github.com/gop9/olt@v0.0.0-20200202132135-d956aad50b08/gio/internal/fling/extrapolation.go (about)

     1  // SPDX-License-Identifier: Unlicense OR MIT
     2  
     3  package fling
     4  
     5  import (
     6  	"math"
     7  	"strconv"
     8  	"strings"
     9  	"time"
    10  )
    11  
    12  // Extrapolation computes a 1-dimensional velocity estimate
    13  // for a set of timestamped points using the least squares
    14  // fit of a 2nd order polynomial. The same method is used
    15  // by Android.
    16  type Extrapolation struct {
    17  	// Index into points.
    18  	idx int
    19  	// Circular buffer of samples.
    20  	samples   []sample
    21  	lastValue float32
    22  	// Pre-allocated cache for samples.
    23  	cache [historySize]sample
    24  
    25  	// Filtered values and times
    26  	values [historySize]float32
    27  	times  [historySize]float32
    28  }
    29  
    30  type sample struct {
    31  	t time.Duration
    32  	v float32
    33  }
    34  
    35  type matrix struct {
    36  	rows, cols int
    37  	data       []float32
    38  }
    39  
    40  type Estimate struct {
    41  	Velocity float32
    42  	Distance float32
    43  }
    44  
    45  type coefficients [degree + 1]float32
    46  
    47  const (
    48  	degree       = 2
    49  	historySize  = 20
    50  	maxAge       = 100 * time.Millisecond
    51  	maxSampleGap = 40 * time.Millisecond
    52  )
    53  
    54  // SampleDelta adds a relative sample to the estimation.
    55  func (e *Extrapolation) SampleDelta(t time.Duration, delta float32) {
    56  	val := delta + e.lastValue
    57  	e.Sample(t, val)
    58  }
    59  
    60  // Sample adds an absolute sample to the estimation.
    61  func (e *Extrapolation) Sample(t time.Duration, val float32) {
    62  	e.lastValue = val
    63  	if e.samples == nil {
    64  		e.samples = e.cache[:0]
    65  	}
    66  	s := sample{
    67  		t: t,
    68  		v: val,
    69  	}
    70  	if e.idx == len(e.samples) && e.idx < cap(e.samples) {
    71  		e.samples = append(e.samples, s)
    72  	} else {
    73  		e.samples[e.idx] = s
    74  	}
    75  	e.idx++
    76  	if e.idx == cap(e.samples) {
    77  		e.idx = 0
    78  	}
    79  }
    80  
    81  // Velocity returns an estimate of the implied velocity and
    82  // distance for the points sampled, or zero if the estimation method
    83  // failed.
    84  func (e *Extrapolation) Estimate() Estimate {
    85  	if len(e.samples) == 0 {
    86  		return Estimate{}
    87  	}
    88  	values := e.values[:0]
    89  	times := e.times[:0]
    90  	first := e.get(0)
    91  	t := first.t
    92  	// Walk backwards collecting samples.
    93  	for i := 0; i < len(e.samples); i++ {
    94  		p := e.get(-i)
    95  		age := first.t - p.t
    96  		if age >= maxAge || t-p.t >= maxSampleGap {
    97  			// If the samples are too old or
    98  			// too much time passed between samples
    99  			// assume they're not part of the fling.
   100  			break
   101  		}
   102  		t = p.t
   103  		values = append(values, first.v-p.v)
   104  		times = append(times, float32((-age).Seconds()))
   105  	}
   106  	coef, ok := polyFit(times, values)
   107  	if !ok {
   108  		return Estimate{}
   109  	}
   110  	dist := values[len(values)-1] - values[0]
   111  	return Estimate{
   112  		Velocity: coef[1],
   113  		Distance: dist,
   114  	}
   115  }
   116  
   117  func (e *Extrapolation) get(i int) sample {
   118  	idx := (e.idx + i - 1 + len(e.samples)) % len(e.samples)
   119  	return e.samples[idx]
   120  }
   121  
   122  // fit computes the least squares polynomial fit for
   123  // the set of points in X, Y. If the fitting fails
   124  // because of contradicting or insufficient data,
   125  // fit returns false.
