[i*ldb+n-l+i]
   313  
   314  					if a1 != 0 {
   315  						gamma := b1 / a1
   316  
   317  						// Change sign if necessary.
   318  						if gamma < 0 {
   319  							bi.Dscal(l-i, -1, b[i*ldb+n-l+i:], 1)
   320  							if wantv {
   321  								bi.Dscal(p, -1, v[i:], ldv)
   322  							}
   323  						}
   324  						beta[k+i], alpha[k+i], _ = impl.Dlartg(math.Abs(gamma), 1)
   325  
   326  						if alpha[k+i] >= beta[k+i] {
   327  							bi.Dscal(l-i, 1/alpha[k+i], a[(k+i)*lda+n-l+i:], 1)
   328  						} else {
   329  							bi.Dscal(l-i, 1/beta[k+i], b[i*ldb+n-l+i:], 1)
   330  							bi.Dcopy(l-i, b[i*ldb+n-l+i:], 1, a[(k+i)*lda+n-l+i:], 1)
   331  						}
   332  					} else {
   333  						alpha[k+i] = 0
   334  						beta[k+i] = 1
   335  						bi.Dcopy(l-i, b[i*ldb+n-l+i:], 1, a[(k+i)*lda+n-l+i:], 1)
   336  					}
   337  				}
   338  
   339  				for i := m; i < k+l; i++ {
   340  					alpha[i] = 0
   341  					beta[i] = 1
   342  				}
   343  				if k+l < n {
   344  					for i := k + l; i < n; i++ {
   345  						alpha[i] = 0
   346  						beta[i] = 0
   347  					}
   348  				}
   349  
   350  				return cycles, true
   351  			}
   352  		}
   353  	}
   354  
   355  	// The algorithm has not converged after maxit cycles.
   356  	return cycles, false
   357  }