github.com/google/syzkaller@v0.0.0-20240517125934-c0f1611a36d6/executor/_include/flatbuffers/flexbuffers.h (about) 1 /* 2 * Copyright 2017 Google Inc. All rights reserved. 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #ifndef FLATBUFFERS_FLEXBUFFERS_H_ 18 #define FLATBUFFERS_FLEXBUFFERS_H_ 19 20 #include <map> 21 // Used to select STL variant. 22 #include "flatbuffers/base.h" 23 // We use the basic binary writing functions from the regular FlatBuffers. 24 #include "flatbuffers/util.h" 25 26 #ifdef _MSC_VER 27 # include <intrin.h> 28 #endif 29 30 #if defined(_MSC_VER) 31 # pragma warning(push) 32 # pragma warning(disable : 4127) // C4127: conditional expression is constant 33 #endif 34 35 namespace flexbuffers { 36 37 class Reference; 38 class Map; 39 40 // These are used in the lower 2 bits of a type field to determine the size of 41 // the elements (and or size field) of the item pointed to (e.g. vector). 42 enum BitWidth { 43 BIT_WIDTH_8 = 0, 44 BIT_WIDTH_16 = 1, 45 BIT_WIDTH_32 = 2, 46 BIT_WIDTH_64 = 3, 47 }; 48 49 // These are used as the upper 6 bits of a type field to indicate the actual 50 // type. 51 enum Type { 52 FBT_NULL = 0, 53 FBT_INT = 1, 54 FBT_UINT = 2, 55 FBT_FLOAT = 3, 56 // Types above stored inline, types below (except FBT_BOOL) store an offset. 57 FBT_KEY = 4, 58 FBT_STRING = 5, 59 FBT_INDIRECT_INT = 6, 60 FBT_INDIRECT_UINT = 7, 61 FBT_INDIRECT_FLOAT = 8, 62 FBT_MAP = 9, 63 FBT_VECTOR = 10, // Untyped. 64 FBT_VECTOR_INT = 11, // Typed any size (stores no type table). 65 FBT_VECTOR_UINT = 12, 66 FBT_VECTOR_FLOAT = 13, 67 FBT_VECTOR_KEY = 14, 68 // DEPRECATED, use FBT_VECTOR or FBT_VECTOR_KEY instead. 69 // Read test.cpp/FlexBuffersDeprecatedTest() for details on why. 70 FBT_VECTOR_STRING_DEPRECATED = 15, 71 FBT_VECTOR_INT2 = 16, // Typed tuple (no type table, no size field). 72 FBT_VECTOR_UINT2 = 17, 73 FBT_VECTOR_FLOAT2 = 18, 74 FBT_VECTOR_INT3 = 19, // Typed triple (no type table, no size field). 75 FBT_VECTOR_UINT3 = 20, 76 FBT_VECTOR_FLOAT3 = 21, 77 FBT_VECTOR_INT4 = 22, // Typed quad (no type table, no size field). 78 FBT_VECTOR_UINT4 = 23, 79 FBT_VECTOR_FLOAT4 = 24, 80 FBT_BLOB = 25, 81 FBT_BOOL = 26, 82 FBT_VECTOR_BOOL = 83 36, // To Allow the same type of conversion of type to vector type 84 85 FBT_MAX_TYPE = 37 86 }; 87 88 inline bool IsInline(Type t) { return t <= FBT_FLOAT || t == FBT_BOOL; } 89 90 inline bool IsTypedVectorElementType(Type t) { 91 return (t >= FBT_INT && t <= FBT_STRING) || t == FBT_BOOL; 92 } 93 94 inline bool IsTypedVector(Type t) { 95 return (t >= FBT_VECTOR_INT && t <= FBT_VECTOR_STRING_DEPRECATED) || 96 t == FBT_VECTOR_BOOL; 97 } 98 99 inline bool IsFixedTypedVector(Type t) { 100 return t >= FBT_VECTOR_INT2 && t <= FBT_VECTOR_FLOAT4; 101 } 102 103 inline Type ToTypedVector(Type t, size_t fixed_len = 0) { 104 FLATBUFFERS_ASSERT(IsTypedVectorElementType(t)); 105 switch (fixed_len) { 106 case 0: return static_cast<Type>(t - FBT_INT + FBT_VECTOR_INT); 107 case 2: return static_cast<Type>(t - FBT_INT + FBT_VECTOR_INT2); 108 case 3: return static_cast<Type>(t - FBT_INT + FBT_VECTOR_INT3); 109 case 4: return static_cast<Type>(t - FBT_INT + FBT_VECTOR_INT4); 110 default: FLATBUFFERS_ASSERT(0); return FBT_NULL; 111 } 112 } 113 114 inline Type ToTypedVectorElementType(Type t) { 115 FLATBUFFERS_ASSERT(IsTypedVector(t)); 116 return static_cast<Type>(t - FBT_VECTOR_INT + FBT_INT); 117 } 118 119 inline Type ToFixedTypedVectorElementType(Type t, uint8_t *len) { 120 FLATBUFFERS_ASSERT(IsFixedTypedVector(t)); 121 auto fixed_type = t - FBT_VECTOR_INT2; 122 *len = static_cast<uint8_t>(fixed_type / 3 + 123 2); // 3 types each, starting from length 2. 124 return static_cast<Type>(fixed_type % 3 + FBT_INT); 125 } 126 127 // TODO: implement proper support for 8/16bit floats, or decide not to 128 // support them. 129 typedef int16_t half; 130 typedef int8_t quarter; 131 132 // TODO: can we do this without conditionals using intrinsics or inline asm 133 // on some platforms? Given branch prediction the method below should be 134 // decently quick, but it is the most frequently executed function. 135 // We could do an (unaligned) 64-bit read if we ifdef out the platforms for 136 // which that doesn't work (or where we'd read into un-owned memory). 137 template<typename R, typename T1, typename T2, typename T4, typename T8> 138 R ReadSizedScalar(const uint8_t *data, uint8_t byte_width) { 139 return byte_width < 4 140 ? (byte_width < 2 141 ? static_cast<R>(flatbuffers::ReadScalar<T1>(data)) 142 : static_cast<R>(flatbuffers::ReadScalar<T2>(data))) 143 : (byte_width < 8 144 ? static_cast<R>(flatbuffers::ReadScalar<T4>(data)) 145 : static_cast<R>(flatbuffers::ReadScalar<T8>(data))); 146 } 147 148 inline int64_t ReadInt64(const uint8_t *data, uint8_t byte_width) { 149 return ReadSizedScalar<int64_t, int8_t, int16_t, int32_t, int64_t>( 150 data, byte_width); 151 } 152 153 inline uint64_t ReadUInt64(const uint8_t *data, uint8_t byte_width) { 154 // This is the "hottest" function (all offset lookups use this), so worth 155 // optimizing if possible. 156 // TODO: GCC apparently replaces memcpy by a rep movsb, but only if count is a 157 // constant, which here it isn't. Test if memcpy is still faster than 158 // the conditionals in ReadSizedScalar. Can also use inline asm. 159 160 // clang-format off 161 #if defined(_MSC_VER) && defined(_M_X64) && !defined(_M_ARM64EC) 162 // This is 64-bit Windows only, __movsb does not work on 32-bit Windows. 163 uint64_t u = 0; 164 __movsb(reinterpret_cast<uint8_t *>(&u), 165 reinterpret_cast<const uint8_t *>(data), byte_width); 166 return flatbuffers::EndianScalar(u); 167 #else 168 return ReadSizedScalar<uint64_t, uint8_t, uint16_t, uint32_t, uint64_t>( 169 data, byte_width); 170 #endif 171 // clang-format on 172 } 173 174 inline double ReadDouble(const uint8_t *data, uint8_t byte_width) { 175 return ReadSizedScalar<double, quarter, half, float, double>(data, 176 byte_width); 177 } 178 179 inline const uint8_t *Indirect(const uint8_t *offset, uint8_t byte_width) { 180 return offset - ReadUInt64(offset, byte_width); 181 } 182 183 template<typename T> const uint8_t *Indirect(const uint8_t *offset) { 184 return offset - flatbuffers::ReadScalar<T>(offset); 185 } 186 187 inline BitWidth WidthU(uint64_t u) { 188 #define FLATBUFFERS_GET_FIELD_BIT_WIDTH(value, width) \ 189 { \ 190 if (!((u) & ~((1ULL << (width)) - 1ULL))) return BIT_WIDTH_##width; \ 191 } 192 FLATBUFFERS_GET_FIELD_BIT_WIDTH(u, 8); 193 FLATBUFFERS_GET_FIELD_BIT_WIDTH(u, 16); 194 FLATBUFFERS_GET_FIELD_BIT_WIDTH(u, 32); 195 #undef FLATBUFFERS_GET_FIELD_BIT_WIDTH 196 return BIT_WIDTH_64; 197 } 198 199 inline BitWidth WidthI(int64_t i) { 200 auto u = static_cast<uint64_t>(i) << 1; 201 return WidthU(i >= 0 ? u : ~u); 202 } 203 204 inline BitWidth WidthF(double f) { 205 return static_cast<double>(static_cast<float>(f)) == f ? BIT_WIDTH_32 206 : BIT_WIDTH_64; 207 } 208 209 // Base class of all types below. 210 // Points into the data buffer and allows access to one type. 211 class Object { 212 public: 213 Object(const uint8_t *data, uint8_t byte_width) 214 : data_(data), byte_width_(byte_width) {} 215 216 protected: 217 const uint8_t *data_; 218 uint8_t byte_width_; 219 }; 220 221 // Object that has a size, obtained either from size prefix, or elsewhere. 222 class Sized : public Object { 223 public: 224 // Size prefix. 225 Sized(const uint8_t *data, uint8_t byte_width) 226 : Object(data, byte_width), size_(read_size()) {} 227 // Manual size. 228 Sized(const uint8_t *data, uint8_t byte_width, size_t sz) 229 : Object(data, byte_width), size_(sz) {} 230 size_t size() const { return size_; } 231 // Access size stored in `byte_width_` bytes before data_ pointer. 232 size_t read_size() const { 233 return static_cast<size_t>(ReadUInt64(data_ - byte_width_, byte_width_)); 234 } 235 236 protected: 237 size_t size_; 238 }; 239 240 class String : public Sized { 241 public: 242 // Size prefix. 