   126  func polyFit(X, Y []float32) (coefficients, bool) {
   127  	if len(X) != len(Y) {
   128  		panic("X and Y lengths differ")
   129  	}
   130  	if len(X) <= degree {
   131  		// Not enough points to fit a curve.
   132  		return coefficients{}, false
   133  	}
   134  
   135  	// Use a method similar to Android's VelocityTracker.cpp:
   136  	// https://android.googlesource.com/platform/frameworks/base/+/56a2301/libs/androidfw/VelocityTracker.cpp
   137  	// where all weights are 1.
   138  
   139  	// First, expand the X vector to the matrix A in column-major order.
   140  	A := newMatrix(degree+1, len(X))
   141  	for i, x := range X {
   142  		A.set(0, i, 1)
   143  		for j := 1; j < A.rows; j++ {
   144  			A.set(j, i, A.get(j-1, i)*x)
   145  		}
   146  	}
   147  
   148  	Q, Rt, ok := decomposeQR(A)
   149  	if !ok {
   150  		return coefficients{}, false
   151  	}
   152  	// Solve R*B = Qt*Y for B, which is then the polynomial coefficients.
   153  	// Since R is upper triangular, we can proceed from bottom right to
   154  	// upper left.
   155  	// https://en.wikipedia.org/wiki/Non-linear_least_squares
   156  	var B coefficients
   157  	for i := Q.rows - 1; i >= 0; i-- {
   158  		B[i] = dot(Q.col(i), Y)
   159  		for j := Q.rows - 1; j > i; j-- {
   160  			B[i] -= Rt.get(i, j) * B[j]
   161  		}
   162  		B[i] /= Rt.get(i, i)
   163  	}
   164  	return B, true
   165  }
   166  
   167  // decomposeQR computes and returns Q, Rt where Q*transpose(Rt) = A, if
   168  // possible. R is guaranteed to be upper triangular and only the square
   169  // part of Rt is returned.
   170  func decomposeQR(A *matrix) (*matrix, *matrix, bool) {
   171  	// Gram-Schmidt QR decompose A where Q*R = A.
   172  	// https://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process
   173  	Q := newMatrix(A.rows, A.cols)  // Column-major.
   174  	Rt := newMatrix(A.rows, A.rows) // R transposed, row-major.
   175  	for i := 0; i < Q.rows; i++ {
   176  		// Copy A column.
   177  		for j := 0; j < Q.cols; j++ {
   178  			Q.set(i, j, A.get(i, j))
   179  		}
   180  		// Subtract projections. Note that int the projection
   181  		//
   182  		// proju a = <u, a>/<u, u> u
   183  		//
   184  		// the normalized column e replaces u, where <e, e> = 1:
   185  		//
   186  		// proje a = <e, a>/<e, e> e = <e, a> e
   187  		for j := 0; j < i; j++ {
   188  			d := dot(Q.col(j), Q.col(i))
   189  			for k := 0; k < Q.cols; k++ {
   190  				Q.set(i, k, Q.get(i, k)-d*Q.get(j, k))
   191  			}
   192  		}
   193  		// Normalize Q columns.
   194  		n := norm(Q.col(i))
   195  		if n < 0.000001 {
   196  			// Degenerate data, no solution.
   197  			return nil, nil, false
   198  		}
   199  		invNorm := 1 / n
   200  		for j := 0; j < Q.cols; j++ {
   201  			Q.set(i, j, Q.get(i, j)*invNorm)
   202  		}
   203  		// Update Rt.
