github.com/gop9/olt@v0.0.0-20200202132135-d956aad50b08/gio/internal/fling/extrapolation.go (about) 1 // SPDX-License-Identifier: Unlicense OR MIT 2 3 package fling 4 5 import ( 6 "math" 7 "strconv" 8 "strings" 9 "time" 10 ) 11 12 // Extrapolation computes a 1-dimensional velocity estimate 13 // for a set of timestamped points using the least squares 14 // fit of a 2nd order polynomial. The same method is used 15 // by Android. 16 type Extrapolation struct { 17 // Index into points. 18 idx int 19 // Circular buffer of samples. 20 samples []sample 21 lastValue float32 22 // Pre-allocated cache for samples. 23 cache [historySize]sample 24 25 // Filtered values and times 26 values [historySize]float32 27 times [historySize]float32 28 } 29 30 type sample struct { 31 t time.Duration 32 v float32 33 } 34 35 type matrix struct { 36 rows, cols int 37 data []float32 38 } 39 40 type Estimate struct { 41 Velocity float32 42 Distance float32 43 } 44 45 type coefficients [degree + 1]float32 46 47 const ( 48 degree = 2 49 historySize = 20 50 maxAge = 100 * time.Millisecond 51 maxSampleGap = 40 * time.Millisecond 52 ) 53 54 // SampleDelta adds a relative sample to the estimation. 55 func (e *Extrapolation) SampleDelta(t time.Duration, delta float32) { 56 val := delta + e.lastValue 57 e.Sample(t, val) 58 } 59 60 // Sample adds an absolute sample to the estimation. 61 func (e *Extrapolation) Sample(t time.Duration, val float32) { 62 e.lastValue = val 63 if e.samples == nil { 64 e.samples = e.cache[:0] 65 } 66 s := sample{ 67 t: t, 68 v: val, 69 } 70 if e.idx == len(e.samples) && e.idx < cap(e.samples) { 71 e.samples = append(e.samples, s) 72 } else { 73 e.samples[e.idx] = s 74 } 75 e.idx++ 76 if e.idx == cap(e.samples) { 77 e.idx = 0 78 } 79 } 80 81 // Velocity returns an estimate of the implied velocity and 82 // distance for the points sampled, or zero if the estimation method 83 // failed. 84 func (e *Extrapolation) Estimate() Estimate { 85 if len(e.samples) == 0 { 86 return Estimate{} 87 } 88 values := e.values[:0] 89 times := e.times[:0] 90 first := e.get(0) 91 t := first.t 92 // Walk backwards collecting samples. 93 for i := 0; i < len(e.samples); i++ { 94 p := e.get(-i) 95 age := first.t - p.t 96 if age >= maxAge || t-p.t >= maxSampleGap { 97 // If the samples are too old or 98 // too much time passed between samples 99 // assume they're not part of the fling. 100 break 101 } 102 t = p.t 103 values = append(values, first.v-p.v) 104 times = append(times, float32((-age).Seconds())) 105 } 106 coef, ok := polyFit(times, values) 107 if !ok { 108 return Estimate{} 109 } 110 dist := values[len(values)-1] - values[0] 111 return Estimate{ 112 Velocity: coef[1], 113 Distance: dist, 114 } 115 } 116 117 func (e *Extrapolation) get(i int) sample { 118 idx := (e.idx + i - 1 + len(e.samples)) % len(e.samples) 119 return e.samples[idx] 120 } 121 122 // fit computes the least squares polynomial fit for 123 // the set of points in X, Y. If the fitting fails 124 // because of contradicting or insufficient data, 125 // fit returns false. 126 func polyFit(X, Y []float32) (coefficients, bool) { 127 if len(X) != len(Y) { 128 panic("X and Y lengths differ") 129 } 130 if len(X) <= degree { 131 // Not enough points to fit a curve. 132 return coefficients{}, false 133 } 134 135 // Use a method similar to Android's VelocityTracker.cpp: 136 // https://android.googlesource.com/platform/frameworks/base/+/56a2301/libs/androidfw/VelocityTracker.cpp 137 // where all weights are 1. 138 139 // First, expand the X vector to the matrix A in column-major order. 140 A := newMatrix(degree+1, len(X)) 141 for i, x := range X { 142 A.set(0, i, 1) 143 for j := 1; j < A.rows; j++ { 144 A.set(j, i, A.get(j-1, i)*x) 145 } 146 } 147 148 Q, Rt, ok := decomposeQR(A) 149 if !ok { 150 return coefficients{}, false 151 } 152 // Solve R*B = Qt*Y for B, which is then the polynomial coefficients. 