243 String(const uint8_t *data, uint8_t byte_width) : Sized(data, byte_width) {} 244 // Manual size. 245 String(const uint8_t *data, uint8_t byte_width, size_t sz) 246 : Sized(data, byte_width, sz) {} 247 248 size_t length() const { return size(); } 249 const char *c_str() const { return reinterpret_cast<const char *>(data_); } 250 std::string str() const { return std::string(c_str(), size()); } 251 252 static String EmptyString() { 253 static const char *empty_string = ""; 254 return String(reinterpret_cast<const uint8_t *>(empty_string), 1, 0); 255 } 256 bool IsTheEmptyString() const { return data_ == EmptyString().data_; } 257 }; 258 259 class Blob : public Sized { 260 public: 261 Blob(const uint8_t *data_buf, uint8_t byte_width) 262 : Sized(data_buf, byte_width) {} 263 264 static Blob EmptyBlob() { 265 static const uint8_t empty_blob[] = { 0 /*len*/ }; 266 return Blob(empty_blob + 1, 1); 267 } 268 bool IsTheEmptyBlob() const { return data_ == EmptyBlob().data_; } 269 const uint8_t *data() const { return data_; } 270 }; 271 272 class Vector : public Sized { 273 public: 274 Vector(const uint8_t *data, uint8_t byte_width) : Sized(data, byte_width) {} 275 276 Reference operator[](size_t i) const; 277 278 static Vector EmptyVector() { 279 static const uint8_t empty_vector[] = { 0 /*len*/ }; 280 return Vector(empty_vector + 1, 1); 281 } 282 bool IsTheEmptyVector() const { return data_ == EmptyVector().data_; } 283 }; 284 285 class TypedVector : public Sized { 286 public: 287 TypedVector(const uint8_t *data, uint8_t byte_width, Type element_type) 288 : Sized(data, byte_width), type_(element_type) {} 289 290 Reference operator[](size_t i) const; 291 292 static TypedVector EmptyTypedVector() { 293 static const uint8_t empty_typed_vector[] = { 0 /*len*/ }; 294 return TypedVector(empty_typed_vector + 1, 1, FBT_INT); 295 } 296 bool IsTheEmptyVector() const { 297 return data_ == TypedVector::EmptyTypedVector().data_; 298 } 299 300 Type ElementType() { return type_; } 301 302 friend Reference; 303 304 private: 305 Type type_; 306 307 friend Map; 308 }; 309 310 class FixedTypedVector : public Object { 311 public: 312 FixedTypedVector(const uint8_t *data, uint8_t byte_width, Type element_type, 313 uint8_t len) 314 : Object(data, byte_width), type_(element_type), len_(len) {} 315 316 Reference operator[](size_t i) const; 317 318 static FixedTypedVector EmptyFixedTypedVector() { 319 static const uint8_t fixed_empty_vector[] = { 0 /* unused */ }; 320 return FixedTypedVector(fixed_empty_vector, 1, FBT_INT, 0); 321 } 322 bool IsTheEmptyFixedTypedVector() const { 323 return data_ == FixedTypedVector::EmptyFixedTypedVector().data_; 324 } 325 326 Type ElementType() const { return type_; } 327 uint8_t size() const { return len_; } 328 329 private: 330 Type type_; 331 uint8_t len_; 332 }; 333 334 class Map : public Vector { 335 public: 336 Map(const uint8_t *data, uint8_t byte_width) : Vector(data, byte_width) {} 337 338 Reference operator[](const char *key) const; 339 Reference operator[](const std::string &key) const; 340 341 Vector Values() const { return Vector(data_, byte_width_); } 342 343 TypedVector Keys() const { 344 const size_t num_prefixed_fields = 3; 345 auto keys_offset = data_ - byte_width_ * num_prefixed_fields; 346 return TypedVector(Indirect(keys_offset, byte_width_), 347 static_cast<uint8_t>( 348 ReadUInt64(keys_offset + byte_width_, byte_width_)), 349 FBT_KEY); 350 } 351 352 static Map EmptyMap() { 353 static const uint8_t empty_map[] = { 354 0 /*keys_len*/, 0 /*keys_offset*/, 1 /*keys_width*/, 0 /*len*/ 355 }; 356 return Map(empty_map + 4, 1); 357 } 358 359 bool IsTheEmptyMap() const { return data_ == EmptyMap().data_; } 360 }; 361 362 template<typename T> 363 void AppendToString(std::string &s, T &&v, bool keys_quoted) { 364 s += "[ "; 365 for (size_t i = 0; i < v.size(); i++) { 366 if (i) s += ", "; 367 v[i].ToString(true, keys_quoted, s); 368 } 369 s += " ]"; 370 } 371 372 class Reference { 373 public: 374 Reference() 375 : data_(nullptr), parent_width_(0), byte_width_(0), type_(FBT_NULL) {} 376 377 Reference(const uint8_t *data, uint8_t parent_width, uint8_t byte_width, 378 Type type) 379 : data_(data), 380 parent_width_(parent_width), 381 byte_width_(byte_width), 382 type_(type) {} 383 384 Reference(const uint8_t *data, uint8_t parent_width, uint8_t packed_type) 385 : data_(data), parent_width_(parent_width) { 386 byte_width_ = 1U << static_cast<BitWidth>(packed_type & 3); 387 type_ = static_cast<Type>(packed_type >> 2); 388 } 389 390 Type GetType() const { return type_; } 391 392 bool IsNull() const { return type_ == FBT_NULL; } 393 bool IsBool() const { return type_ == FBT_BOOL; } 394 bool IsInt() const { return type_ == FBT_INT || type_ == FBT_INDIRECT_INT; } 395 bool IsUInt() const { 396 return type_ == FBT_UINT || type_ == FBT_INDIRECT_UINT; 397 } 398 bool IsIntOrUint() const { return IsInt() || IsUInt(); } 399 bool IsFloat() const { 400 return type_ == FBT_FLOAT || type_ == FBT_INDIRECT_FLOAT; 401 } 402 bool IsNumeric() const { return IsIntOrUint() || IsFloat(); } 403 bool IsString() const { return type_ == FBT_STRING; } 404 bool IsKey() const { return type_ == FBT_KEY; } 405 bool IsVector() const { return type_ == FBT_VECTOR || type_ == FBT_MAP; } 406 bool IsUntypedVector() const { return type_ == FBT_VECTOR; } 407 bool IsTypedVector() const { return flexbuffers::IsTypedVector(type_); } 408 bool IsFixedTypedVector() const { 409 return flexbuffers::IsFixedTypedVector(type_); 410 } 411 bool IsAnyVector() const { 412 return (IsTypedVector() || IsFixedTypedVector() || IsVector()); 413 } 414 bool IsMap() const { return type_ == FBT_MAP; } 415 bool IsBlob() const { return type_ == FBT_BLOB; } 416 bool AsBool() const { 417 return (type_ == FBT_BOOL ? ReadUInt64(data_, parent_width_) 418 : AsUInt64()) != 0; 419 } 420 421 // Reads any type as a int64_t. Never fails, does most sensible conversion. 422 // Truncates floats, strings are attempted to be parsed for a number, 423 // vectors/maps return their size. Returns 0 if all else fails. 424 int64_t AsInt64() const { 425 if (type_ == FBT_INT) { 426 // A fast path for the common case. 427 return ReadInt64(data_, parent_width_); 428 } else 429 switch (type_) { 430 case FBT_INDIRECT_INT: return ReadInt64(Indirect(), byte_width_); 431 case FBT_UINT: return ReadUInt64(data_, parent_width_); 432 case FBT_INDIRECT_UINT: return ReadUInt64(Indirect(), byte_width_); 433 case FBT_FLOAT: 434 return static_cast<int64_t>(ReadDouble(data_, parent_width_)); 435 case FBT_INDIRECT_FLOAT: 436 return static_cast<int64_t>(ReadDouble(Indirect(), byte_width_)); 437 case FBT_NULL: return 0; 438 case FBT_STRING: return flatbuffers::StringToInt(AsString().c_str()); 439 case FBT_VECTOR: return static_cast<int64_t>(AsVector().size()); 440 case FBT_BOOL: return ReadInt64(data_, parent_width_); 441 default: 442 // Convert other things to int. 443 return 0; 444 } 445 } 446 447 // TODO: could specialize these to not use AsInt64() if that saves 448 // extension ops in generated code, and use a faster op than ReadInt64. 449 int32_t AsInt32() const { return static_cast<int32_t>(AsInt64()); } 450 int16_t AsInt16() const { return static_cast<int16_t>(AsInt64()); } 451 int8_t AsInt8() const { return static_cast<int8_t>(AsInt64()); } 452 453 uint64_t AsUInt64() const { 454 if (type_ == FBT_UINT) { 455 // A fast path for the common case. 456 return ReadUInt64(data_, parent_width_); 457 } else 458 switch (type_) { 459 case FBT_INDIRECT_UINT: return ReadUInt64(Indirect(), byte_width_); 460 case FBT_INT: return ReadInt64(data_, parent_width_); 461 case FBT_INDIRECT_INT: return ReadInt64(Indirect(), byte_width_); 462 case FBT_FLOAT: 463 return static_cast<uint64_t>(ReadDouble(data_, parent_width_)); 464 case FBT_INDIRECT_FLOAT: 465 return static_cast<uint64_t>(ReadDouble(Indirect(), byte_width_)); 466 case FBT_NULL: return 0; 467 case FBT_STRING: return flatbuffers::StringToUInt(AsString().c_str()); 468 case FBT_VECTOR: return static_cast<uint64_t>(AsVector().size()); 469 case FBT_BOOL: return ReadUInt64(data_, parent_width_); 470 default: 471 // Convert other things to uint. 472 return 0; 473 } 474 } 475 476 uint32_t AsUInt32() const { return static_cast<uint32_t>(AsUInt64()); } 477 uint16_t AsUInt16() const { return static_cast<uint16_t>(AsUInt64()); } 478 uint8_t AsUInt8() const { return static_cast<uint8_t>(AsUInt64()); } 479 480 double AsDouble() const { 481 if (type_ == FBT_FLOAT) { 482 // A fast path for the common case. 483 return ReadDouble(data_, parent_width_); 484 } else 485 switch (type_) { 486 case FBT_INDIRECT_FLOAT: return ReadDouble(Indirect(), byte_width_); 487 case FBT_INT: 488 return static_cast<double>(ReadInt64(data_, parent_width_)); 489 case FBT_UINT: 490 return static_cast<double>(ReadUInt64(data_, parent_width_)); 491 case FBT_INDIRECT_INT: 492 return static_cast<double>(ReadInt64(Indirect(), byte_width_)); 493 case FBT_INDIRECT_UINT: 494 return static_cast<double>(ReadUInt64(Indirect(), byte_width_)); 495 case FBT_NULL: return 0.0; 496 case FBT_STRING: { 497 double d; 498 flatbuffers::StringToNumber(AsString().c_str(), &d); 499 return d; 500 } 501 case FBT_VECTOR: return static_cast<double>(AsVector().size()); 502 case FBT_BOOL: 503 return static_cast<double>(ReadUInt64(data_, parent_width_)); 504 default: 505 // Convert strings and other things to float. 