   204  		for j := i; j < Rt.cols; j++ {
   205  			Rt.set(i, j, dot(Q.col(i), A.col(j)))
   206  		}
   207  	}
   208  	return Q, Rt, true
   209  }
   210  
   211  func norm(V []float32) float32 {
   212  	var n float32
   213  	for _, v := range V {
   214  		n += v * v
   215  	}
   216  	return float32(math.Sqrt(float64(n)))
   217  }
   218  
   219  func dot(V1, V2 []float32) float32 {
   220  	var d float32
   221  	for i, v1 := range V1 {
   222  		d += v1 * V2[i]
   223  	}
   224  	return d
   225  }
   226  
   227  func newMatrix(rows, cols int) *matrix {
   228  	return &matrix{
   229  		rows: rows,
   230  		cols: cols,
   231  		data: make([]float32, rows*cols),
   232  	}
   233  }
   234  
   235  func (m *matrix) set(row, col int, v float32) {
   236  	if row < 0 || row >= m.rows {
   237  		panic("row out of range")
   238  	}
   239  	if col < 0 || col >= m.cols {
   240  		panic("col out of range")
   241  	}
   242  	m.data[row*m.cols+col] = v
   243  }
   244  
   245  func (m *matrix) get(row, col int) float32 {
   246  	if row < 0 || row >= m.rows {
   247  		panic("row out of range")
   248  	}
   249  	if col < 0 || col >= m.cols {
   250  		panic("col out of range")
   251  	}
   252  	return m.data[row*m.cols+col]
   253  }
   254  
   255  func (m *matrix) col(c int) []float32 {
   256  	return m.data[c*m.cols : (c+1)*m.cols]
   257  }
   258  
   259  func (m *matrix) approxEqual(m2 *matrix) bool {
   260  	if m.rows != m2.rows || m.cols != m2.cols {
   261  		return false
   262  	}
   263  	const epsilon = 0.00001
   264  	for row := 0; row < m.rows; row++ {
   265  		for col := 0; col < m.cols; col++ {
   266  			d := m2.get(row, col) - m.get(row, col)
   267  			if d < -epsilon || d > epsilon {
   268  				return false
   269  			}
   270  		}
   271  	}
   272  	return true
   273  }
   274  
   275  func (m *matrix) transpose() *matrix {
   276  	t := &matrix{
   277  		rows: m.cols,
   278  		cols: m.rows,
   279  		data: make([]float32, len(m.data)),
   280  	}
   281  	for i := 0; i < m.rows; i++ {
   282  		for j := 0; j < m.cols; j++ {
   283  			t.set(j, i, m.get(i, j))
   284  		}
   285  	}
   286  	return t
   287  }
   288  
   289  func (m *matrix) mul(m2 *matrix) *matrix {
   290  	if m.rows != m2.cols {
   291  		panic("mismatched matrices")
   292  	}
   293  	mm := &matrix{
   294  		rows: m.rows,
   295  		cols: m2.cols,
   296  		data: make([]float32, m.rows*m2.cols),
   297  	}
   298  	for i := 0; i < mm.rows; i++ {
   299  		for j := 0; j < mm.cols; j++ {
   300  			var v float32
   301  			for k := 0; k < m.rows; k++ {
   302  				v += m.get(k, j) * m2.get(i, k)
   303  			}
   304  			mm.set(i, j, v)
   305  		}
   306  	}
   307  	return mm
   308  }
   309  
   310  func (m *matrix) String() string {
   311  	var b strings.Builder
   312  	for i := 0; i < m.rows; i++ {
   313  		for j := 0; j < m.cols; j++ {
   314  			v := m.get(i, j)
   315  			b.WriteString(strconv.FormatFloat(float64(v), 'g', -1, 32))
   316  			b.WriteString(", ")
   317  		}
   318  		b.WriteString("\n")
   319  	}
   320  	return b.String()
   321  }
   322  
   323  func (c coefficients) approxEqual(c2 coefficients) bool {
   324  	const epsilon = 0.00001
   325  	for i, v := range c {
   326  		d := v - c2[i]
   327  		if d < -epsilon || d > epsilon {
   328  			return false
   329  		}
   330  	}
   331  	return true
   332  }