153 // Since R is upper triangular, we can proceed from bottom right to 154 // upper left. 155 // https://en.wikipedia.org/wiki/Non-linear_least_squares 156 var B coefficients 157 for i := Q.rows - 1; i >= 0; i-- { 158 B[i] = dot(Q.col(i), Y) 159 for j := Q.rows - 1; j > i; j-- { 160 B[i] -= Rt.get(i, j) * B[j] 161 } 162 B[i] /= Rt.get(i, i) 163 } 164 return B, true 165 } 166 167 // decomposeQR computes and returns Q, Rt where Q*transpose(Rt) = A, if 168 // possible. R is guaranteed to be upper triangular and only the square 169 // part of Rt is returned. 170 func decomposeQR(A *matrix) (*matrix, *matrix, bool) { 171 // Gram-Schmidt QR decompose A where Q*R = A. 172 // https://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process 173 Q := newMatrix(A.rows, A.cols) // Column-major. 174 Rt := newMatrix(A.rows, A.rows) // R transposed, row-major. 175 for i := 0; i < Q.rows; i++ { 176 // Copy A column. 177 for j := 0; j < Q.cols; j++ { 178 Q.set(i, j, A.get(i, j)) 179 } 180 // Subtract projections. Note that int the projection 181 // 182 // proju a = <u, a>/<u, u> u 183 // 184 // the normalized column e replaces u, where <e, e> = 1: 185 // 186 // proje a = <e, a>/<e, e> e = <e, a> e 187 for j := 0; j < i; j++ { 188 d := dot(Q.col(j), Q.col(i)) 189 for k := 0; k < Q.cols; k++ { 190 Q.set(i, k, Q.get(i, k)-d*Q.get(j, k)) 191 } 192 } 193 // Normalize Q columns. 194 n := norm(Q.col(i)) 195 if n < 0.000001 { 196 // Degenerate data, no solution. 197 return nil, nil, false 198 } 199 invNorm := 1 / n 200 for j := 0; j < Q.cols; j++ { 201 Q.set(i, j, Q.get(i, j)*invNorm) 202 } 203 // Update Rt. 204 for j := i; j < Rt.cols; j++ { 205 Rt.set(i, j, dot(Q.col(i), A.col(j))) 206 } 207 } 208 return Q, Rt, true 209 } 210 211 func norm(V []float32) float32 { 212 var n float32 213 for _, v := range V { 214 n += v * v 215 } 216 return float32(math.Sqrt(float64(n))) 217 } 218 219 func dot(V1, V2 []float32) float32 { 220 var d float32 221 for i, v1 := range V1 { 222 d += v1 * V2[i] 223 } 224 return d 225 } 226 227 func newMatrix(rows, cols int) *matrix { 228 return &matrix{ 229 rows: rows, 230 cols: cols, 231 data: make([]float32, rows*cols), 232 } 233 } 234 235 func (m *matrix) set(row, col int, v float32) { 236 if row < 0 || row >= m.rows { 237 panic("row out of range") 238 } 239 if col < 0 || col >= m.cols { 240 panic("col out of range") 241 } 242 m.data[row*m.cols+col] = v 243 } 244 245 func (m *matrix) get(row, col int) float32 { 246 if row < 0 || row >= m.rows { 247 panic("row out of range") 248 } 249 if col < 0 || col >= m.cols { 250 panic("col out of range") 251 } 252 return m.data[row*m.cols+col] 253 } 254 255 func (m *matrix) col(c int) []float32 { 256 return m.data[c*m.cols : (c+1)*m.cols] 257 } 258 259 func (m *matrix) approxEqual(m2 *matrix) bool { 260 if m.rows != m2.rows || m.cols != m2.cols { 261 return false 262 } 263 const epsilon = 0.00001 264 for row := 0; row < m.rows; row++ { 265 for col := 0; col < m.cols; col++ { 266 d := m2.get(row, col) - m.get(row, col) 267 if d < -epsilon || d > epsilon { 268 return false 269 } 270 } 271 } 272 return true 273 } 274 275 func (m *matrix) transpose() *matrix { 276 t := &matrix{ 277 rows: m.cols, 278 cols: m.rows, 279 data: make([]float32, len(m.data)), 280 } 281 for i := 0; i < m.rows; i++ { 282 for j := 0; j < m.cols; j++ { 283 t.set(j, i, m.get(i, j)) 284 } 285 } 286 return t 287 } 288 289 func (m *matrix) mul(m2 *matrix) *matrix { 290 if m.rows != m2.cols { 291 panic("mismatched matrices") 292 } 293 mm := &matrix{ 294 rows: m.rows, 295 cols: m2.cols, 296 data: make([]float32, m.rows*m2.cols), 297 } 298 for i := 0; i < mm.rows; i++ { 299 for j := 0; j < mm.cols; j++ { 300 var v float32 301 for k := 0; k < m.rows; k++ { 302 v += m.get(k, j) * m2.get(i, k) 303 } 304 mm.set(i, j, v) 305 } 306 } 307 return mm 308 } 309 310 func (m *matrix) String() string { 311 var b strings.Builder 312 for i := 0; i < m.rows; i++ { 313 for j := 0; j < m.cols; j++ { 314 v := m.get(i, j) 315 b.WriteString(strconv.FormatFloat(float64(v), 'g', -1, 32)) 316 b.WriteString(", ") 317 } 318 b.WriteString("\n") 319 } 320 return b.String() 321 } 322 323 func (c coefficients) approxEqual(c2 coefficients) bool { 324 const epsilon = 0.00001 325 for i, v := range c { 326 d := v - c2[i] 327 if d < -epsilon || d > epsilon { 328 return false 329 } 330 } 331 return true 332 }