506 return 0; 507 } 508 } 509 510 float AsFloat() const { return static_cast<float>(AsDouble()); } 511 512 const char *AsKey() const { 513 if (type_ == FBT_KEY || type_ == FBT_STRING) { 514 return reinterpret_cast<const char *>(Indirect()); 515 } else { 516 return ""; 517 } 518 } 519 520 // This function returns the empty string if you try to read something that 521 // is not a string or key. 522 String AsString() const { 523 if (type_ == FBT_STRING) { 524 return String(Indirect(), byte_width_); 525 } else if (type_ == FBT_KEY) { 526 auto key = Indirect(); 527 return String(key, byte_width_, 528 strlen(reinterpret_cast<const char *>(key))); 529 } else { 530 return String::EmptyString(); 531 } 532 } 533 534 // Unlike AsString(), this will convert any type to a std::string. 535 std::string ToString() const { 536 std::string s; 537 ToString(false, false, s); 538 return s; 539 } 540 541 // Convert any type to a JSON-like string. strings_quoted determines if 542 // string values at the top level receive "" quotes (inside other values 543 // they always do). keys_quoted determines if keys are quoted, at any level. 544 // TODO(wvo): add further options to have indentation/newlines. 545 void ToString(bool strings_quoted, bool keys_quoted, std::string &s) const { 546 if (type_ == FBT_STRING) { 547 String str(Indirect(), byte_width_); 548 if (strings_quoted) { 549 flatbuffers::EscapeString(str.c_str(), str.length(), &s, true, false); 550 } else { 551 s.append(str.c_str(), str.length()); 552 } 553 } else if (IsKey()) { 554 auto str = AsKey(); 555 if (keys_quoted) { 556 flatbuffers::EscapeString(str, strlen(str), &s, true, false); 557 } else { 558 s += str; 559 } 560 } else if (IsInt()) { 561 s += flatbuffers::NumToString(AsInt64()); 562 } else if (IsUInt()) { 563 s += flatbuffers::NumToString(AsUInt64()); 564 } else if (IsFloat()) { 565 s += flatbuffers::NumToString(AsDouble()); 566 } else if (IsNull()) { 567 s += "null"; 568 } else if (IsBool()) { 569 s += AsBool() ? "true" : "false"; 570 } else if (IsMap()) { 571 s += "{ "; 572 auto m = AsMap(); 573 auto keys = m.Keys(); 574 auto vals = m.Values(); 575 for (size_t i = 0; i < keys.size(); i++) { 576 bool kq = keys_quoted; 577 if (!kq) { 578 // FlexBuffers keys may contain arbitrary characters, only allow 579 // unquoted if it looks like an "identifier": 580 const char *p = keys[i].AsKey(); 581 if (!flatbuffers::is_alpha(*p) && *p != '_') { 582 kq = true; 583 } else { 584 while (*++p) { 585 if (!flatbuffers::is_alnum(*p) && *p != '_') { 586 kq = true; 587 break; 588 } 589 } 590 } 591 } 592 keys[i].ToString(true, kq, s); 593 s += ": "; 594 vals[i].ToString(true, keys_quoted, s); 595 if (i < keys.size() - 1) s += ", "; 596 } 597 s += " }"; 598 } else if (IsVector()) { 599 AppendToString<Vector>(s, AsVector(), keys_quoted); 600 } else if (IsTypedVector()) { 601 AppendToString<TypedVector>(s, AsTypedVector(), keys_quoted); 602 } else if (IsFixedTypedVector()) { 603 AppendToString<FixedTypedVector>(s, AsFixedTypedVector(), keys_quoted); 604 } else if (IsBlob()) { 605 auto blob = AsBlob(); 606 flatbuffers::EscapeString(reinterpret_cast<const char *>(blob.data()), 607 blob.size(), &s, true, false); 608 } else { 609 s += "(?)"; 610 } 611 } 612 613 // This function returns the empty blob if you try to read a not-blob. 614 // Strings can be viewed as blobs too. 615 Blob AsBlob() const { 616 if (type_ == FBT_BLOB || type_ == FBT_STRING) { 617 return Blob(Indirect(), byte_width_); 618 } else { 619 return Blob::EmptyBlob(); 620 } 621 } 622 623 // This function returns the empty vector if you try to read a not-vector. 624 // Maps can be viewed as vectors too. 625 Vector AsVector() const { 626 if (type_ == FBT_VECTOR || type_ == FBT_MAP) { 627 return Vector(Indirect(), byte_width_); 628 } else { 629 return Vector::EmptyVector(); 630 } 631 } 632 633 TypedVector AsTypedVector() const { 634 if (IsTypedVector()) { 635 auto tv = 636 TypedVector(Indirect(), byte_width_, ToTypedVectorElementType(type_)); 637 if (tv.type_ == FBT_STRING) { 638 // These can't be accessed as strings, since we don't know the bit-width 639 // of the size field, see the declaration of 640 // FBT_VECTOR_STRING_DEPRECATED above for details. 641 // We change the type here to be keys, which are a subtype of strings, 642 // and will ignore the size field. This will truncate strings with 643 // embedded nulls. 644 tv.type_ = FBT_KEY; 645 } 646 return tv; 647 } else { 648 return TypedVector::EmptyTypedVector(); 649 } 650 } 651 652 FixedTypedVector AsFixedTypedVector() const { 653 if (IsFixedTypedVector()) { 654 uint8_t len = 0; 655 auto vtype = ToFixedTypedVectorElementType(type_, &len); 656 return FixedTypedVector(Indirect(), byte_width_, vtype, len); 657 } else { 658 return FixedTypedVector::EmptyFixedTypedVector(); 659 } 660 } 661 662 Map AsMap() const { 663 if (type_ == FBT_MAP) { 664 return Map(Indirect(), byte_width_); 665 } else { 666 return Map::EmptyMap(); 667 } 668 } 669 670 template<typename T> T As() const; 671 672 // Experimental: Mutation functions. 673 // These allow scalars in an already created buffer to be updated in-place. 674 // Since by default scalars are stored in the smallest possible space, 675 // the new value may not fit, in which case these functions return false. 676 // To avoid this, you can construct the values you intend to mutate using 677 // Builder::ForceMinimumBitWidth. 678 bool MutateInt(int64_t i) { 679 if (type_ == FBT_INT) { 680 return Mutate(data_, i, parent_width_, WidthI(i)); 681 } else if (type_ == FBT_INDIRECT_INT) { 682 return Mutate(Indirect(), i, byte_width_, WidthI(i)); 683 } else if (type_ == FBT_UINT) { 684 auto u = static_cast<uint64_t>(i); 685 return Mutate(data_, u, parent_width_, WidthU(u)); 686 } else if (type_ == FBT_INDIRECT_UINT) { 687 auto u = static_cast<uint64_t>(i); 688 return Mutate(Indirect(), u, byte_width_, WidthU(u)); 689 } else { 690 return false; 691 } 692 } 693 694 bool MutateBool(bool b) { 695 return type_ == FBT_BOOL && Mutate(data_, b, parent_width_, BIT_WIDTH_8); 696 } 697 698 bool MutateUInt(uint64_t u) { 699 if (type_ == FBT_UINT) { 700 return Mutate(data_, u, parent_width_, WidthU(u)); 701 } else if (type_ == FBT_INDIRECT_UINT) { 702 return Mutate(Indirect(), u, byte_width_, WidthU(u)); 703 } else if (type_ == FBT_INT) { 704 auto i = static_cast<int64_t>(u); 705 return Mutate(data_, i, parent_width_, WidthI(i)); 706 } else if (type_ == FBT_INDIRECT_INT) { 707 auto i = static_cast<int64_t>(u); 708 return Mutate(Indirect(), i, byte_width_, WidthI(i)); 709 } else { 710 return false; 711 } 712 } 713 714 bool MutateFloat(float f) { 715 if (type_ == FBT_FLOAT) { 716 return MutateF(data_, f, parent_width_, BIT_WIDTH_32); 717 } else if (type_ == FBT_INDIRECT_FLOAT) { 718 return MutateF(Indirect(), f, byte_width_, BIT_WIDTH_32); 719 } else { 720 return false; 721 } 722 } 723 724 bool MutateFloat(double d) { 725 if (type_ == FBT_FLOAT) { 726 return MutateF(data_, d, parent_width_, WidthF(d)); 727 } else if (type_ == FBT_INDIRECT_FLOAT) { 728 return MutateF(Indirect(), d, byte_width_, WidthF(d)); 729 } else { 730 return false; 731 } 732 } 733 734 bool MutateString(const char *str, size_t len) { 735 auto s = AsString(); 736 if (s.IsTheEmptyString()) return false; 737 // This is very strict, could allow shorter strings, but that creates 738 // garbage. 739 if (s.length() != len) return false; 740 memcpy(const_cast<char *>(s.c_str()), str, len); 741 return true; 742 } 743 bool MutateString(const char *str) { return MutateString(str, strlen(str)); } 744 bool MutateString(const std::string &str) { 745 return MutateString(str.data(), str.length()); 746 } 747 748 private: 749 const uint8_t *Indirect() const { 750 return flexbuffers::Indirect(data_, parent_width_); 751 } 752 753 template<typename T> 754 bool Mutate(const uint8_t *dest, T t, size_t byte_width, 755 BitWidth value_width) { 756 auto fits = static_cast<size_t>(static_cast<size_t>(1U) << value_width) <= 757 byte_width; 758 if (fits) { 759 t = flatbuffers::EndianScalar(t); 760 memcpy(const_cast<uint8_t *>(dest), &t, byte_width); 761 } 762 return fits; 763 } 764 765 template<typename T> 766 bool MutateF(const uint8_t *dest, T t, size_t byte_width, 767 BitWidth value_width) { 768 if (byte_width == sizeof(double)) 769 return Mutate(dest, static_cast<double>(t), byte_width, value_width); 770 if (byte_width == sizeof(float)) 771 return Mutate(dest, static_cast<float>(t), byte_width, value_width); 772 FLATBUFFERS_ASSERT(false); 773 return false; 774 } 775 776 friend class Verifier; 777 778 const uint8_t *data_; 779 uint8_t parent_width_; 780 uint8_t byte_width_; 781 Type type_; 782 }; 783 784 // Template specialization for As(). 785 template<> inline bool Reference::As<bool>() const { return AsBool(); } 786 787 template<> inline int8_t Reference::As<int8_t>() const { return AsInt8(); } 788 template<> inline int16_t Reference::As<int16_t>() const { return AsInt16(); } 789 template<> inline int32_t Reference::As<int32_t>() const { return AsInt32(); } 790 template<> inline int64_t Reference::As<int64_t>() const { return AsInt64(); } 791 792 template<> inline uint8_t Reference::As<uint8_t>() const { return AsUInt8(); } 793 template<> inline uint16_t Reference::As<uint16_t>() const { 794 return AsUInt16(); 795 } 796 template<> inline uint32_t Reference::As<uint32_t>() const { 797 return AsUInt32(); 798 } 799 template<> inline uint64_t Reference::As<uint64_t>() const { 800 return AsUInt64(); 801 } 802 803 template<> inline double Reference::As<double>() const { return AsDouble(); } 804 template<> inline float Reference::As<float>() const { return AsFloat(); } 805 806 template<> inline String Reference::As<String>() const { return AsString(); } 807 template<> inline std::string Reference::As<std::string>() const { 808 return AsString().str(); 809 } 810 811 template<> inline Blob Reference::As<Blob>() const { return AsBlob(); } 812 template<> inline Vector Reference::As<Vector>() const { return AsVector(); } 813 template<> inline TypedVector Reference::As<TypedVector>() const { 814 return AsTypedVector(); 815 } 816 template<> inline FixedTypedVector Reference::As<FixedTypedVector>() const { 817 return AsFixedTypedVector(); 818 } 819 template<> inline Map Reference::As<Map>() const { return AsMap(); } 820 821 inline uint8_t PackedType(BitWidth bit_width, Type type) { 822 return static_cast<uint8_t>(bit_width | (type << 2)); 823 } 824 825 inline uint8_t NullPackedType() { return PackedType(BIT_WIDTH_8, FBT_NULL); } 826 827 // Vector accessors. 828 // Note: if you try to access outside of bounds, you get a Null value back 829 // instead. Normally this would be an assert, but since this is "dynamically 830 // typed" data, you may not want that (someone sends you a 2d vector and you 831 // wanted 3d). 832 // The Null converts seamlessly into a default value for any other type. 833 // TODO(wvo): Could introduce an #ifdef that makes this into an assert? 834 inline Reference Vector::operator[](size_t i) const { 835 auto len = size(); 836 if (i >= len) return Reference(nullptr, 1, NullPackedType()); 837 auto packed_type = (data_ + len * byte_width_)[i]; 838 auto elem = data_ + i * byte_width_; 839 return Reference(elem, byte_width_, packed_type); 840 } 841 842 inline Reference TypedVector::operator[](size_t i) const { 843 auto len = size(); 844 if (i >= len) return Reference(nullptr, 1, NullPackedType()); 845 auto elem = data_ + i * byte_width_; 846 return Reference(elem, byte_width_, 1, type_); 847 } 848 849 inline Reference FixedTypedVector::operator[](size_t i) const { 850 if (i >= len_) return Reference(nullptr, 1, NullPackedType()); 851 auto elem = data_ + i * byte_width_; 852 return Reference(elem, byte_width_, 1, type_); 853 } 854 855 template<typename T> int KeyCompare(const void *key, const void *elem) { 856 auto str_elem = reinterpret_cast<const char *>( 857 Indirect<T>(reinterpret_cast<const uint8_t *>(elem))); 858 auto skey = reinterpret_cast<const char *>(key); 859 return strcmp(skey, str_elem); 860 } 861 862 inline Reference Map::operator[](const char *key) const { 863 auto keys = Keys(); 864 // We can't pass keys.byte_width_ to the comparison function, so we have 865 // to pick the right one ahead of time. 866 int (*comp)(const void *, const void *) = nullptr; 867 switch (keys.byte_width_) { 868 case 1: comp = KeyCompare<uint8_t>; break; 869 case 2: comp = KeyCompare<uint16_t>; break; 870 case 4: comp = KeyCompare<uint32_t>; break; 871 case 8: comp = KeyCompare<uint64_t>; break; 872 default: FLATBUFFERS_ASSERT(false); return Reference(); 873 } 874 auto res = std::bsearch(key, keys.data_, keys.size(), keys.byte_width_, comp); 875 if (!res) return Reference(nullptr, 1, NullPackedType()); 876 auto i = (reinterpret_cast<uint8_t *>(res) - keys.data_) / keys.byte_width_; 877 return (*static_cast<const Vector *>(this))[i]; 878 } 879 880 inline Reference Map::operator[](const std::string &key) const { 881 return (*this)[key.c_str()]; 882 } 883 884 inline Reference GetRoot(const uint8_t *buffer, size_t size) { 885 // See Finish() below for the serialization counterpart of this. 886 // The root starts at the end of the buffer, so we parse backwards from there. 887 auto end = buffer + size; 888 auto byte_width = *--end; 889 auto packed_type = *--end; 890 end -= byte_width; // The root data item. 891 return Reference(end, byte_width, packed_type); 892 } 893 894 inline Reference GetRoot(const std::vector<uint8_t> &buffer) { 895 return GetRoot(buffer.data(), buffer.size()); 896 } 897 898 // Flags that configure how the Builder behaves. 899 // The "Share" flags determine if the Builder automatically tries to pool 900 // this type. Pooling can reduce the size of serialized data if there are 901 // multiple maps of the same kind, at the expense of slightly slower 902 // serialization (the cost of lookups) and more memory use (std::set). 903 // By default this is on for keys, but off for strings. 904 // Turn keys off if you have e.g. only one map. 905 // Turn strings on if you expect many non-unique string values. 906 // Additionally, sharing key vectors can save space if you have maps with 907 // identical field populations. 908 enum BuilderFlag { 909 BUILDER_FLAG_NONE = 0, 910 BUILDER_FLAG_SHARE_KEYS = 1, 911 BUILDER_FLAG_SHARE_STRINGS = 2, 912 BUILDER_FLAG_SHARE_KEYS_AND_STRINGS = 3, 913 BUILDER_FLAG_SHARE_KEY_VECTORS = 4, 914 BUILDER_FLAG_SHARE_ALL = 7, 915 }; 916 917 class Builder FLATBUFFERS_FINAL_CLASS { 918 public: 919 Builder(size_t initial_size = 256, 920 BuilderFlag flags = BUILDER_FLAG_SHARE_KEYS) 921 : buf_(initial_size), 922 finished_(false), 923 has_duplicate_keys_(false), 924 flags_(flags), 925 force_min_bit_width_(BIT_WIDTH_8), 926 key_pool(KeyOffsetCompare(buf_)), 927 string_pool(StringOffsetCompare(buf_)) { 928 buf_.clear(); 929 } 930 931 #ifdef FLATBUFFERS_DEFAULT_DECLARATION 932 Builder(Builder &&) = default; 933 Builder &operator=(Builder &&) = default; 934 #endif 935 936 /// @brief Get the serialized buffer (after you call `Finish()`). 937 /// @return Returns a vector owned by this class. 938 const std::vector<uint8_t> &GetBuffer() const { 939 Finished(); 940 return buf_; 941 } 942 943 // Size of the buffer. Does not include unfinished values. 944 size_t GetSize() const { return buf_.size(); } 945 946 // Reset all state so we can re-use the buffer. 947 void Clear() { 948 buf_.clear(); 949 stack_.clear(); 950 finished_ = false; 951 // flags_ remains as-is; 952 force_min_bit_width_ = BIT_WIDTH_8; 953 key_pool.clear(); 954 string_pool.clear(); 955 } 956 957 // All value constructing functions below have two versions: one that 958 // takes a key (for placement inside a map) and one that doesn't (for inside 959 // vectors and elsewhere). 960 961 void Null() { stack_.push_back(Value()); } 962 void Null(const char *key) { 963 Key(key); 964 Null(); 965 } 966 967 void Int(int64_t i) { stack_.push_back(Value(i, FBT_INT, WidthI(i))); } 968 void Int(const char *key, int64_t i) { 969 Key(key); 970 Int(i); 971 } 972 973 void UInt(uint64_t u) { stack_.push_back(Value(u, FBT_UINT, WidthU(u))); } 974 void UInt(const char *key, uint64_t u) { 975 Key(key); 976 UInt(u); 977 } 978 979 void Float(float f) { stack_.push_back(Value(f)); } 980 void Float(const char *key, float f) { 981 Key(key); 982 Float(f); 983 } 984 985 void Double(double f) { stack_.push_back(Value(f)); } 986 void Double(const char *key, double d) { 987 Key(key); 988 Double(d); 989 } 990 991 void Bool(bool b) { stack_.push_back(Value(b)); } 992 void Bool(const char *key, bool b) { 993 Key(key); 994 Bool(b); 995 } 996 997 void IndirectInt(int64_t i) { PushIndirect(i, FBT_INDIRECT_INT, WidthI(i)); } 998 void IndirectInt(const char *key, int64_t i) { 999 Key(key); 1000 IndirectInt(i); 1001 } 1002 1003 void IndirectUInt(uint64_t u) { 1004 PushIndirect(u, FBT_INDIRECT_UINT, WidthU(u)); 1005 } 1006 void IndirectUInt(const char *key, uint64_t u) { 1007 Key(key); 1008 IndirectUInt(u); 1009 } 1010 1011 void IndirectFloat(float f) { 1012 PushIndirect(f, FBT_INDIRECT_FLOAT, BIT_WIDTH_32); 1013 } 1014 void IndirectFloat(const char *key, float f) { 1015 Key(key); 1016 IndirectFloat(f); 1017 } 1018 1019 void IndirectDouble(double f) { 1020 PushIndirect(f, FBT_INDIRECT_FLOAT, WidthF(f)); 1021 } 1022 void IndirectDouble(const char *key, double d) { 1023 Key(key); 1024 IndirectDouble(d); 1025 } 1026 1027 size_t Key(const char *str, size_t len) { 1028 auto sloc = buf_.size(); 1029 WriteBytes(str, len + 1); 1030 if (flags_ & BUILDER_FLAG_SHARE_KEYS) { 1031 auto it = key_pool.find(sloc); 1032 if (it != key_pool.end()) { 1033 // Already in the buffer. Remove key we just serialized, and use 1034 // existing offset instead. 1035 buf_.resize(sloc); 1036 sloc = *it; 1037 } else { 1038 key_pool.insert(sloc); 1039 } 1040 } 1041 stack_.push_back(Value(static_cast<uint64_t>(sloc), FBT_KEY, BIT_WIDTH_8)); 1042 return sloc; 1043 } 1044 1045 size_t Key(const char *str) { return Key(str, strlen(str)); } 1046 size_t Key(const std::string &str) { return Key(str.c_str(), str.size()); } 1047 1048 size_t String(const char *str, size_t len) { 1049 auto reset_to = buf_.size(); 1050 auto sloc = CreateBlob(str, len, 1, FBT_STRING); 1051 if (flags_ & BUILDER_FLAG_SHARE_STRINGS) { 1052 StringOffset so(sloc, len); 1053 auto it = string_pool.find(so); 1054 if (it != string_pool.end()) { 1055 // Already in the buffer. Remove string we just serialized, and use 1056 // existing offset instead. 1057 buf_.resize(reset_to); 1058 sloc = it->first; 1059 stack_.back().u_ = sloc; 1060 } else { 1061 string_pool.insert(so); 1062 } 1063 } 1064 return sloc; 1065 } 1066 size_t String(const char *str) { return String(str, strlen(str)); } 1067 size_t String(const std::string &str) { 1068 return String(str.c_str(), str.size()); 1069 } 1070 void String(const flexbuffers::String &str) { 1071 String(str.c_str(), str.length()); 1072 } 1073 1074 void String(const char *key, const char *str) { 1075 Key(key); 1076 String(str); 1077 } 1078 void String(const char *key, const std::string &str) { 1079 Key(key); 1080 String(str); 1081 } 1082 void String(const char *key, const flexbuffers::String &str) { 1083 Key(key); 1084 String(str); 1085 } 1086 1087 size_t Blob(const void *data, size_t len) { 1088 return CreateBlob(data, len, 0, FBT_BLOB); 1089 } 1090 size_t Blob(const std::vector<uint8_t> &v) { 1091 return CreateBlob(v.data(), v.size(), 0, FBT_BLOB); 1092 } 1093 1094 void Blob(const char *key, const void *data, size_t len) { 1095 Key(key); 1096 Blob(data, len); 1097 } 1098 void Blob(const char *key, const std::vector<uint8_t> &v) { 1099 Key(key); 1100 Blob(v); 1101 } 1102 1103 // TODO(wvo): support all the FlexBuffer types (like flexbuffers::String), 1104 // e.g. Vector etc. Also in overloaded versions. 1105 // Also some FlatBuffers types? 1106 1107 size_t StartVector() { return stack_.size(); } 1108 size_t StartVector(const char *key) { 1109 Key(key); 1110 return stack_.size(); 1111 } 1112 size_t StartMap() { return stack_.size(); } 1113 size_t StartMap(const char *key) { 1114 Key(key); 1115 return stack_.size(); 1116 } 1117 1118 // TODO(wvo): allow this to specify an alignment greater than the natural 1119 // alignment. 1120 size_t EndVector(size_t start, bool typed, bool fixed) { 1121 auto vec = CreateVector(start, stack_.size() - start, 1, typed, fixed); 1122 // Remove temp elements and return vector. 1123 stack_.resize(start); 1124 stack_.push_back(vec); 1125 return static_cast<size_t>(vec.u_); 1126 } 1127 1128 size_t EndMap(size_t start) { 1129 // We should have interleaved keys and values on the stack. 1130 // Make sure it is an even number: 1131 auto len = stack_.size() - start; 1132 FLATBUFFERS_ASSERT(!(len & 1)); 1133 len /= 2; 1134 // Make sure keys are all strings: 1135 for (auto key = start; key < stack_.size(); key += 2) { 1136 FLATBUFFERS_ASSERT(stack_[key].type_ == FBT_KEY); 1137 } 1138 // Now sort values, so later we can do a binary search lookup. 1139 // We want to sort 2 array elements at a time. 1140 struct TwoValue { 1141 Value key; 1142 Value val; 1143 }; 1144 // TODO(wvo): strict aliasing? 1145 // TODO(wvo): allow the caller to indicate the data is already sorted 1146 // for maximum efficiency? With an assert to check sortedness to make sure 1147 // we're not breaking binary search. 1148 // Or, we can track if the map is sorted as keys are added which would be 1149 // be quite cheap (cheaper than checking it here), so we can skip this 1150 // step automatically when appliccable, and encourage people to write in 1151 // sorted fashion. 1152 // std::sort is typically already a lot faster on sorted data though. 1153 auto dict = reinterpret_cast<TwoValue *>(stack_.data() + start); 1154 std::sort( 1155 dict, dict + len, [&](const TwoValue &a, const TwoValue &b) -> bool { 1156 auto as = reinterpret_cast<const char *>(buf_.data() + a.key.u_); 1157 auto bs = reinterpret_cast<const char *>(buf_.data() + b.key.u_); 1158 auto comp = strcmp(as, bs); 1159 // We want to disallow duplicate keys, since this results in a 1160 // map where values cannot be found. 1161 // But we can't assert here (since we don't want to fail on 1162 // random JSON input) or have an error mechanism. 1163 // Instead, we set has_duplicate_keys_ in the builder to 1164 // signal this. 1165 // TODO: Have to check for pointer equality, as some sort 1166 // implementation apparently call this function with the same 1167 // element?? Why? 1168 if (!comp && &a != &b) has_duplicate_keys_ = true; 1169 return comp < 0; 1170 }); 1171 // First create a vector out of all keys. 1172 // TODO(wvo): if kBuilderFlagShareKeyVectors is true, see if we can share 1173 // the first vector. 1174 auto keys = CreateVector(start, len, 2, true, false); 1175 auto vec = CreateVector(start + 1, len, 2, false, false, &keys); 1176 // Remove temp elements and return map. 1177 stack_.resize(start); 1178 stack_.push_back(vec); 1179 return static_cast<size_t>(vec.u_); 1180 } 1181 1182 // Call this after EndMap to see if the map had any duplicate keys. 1183 // Any map with such keys won't be able to retrieve all values. 1184 bool HasDuplicateKeys() const { return has_duplicate_keys_; } 1185 1186 template<typename F> size_t Vector(F f) { 1187 auto start = StartVector(); 1188 f(); 1189 return EndVector(start, false, false); 1190 } 1191 template<typename F, typename T> size_t Vector(F f, T &state) { 1192 auto start = StartVector(); 1193 f(state); 1194 return EndVector(start, false, false); 1195 } 1196 template<typename F> size_t Vector(const char *key, F f) { 1197 auto start = StartVector(key); 1198 f(); 1199 return EndVector(start, false, false); 1200 } 1201 template<typename F, typename T> 1202 size_t Vector(const char *key, F f, T &state) { 1203 auto start = StartVector(key); 1204 f(state); 1205 return EndVector(start, false, false); 1206 } 1207 1208 template<typename T> void Vector(const T *elems, size_t len) { 1209 if (flatbuffers::is_scalar<T>::value) { 1210 // This path should be a lot quicker and use less space. 1211 ScalarVector(elems, len, false); 1212 } else { 1213 auto start = StartVector(); 1214 for (size_t i = 0; i < len; i++) Add(elems[i]); 1215 EndVector(start, false, false); 1216 } 1217 } 1218 template<typename T> 1219 void Vector(const char *key, const T *elems, size_t len) { 1220 Key(key); 1221 Vector(elems, len); 1222 } 1223 template<typename T> void Vector(const std::vector<T> &vec) { 1224 Vector(vec.data(), vec.size()); 1225 } 1226 1227 template<typename F> size_t TypedVector(F f) { 1228 auto start = StartVector(); 1229 f(); 1230 return EndVector(start, true, false); 1231 } 1232 template<typename F, typename T> size_t TypedVector(F f, T &state) { 1233 auto start = StartVector(); 1234 f(state); 1235 return EndVector(start, true, false); 1236 } 1237 template<typename F> size_t TypedVector(const char *key, F f) { 1238 auto start = StartVector(key); 1239 f(); 1240 return EndVector(start, true, false); 1241 } 1242 template<typename F, typename T> 1243 size_t TypedVector(const char *key, F f, T &state) { 1244 auto start = StartVector(key); 1245 f(state); 1246 return EndVector(start, true, false); 1247 } 1248 1249 template<typename T> size_t FixedTypedVector(const T *elems, size_t len) { 1250 // We only support a few fixed vector lengths. Anything bigger use a 1251 // regular typed vector. 1252 FLATBUFFERS_ASSERT(len >= 2 && len <= 4); 1253 // And only scalar values. 1254 static_assert(flatbuffers::is_scalar<T>::value, "Unrelated types"); 1255 return ScalarVector(elems, len, true); 1256 } 1257 1258 template<typename T> 1259 size_t FixedTypedVector(const char *key, const T *elems, size_t len) { 1260 Key(key); 1261 return FixedTypedVector(elems, len); 1262 } 1263 1264 template<typename F> size_t Map(F f) { 1265 auto start = StartMap(); 1266 f(); 1267 return EndMap(start); 1268 } 1269 template<typename F, typename T> size_t Map(F f, T &state) { 1270 auto start = StartMap(); 1271 f(state); 1272 return EndMap(start); 1273 } 1274 template<typename F> size_t Map(const char *key, F f) { 1275 auto start = StartMap(key); 1276 f(); 1277 return EndMap(start); 1278 } 1279 template<typename F, typename T> size_t Map(const char *key, F f, T &state) { 1280 auto start = StartMap(key); 1281 f(state); 1282 return EndMap(start); 1283 } 1284 template<typename T> void Map(const std::map<std::string, T> &map) { 1285 auto start = StartMap(); 1286 for (auto it = map.begin(); it != map.end(); ++it) 1287 Add(it->first.c_str(), it->second); 1288 EndMap(start); 1289 } 1290 1291 // If you wish to share a value explicitly (a value not shared automatically 1292 // through one of the BUILDER_FLAG_SHARE_* flags) you can do so with these 1293 // functions. Or if you wish to turn those flags off for performance reasons 1294 // and still do some explicit sharing. For example: 1295 // builder.IndirectDouble(M_PI); 1296 // auto id = builder.LastValue(); // Remember where we stored it. 1297 // .. more code goes here .. 1298 // builder.ReuseValue(id); // Refers to same double by offset. 1299 // LastValue works regardless of whether the value has a key or not. 1300 // Works on any data type. 1301 struct Value; 1302 Value LastValue() { return stack_.back(); } 1303 void ReuseValue(Value v) { stack_.push_back(v); } 1304 void ReuseValue(const char *key, Value v) { 1305 Key(key); 1306 ReuseValue(v); 1307 } 1308 1309 // Overloaded Add that tries to call the correct function above. 1310 void Add(int8_t i) { Int(i); } 1311 void Add(int16_t i) { Int(i); } 1312 void Add(int32_t i) { Int(i); } 1313 void Add(int64_t i) { Int(i); } 1314 void Add(uint8_t u) { UInt(u); } 1315 void Add(uint16_t u) { UInt(u); } 1316 void Add(uint32_t u) { UInt(u); } 1317 void Add(uint64_t u) { UInt(u); } 1318 void Add(float f) { Float(f); } 1319 void Add(double d) { Double(d); } 1320 void Add(bool b) { Bool(b); } 1321 void Add(const char *str) { String(str); } 1322 void Add(const std::string &str) { String(str); } 1323 void Add(const flexbuffers::String &str) { String(str); } 1324 1325 template<typename T> void Add(const std::vector<T> &vec) { Vector(vec); } 1326 1327 template<typename T> void Add(const char *key, const T &t) { 1328 Key(key); 1329 Add(t); 1330 } 1331 1332 template<typename T> void Add(const std::map<std::string, T> &map) { 1333 Map(map); 1334 } 1335 1336 template<typename T> void operator+=(const T &t) { Add(t); } 1337 1338 // This function is useful in combination with the Mutate* functions above. 1339 // It forces elements of vectors and maps to have a minimum size, such that 1340 // they can later be updated without failing. 1341 // Call with no arguments to reset. 1342 void ForceMinimumBitWidth(BitWidth bw = BIT_WIDTH_8) { 1343 force_min_bit_width_ = bw; 1344 } 1345 1346 void Finish() { 1347 // If you hit this assert, you likely have objects that were never included 1348 // in a parent. You need to have exactly one root to finish a buffer. 1349 // Check your Start/End calls are matched, and all objects are inside 1350 // some other object. 1351 FLATBUFFERS_ASSERT(stack_.size() == 1); 1352 1353 // Write root value. 1354 auto byte_width = Align(stack_[0].ElemWidth(buf_.size(), 0)); 1355 WriteAny(stack_[0], byte_width); 1356 // Write root type. 1357 Write(stack_[0].StoredPackedType(), 1); 1358 // Write root size. Normally determined by parent, but root has no parent :) 1359 Write(byte_width, 1); 1360 1361 finished_ = true; 1362 } 1363 1364 private: 1365 void Finished() const { 1366 // If you get this assert, you're attempting to get access a buffer 1367 // which hasn't been finished yet. Be sure to call 1368 // Builder::Finish with your root object. 1369 FLATBUFFERS_ASSERT(finished_); 1370 } 1371 1372 // Align to prepare for writing a scalar with a certain size. 1373 uint8_t Align(BitWidth alignment) { 1374 auto byte_width = 1U << alignment; 1375 buf_.insert(buf_.end(), flatbuffers::PaddingBytes(buf_.size(), byte_width), 1376 0); 1377 return static_cast<uint8_t>(byte_width); 1378 } 1379 1380 void WriteBytes(const void *val, size_t size) { 1381 buf_.insert(buf_.end(), reinterpret_cast<const uint8_t *>(val), 1382 reinterpret_cast<const uint8_t *>(val) + size); 1383 } 1384 1385 template<typename T> void Write(T val, size_t byte_width) { 1386 FLATBUFFERS_ASSERT(sizeof(T) >= byte_width); 1387 val = flatbuffers::EndianScalar(val); 1388 WriteBytes(&val, byte_width); 1389 } 1390 1391 void WriteDouble(double f, uint8_t byte_width) { 1392 switch (byte_width) { 1393 case 8: Write(f, byte_width); break; 1394 case 4: Write(static_cast<float>(f), byte_width); break; 1395 // case 2: Write(static_cast<half>(f), byte_width); break; 1396 // case 1: Write(static_cast<quarter>(f), byte_width); break; 1397 default: FLATBUFFERS_ASSERT(0); 1398 } 1399 } 1400 1401 void WriteOffset(uint64_t o, uint8_t byte_width) { 1402 auto reloff = buf_.size() - o; 1403 FLATBUFFERS_ASSERT(byte_width == 8 || reloff < 1ULL << (byte_width * 8)); 1404 Write(reloff, byte_width); 1405 } 1406 1407 template<typename T> void PushIndirect(T val, Type type, BitWidth bit_width) { 1408 auto byte_width = Align(bit_width); 1409 auto iloc = buf_.size(); 1410 Write(val, byte_width); 1411 stack_.push_back(Value(static_cast<uint64_t>(iloc), type, bit_width)); 1412 } 1413 1414 static BitWidth WidthB(size_t byte_width) { 1415 switch (byte_width) { 1416 case 1: return BIT_WIDTH_8; 1417 case 2: return BIT_WIDTH_16; 1418 case 4: return BIT_WIDTH_32; 1419 case 8: return BIT_WIDTH_64; 1420 default: FLATBUFFERS_ASSERT(false); return BIT_WIDTH_64; 1421 } 1422 } 1423 1424 template<typename T> static Type GetScalarType() { 1425 static_assert(flatbuffers::is_scalar<T>::value, "Unrelated types"); 1426 return flatbuffers::is_floating_point<T>::value 1427 ? FBT_FLOAT 1428 : flatbuffers::is_same<T, bool>::value 1429 ? FBT_BOOL 1430 : (flatbuffers::is_unsigned<T>::value ? FBT_UINT 1431 : FBT_INT); 1432 } 1433 1434 public: 1435 // This was really intended to be private, except for LastValue/ReuseValue. 1436 struct Value { 1437 union { 1438 int64_t i_; 1439 uint64_t u_; 1440 double f_; 1441 }; 1442 1443 Type type_; 1444 1445 // For scalars: of itself, for vector: of its elements, for string: length. 1446 BitWidth min_bit_width_; 1447 1448 Value() : i_(0), type_(FBT_NULL), min_bit_width_(BIT_WIDTH_8) {} 1449 1450 Value(bool b) 1451 : u_(static_cast<uint64_t>(b)), 1452 type_(FBT_BOOL), 1453 min_bit_width_(BIT_WIDTH_8) {} 1454 1455 Value(int64_t i, Type t, BitWidth bw) 1456 : i_(i), type_(t), min_bit_width_(bw) {} 1457 Value(uint64_t u, Type t, BitWidth bw) 1458 : u_(u), type_(t), min_bit_width_(bw) {} 1459 1460 Value(float f) 1461 : f_(static_cast<double>(f)), 1462 type_(FBT_FLOAT), 1463 min_bit_width_(BIT_WIDTH_32) {} 1464 Value(double f) : f_(f), type_(FBT_FLOAT), min_bit_width_(WidthF(f)) {} 1465 1466 uint8_t StoredPackedType(BitWidth parent_bit_width_ = BIT_WIDTH_8) const { 1467 return PackedType(StoredWidth(parent_bit_width_), type_); 1468 } 1469 1470 BitWidth ElemWidth(size_t buf_size, size_t elem_index) const { 1471 if (IsInline(type_)) { 1472 return min_bit_width_; 1473 } else { 1474 // We have an absolute offset, but want to store a relative offset 1475 // elem_index elements beyond the current buffer end. Since whether 1476 // the relative offset fits in a certain byte_width depends on 1477 // the size of the elements before it (and their alignment), we have 1478 // to test for each size in turn. 1479 for (size_t byte_width = 1; 1480 byte_width <= sizeof(flatbuffers::largest_scalar_t); 1481 byte_width *= 2) { 1482 // Where are we going to write this offset? 1483 auto offset_loc = buf_size + 1484 flatbuffers::PaddingBytes(buf_size, byte_width) + 1485 elem_index * byte_width; 1486 // Compute relative offset. 1487 auto offset = offset_loc - u_; 1488 // Does it fit? 1489 auto bit_width = WidthU(offset); 1490 if (static_cast<size_t>(static_cast<size_t>(1U) << bit_width) == 1491 byte_width) 1492 return bit_width; 1493 } 1494 FLATBUFFERS_ASSERT(false); // Must match one of the sizes above. 1495 return BIT_WIDTH_64; 1496 } 1497 } 1498 1499 BitWidth StoredWidth(BitWidth parent_bit_width_ = BIT_WIDTH_8) const { 1500 if (IsInline(type_)) { 1501 return (std::max)(min_bit_width_, parent_bit_width_); 1502 } else { 1503 return min_bit_width_; 1504 } 1505 } 1506 }; 1507 1508 private: 1509 void WriteAny(const Value &val, uint8_t byte_width) { 1510 switch (val.type_) { 1511 case FBT_NULL: 1512 case FBT_INT: Write(val.i_, byte_width); break; 1513 case FBT_BOOL: 1514 case FBT_UINT: Write(val.u_, byte_width); break; 1515 case FBT_FLOAT: WriteDouble(val.f_, byte_width); break; 1516 default: WriteOffset(val.u_, byte_width); break; 1517 } 1518 } 1519 1520 size_t CreateBlob(const void *data, size_t len, size_t trailing, Type type) { 1521 auto bit_width = WidthU(len); 1522 auto byte_width = Align(bit_width); 1523 Write<uint64_t>(len, byte_width); 1524 auto sloc = buf_.size(); 1525 WriteBytes(data, len + trailing); 1526 stack_.push_back(Value(static_cast<uint64_t>(sloc), type, bit_width)); 1527 return sloc; 1528 } 1529 1530 template<typename T> 1531 size_t ScalarVector(const T *elems, size_t len, bool fixed) { 1532 auto vector_type = GetScalarType<T>(); 1533 auto byte_width = sizeof(T); 1534 auto bit_width = WidthB(byte_width); 1535 // If you get this assert, you're trying to write a vector with a size 1536 // field that is bigger than the scalars you're trying to write (e.g. a 1537 // byte vector > 255 elements). For such types, write a "blob" instead. 1538 // TODO: instead of asserting, could write vector with larger elements 1539 // instead, though that would be wasteful. 1540 FLATBUFFERS_ASSERT(WidthU(len) <= bit_width); 1541 Align(bit_width); 1542 if (!fixed) Write<uint64_t>(len, byte_width); 1543 auto vloc = buf_.size(); 1544 for (size_t i = 0; i < len; i++) Write(elems[i], byte_width); 1545 stack_.push_back(Value(static_cast<uint64_t>(vloc), 1546 ToTypedVector(vector_type, fixed ? len : 0), 1547 bit_width)); 1548 return vloc; 1549 } 1550 1551 Value CreateVector(size_t start, size_t vec_len, size_t step, bool typed, 1552 bool fixed, const Value *keys = nullptr) { 1553 FLATBUFFERS_ASSERT( 1554 !fixed || 1555 typed); // typed=false, fixed=true combination is not supported. 1556 // Figure out smallest bit width we can store this vector with. 1557 auto bit_width = (std::max)(force_min_bit_width_, WidthU(vec_len)); 1558 auto prefix_elems = 1; 1559 if (keys) { 1560 // If this vector is part of a map, we will pre-fix an offset to the keys 1561 // to this vector. 1562 bit_width = (std::max)(bit_width, keys->ElemWidth(buf_.size(), 0)); 1563 prefix_elems += 2; 1564 } 1565 Type vector_type = FBT_KEY; 1566 // Check bit widths and types for all elements. 1567 for (size_t i = start; i < stack_.size(); i += step) { 1568 auto elem_width = 1569 stack_[i].ElemWidth(buf_.size(), i - start + prefix_elems); 1570 bit_width = (std::max)(bit_width, elem_width); 1571 if (typed) { 1572 if (i == start) { 1573 vector_type = stack_[i].type_; 1574 } else { 1575 // If you get this assert, you are writing a typed vector with 1576 // elements that are not all the same type. 1577 FLATBUFFERS_ASSERT(vector_type == stack_[i].type_); 1578 } 1579 } 1580 } 1581 // If you get this assert, your typed types are not one of: 1582 // Int / UInt / Float / Key. 1583 FLATBUFFERS_ASSERT(!typed || IsTypedVectorElementType(vector_type)); 1584 auto byte_width = Align(bit_width); 1585 // Write vector. First the keys width/offset if available, and size. 1586 if (keys) { 1587 WriteOffset(keys->u_, byte_width); 1588 Write<uint64_t>(1ULL << keys->min_bit_width_, byte_width); 1589 } 1590 if (!fixed) Write<uint64_t>(vec_len, byte_width); 1591 // Then the actual data. 1592 auto vloc = buf_.size(); 1593 for (size_t i = start; i < stack_.size(); i += step) { 1594 WriteAny(stack_[i], byte_width); 1595 } 1596 // Then the types. 1597 if (!typed) { 1598 for (size_t i = start; i < stack_.size(); i += step) { 1599 buf_.push_back(stack_[i].StoredPackedType(bit_width)); 1600 } 1601 } 1602 return Value(static_cast<uint64_t>(vloc), 1603 keys ? FBT_MAP 1604 : (typed ? ToTypedVector(vector_type, fixed ? vec_len : 0) 1605 : FBT_VECTOR), 1606 bit_width); 1607 } 1608 1609 // You shouldn't really be copying instances of this class. 1610 Builder(const Builder &); 1611 Builder &operator=(const Builder &); 1612 1613 std::vector<uint8_t> buf_; 1614 std::vector<Value> stack_; 1615 1616 bool finished_; 1617 bool has_duplicate_keys_; 1618 1619 BuilderFlag flags_; 1620 1621 BitWidth force_min_bit_width_; 1622 1623 struct KeyOffsetCompare { 1624 explicit KeyOffsetCompare(const std::vector<uint8_t> &buf) : buf_(&buf) {} 1625 bool operator()(size_t a, size_t b) const { 1626 auto stra = reinterpret_cast<const char *>(buf_->data() + a); 1627 auto strb = reinterpret_cast<const char *>(buf_->data() + b); 1628 return strcmp(stra, strb) < 0; 1629 } 1630 const std::vector<uint8_t> *buf_; 1631 }; 1632 1633 typedef std::pair<size_t, size_t> StringOffset; 1634 struct StringOffsetCompare { 1635 explicit StringOffsetCompare(const std::vector<uint8_t> &buf) 1636 : buf_(&buf) {} 1637 bool operator()(const StringOffset &a, const StringOffset &b) const { 1638 auto stra = buf_->data() + a.first; 1639 auto strb = buf_->data() + b.first; 1640 auto cr = memcmp(stra, strb, (std::min)(a.second, b.second) + 1); 1641 return cr < 0 || (cr == 0 && a.second < b.second); 1642 } 1643 const std::vector<uint8_t> *buf_; 1644 }; 1645 1646 typedef std::set<size_t, KeyOffsetCompare> KeyOffsetMap; 1647 typedef std::set<StringOffset, StringOffsetCompare> StringOffsetMap; 1648 1649 KeyOffsetMap key_pool; 1650 StringOffsetMap string_pool; 1651 1652 friend class Verifier; 1653 }; 1654 1655 // Helper class to verify the integrity of a FlexBuffer 1656 class Verifier FLATBUFFERS_FINAL_CLASS { 1657 public: 1658 Verifier(const uint8_t *buf, size_t buf_len, 1659 // Supplying this vector likely results in faster verification 1660 // of larger buffers with many shared keys/strings, but 1661 // comes at the cost of using additional memory the same size of 1662 // the buffer being verified, so it is by default off. 1663 std::vector<uint8_t> *reuse_tracker = nullptr, 1664 bool _check_alignment = true, size_t max_depth = 64) 1665 : buf_(buf), 1666 size_(buf_len), 1667 depth_(0), 1668 max_depth_(max_depth), 1669 num_vectors_(0), 1670 max_vectors_(buf_len), 1671 check_alignment_(_check_alignment), 1672 reuse_tracker_(reuse_tracker) { 1673 FLATBUFFERS_ASSERT(size_ < FLATBUFFERS_MAX_BUFFER_SIZE); 1674 if (reuse_tracker_) { 1675 reuse_tracker_->clear(); 1676 reuse_tracker_->resize(size_, PackedType(BIT_WIDTH_8, FBT_NULL)); 1677 } 1678 } 1679 1680 private: 1681 // Central location where any verification failures register. 1682 bool Check(bool ok) const { 1683 // clang-format off 1684 #ifdef FLATBUFFERS_DEBUG_VERIFICATION_FAILURE 1685 FLATBUFFERS_ASSERT(ok); 1686 #endif 1687 // clang-format on 1688 return ok; 1689 } 1690 1691 // Verify any range within the buffer. 1692 bool VerifyFrom(size_t elem, size_t elem_len) const { 1693 return Check(elem_len < size_ && elem <= size_ - elem_len); 1694 } 1695 bool VerifyBefore(size_t elem, size_t elem_len) const { 1696 return Check(elem_len <= elem); 1697 } 1698 1699 bool VerifyFromPointer(const uint8_t *p, size_t len) { 1700 auto o = static_cast<size_t>(p - buf_); 1701 return VerifyFrom(o, len); 1702 } 1703 bool VerifyBeforePointer(const uint8_t *p, size_t len) { 1704 auto o = static_cast<size_t>(p - buf_); 1705 return VerifyBefore(o, len); 1706 } 1707 1708 bool VerifyByteWidth(size_t width) { 1709 return Check(width == 1 || width == 2 || width == 4 || width == 8); 1710 } 1711 1712 bool VerifyType(int type) { return Check(type >= 0 && type < FBT_MAX_TYPE); } 1713 1714 bool VerifyOffset(uint64_t off, const uint8_t *p) { 1715 return Check(off <= static_cast<uint64_t>(size_)) && 1716 off <= static_cast<uint64_t>(p - buf_); 1717 } 1718 1719 bool VerifyAlignment(const uint8_t *p, size_t size) const { 1720 auto o = static_cast<size_t>(p - buf_); 1721 return Check((o & (size - 1)) == 0 || !check_alignment_); 1722 } 1723 1724 // Macro, since we want to escape from parent function & use lazy args. 1725 #define FLEX_CHECK_VERIFIED(P, PACKED_TYPE) \ 1726 if (reuse_tracker_) { \ 1727 auto packed_type = PACKED_TYPE; \ 1728 auto existing = (*reuse_tracker_)[P - buf_]; \ 1729 if (existing == packed_type) return true; \ 1730 /* Fail verification if already set with different type! */ \ 1731 if (!Check(existing == 0)) return false; \ 1732 (*reuse_tracker_)[P - buf_] = packed_type; \ 1733 } 1734 1735 bool VerifyVector(Reference r, const uint8_t *p, Type elem_type) { 1736 // Any kind of nesting goes thru this function, so guard against that 1737 // here, both with simple nesting checks, and the reuse tracker if on. 1738 depth_++; 1739 num_vectors_++; 1740 if (!Check(depth_ <= max_depth_ && num_vectors_ <= max_vectors_)) 1741 return false; 1742 auto size_byte_width = r.byte_width_; 1743 if (!VerifyBeforePointer(p, size_byte_width)) return false; 1744 FLEX_CHECK_VERIFIED(p - size_byte_width, 1745 PackedType(Builder::WidthB(size_byte_width), r.type_)); 1746 auto sized = Sized(p, size_byte_width); 1747 auto num_elems = sized.size(); 1748 auto elem_byte_width = r.type_ == FBT_STRING || r.type_ == FBT_BLOB 1749 ? uint8_t(1) 1750 : r.byte_width_; 1751 auto max_elems = SIZE_MAX / elem_byte_width; 1752 if (!Check(num_elems < max_elems)) 1753 return false; // Protect against byte_size overflowing. 1754 auto byte_size = num_elems * elem_byte_width; 1755 if (!VerifyFromPointer(p, byte_size)) return false; 1756 if (elem_type == FBT_NULL) { 1757 // Verify type bytes after the vector. 1758 if (!VerifyFromPointer(p + byte_size, num_elems)) return false; 1759 auto v = Vector(p, size_byte_width); 1760 for (size_t i = 0; i < num_elems; i++) 1761 if (!VerifyRef(v[i])) return false; 1762 } else if (elem_type == FBT_KEY) { 1763 auto v = TypedVector(p, elem_byte_width, FBT_KEY); 1764 for (size_t i = 0; i < num_elems; i++) 1765 if (!VerifyRef(v[i])) return false; 1766 } else { 1767 FLATBUFFERS_ASSERT(IsInline(elem_type)); 1768 } 1769 depth_--; 1770 return true; 1771 } 1772 1773 bool VerifyKeys(const uint8_t *p, uint8_t byte_width) { 1774 // The vector part of the map has already been verified. 1775 const size_t num_prefixed_fields = 3; 1776 if (!VerifyBeforePointer(p, byte_width * num_prefixed_fields)) return false; 1777 p -= byte_width * num_prefixed_fields; 1778 auto off = ReadUInt64(p, byte_width); 1779 if (!VerifyOffset(off, p)) return false; 1780 auto key_byte_with = 1781 static_cast<uint8_t>(ReadUInt64(p + byte_width, byte_width)); 1782 if (!VerifyByteWidth(key_byte_with)) return false; 1783 return VerifyVector(Reference(p, byte_width, key_byte_with, FBT_VECTOR_KEY), 1784 p - off, FBT_KEY); 1785 } 1786 1787 bool VerifyKey(const uint8_t *p) { 1788 FLEX_CHECK_VERIFIED(p, PackedType(BIT_WIDTH_8, FBT_KEY)); 1789 while (p < buf_ + size_) 1790 if (*p++) return true; 1791 return false; 1792 } 1793 1794 #undef FLEX_CHECK_VERIFIED 1795 1796 bool VerifyTerminator(const String &s) { 1797 return VerifyFromPointer(reinterpret_cast<const uint8_t *>(s.c_str()), 1798 s.size() + 1); 1799 } 1800 1801 bool VerifyRef(Reference r) { 1802 // r.parent_width_ and r.data_ already verified. 1803 if (!VerifyByteWidth(r.byte_width_) || !VerifyType(r.type_)) { 1804 return false; 1805 } 1806 if (IsInline(r.type_)) { 1807 // Inline scalars, don't require further verification. 1808 return true; 1809 } 1810 // All remaining types are an offset. 1811 auto off = ReadUInt64(r.data_, r.parent_width_); 1812 if (!VerifyOffset(off, r.data_)) return false; 1813 auto p = r.Indirect(); 1814 if (!VerifyAlignment(p, r.byte_width_)) return false; 1815 switch (r.type_) { 1816 case FBT_INDIRECT_INT: 1817 case FBT_INDIRECT_UINT: 1818 case FBT_INDIRECT_FLOAT: return VerifyFromPointer(p, r.byte_width_); 1819 case FBT_KEY: return VerifyKey(p); 1820 case FBT_MAP: 1821 return VerifyVector(r, p, FBT_NULL) && VerifyKeys(p, r.byte_width_); 1822 case FBT_VECTOR: return VerifyVector(r, p, FBT_NULL); 1823 case FBT_VECTOR_INT: return VerifyVector(r, p, FBT_INT); 1824 case FBT_VECTOR_BOOL: 1825 case FBT_VECTOR_UINT: return VerifyVector(r, p, FBT_UINT); 1826 case FBT_VECTOR_FLOAT: return VerifyVector(r, p, FBT_FLOAT); 1827 case FBT_VECTOR_KEY: return VerifyVector(r, p, FBT_KEY); 1828 case FBT_VECTOR_STRING_DEPRECATED: 1829 // Use of FBT_KEY here intentional, see elsewhere. 1830 return VerifyVector(r, p, FBT_KEY); 1831 case FBT_BLOB: return VerifyVector(r, p, FBT_UINT); 1832 case FBT_STRING: 1833 return VerifyVector(r, p, FBT_UINT) && 1834 VerifyTerminator(String(p, r.byte_width_)); 1835 case FBT_VECTOR_INT2: 1836 case FBT_VECTOR_UINT2: 1837 case FBT_VECTOR_FLOAT2: 1838 case FBT_VECTOR_INT3: 1839 case FBT_VECTOR_UINT3: 1840 case FBT_VECTOR_FLOAT3: 1841 case FBT_VECTOR_INT4: 1842 case FBT_VECTOR_UINT4: 1843 case FBT_VECTOR_FLOAT4: { 1844 uint8_t len = 0; 1845 auto vtype = ToFixedTypedVectorElementType(r.type_, &len); 1846 if (!VerifyType(vtype)) return false; 1847 return VerifyFromPointer(p, r.byte_width_ * len); 1848 } 1849 default: return false; 1850 } 1851 } 1852 1853 public: 1854 bool VerifyBuffer() { 1855 if (!Check(size_ >= 3)) return false; 1856 auto end = buf_ + size_; 1857 auto byte_width = *--end; 1858 auto packed_type = *--end; 1859 return VerifyByteWidth(byte_width) && Check(end - buf_ >= byte_width) && 1860 VerifyRef(Reference(end - byte_width, byte_width, packed_type)); 1861 } 1862 1863 private: 1864 const uint8_t *buf_; 1865 size_t size_; 1866 size_t depth_; 1867 const size_t max_depth_; 1868 size_t num_vectors_; 1869 const size_t max_vectors_; 1870 bool check_alignment_; 1871 std::vector<uint8_t> *reuse_tracker_; 1872 }; 1873 1874 // Utility function that constructs the Verifier for you, see above for 1875 // parameters. 1876 inline bool VerifyBuffer(const uint8_t *buf, size_t buf_len, 1877 std::vector<uint8_t> *reuse_tracker = nullptr) { 1878 Verifier verifier(buf, buf_len, reuse_tracker); 1879 return verifier.VerifyBuffer(); 1880 } 1881 1882 } // namespace flexbuffers 1883 1884 #if defined(_MSC_VER) 1885 # pragma warning(pop) 1886 #endif 1887 1888 #endif // FLATBUFFERS_FLEXBUFFERS_H_