github.com/gopherd/gonum@v0.0.4/diff/fd/diff.go (about)

     1  // Copyright ©2014 The Gonum Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package fd
     6  
     7  import (
     8  	"math"
     9  	"runtime"
    10  )
    11  
    12  // A Point is a stencil location in a finite difference formula.
    13  type Point struct {
    14  	Loc   float64
    15  	Coeff float64
    16  }
    17  
    18  // Formula represents a finite difference formula on a regularly spaced grid
    19  // that approximates the derivative of order k of a function f at x as
    20  //  d^k f(x) ≈ (1 / Step^k) * \sum_i Coeff_i * f(x + Step * Loc_i).
    21  // Step must be positive, or the finite difference formula will panic.
    22  type Formula struct {
    23  	// Stencil is the set of sampling Points which are used to estimate the
    24  	// derivative. The locations will be scaled by Step and are relative to x.
    25  	Stencil    []Point
    26  	Derivative int     // The order of the approximated derivative.
    27  	Step       float64 // Default step size for the formula.
    28  }
    29  
    30  func (f Formula) isZero() bool {
    31  	return f.Stencil == nil && f.Derivative == 0 && f.Step == 0
    32  }
    33  
    34  // Settings is the settings structure for computing finite differences.
    35  type Settings struct {
    36  	// Formula is the finite difference formula used
    37  	// for approximating the derivative.
    38  	// Zero value indicates a default formula.
    39  	Formula Formula
    40  	// Step is the distance between points of the stencil.
    41  	// If equal to 0, formula's default step will be used.
    42  	Step float64
    43  
    44  	OriginKnown bool    // Flag that the value at the origin x is known.
    45  	OriginValue float64 // Value at the origin (only used if OriginKnown is true).
    46  
    47  	Concurrent bool // Should the function calls be executed concurrently.
    48  }
    49  
    50  // Forward represents a first-order accurate forward approximation
    51  // to the first derivative.
    52  var Forward = Formula{
    53  	Stencil:    []Point{{Loc: 0, Coeff: -1}, {Loc: 1, Coeff: 1}},
    54  	Derivative: 1,
    55  	Step:       2e-8,
    56  }
    57  
    58  // Forward2nd represents a first-order accurate forward approximation
    59  // to the second derivative.
    60  var Forward2nd = Formula{
    61  	Stencil:    []Point{{Loc: 0, Coeff: 1}, {Loc: 1, Coeff: -2}, {Loc: 2, Coeff: 1}},
    62  	Derivative: 2,
    63  	Step:       1e-4,
    64  }
    65  
    66  // Backward represents a first-order accurate backward approximation
    67  // to the first derivative.
    68  var Backward = Formula{
    69  	Stencil:    []Point{{Loc: -1, Coeff: -1}, {Loc: 0, Coeff: 1}},
    70  	Derivative: 1,
    71  	Step:       2e-8,
    72  }
    73  
    74  // Backward2nd represents a first-order accurate forward approximation
    75  // to the second derivative.
    76  var Backward2nd = Formula{
    77  	Stencil:    []Point{{Loc: 0, Coeff: 1}, {Loc: -1, Coeff: -2}, {Loc: -2, Coeff: 1}},
    78  	Derivative: 2,
    79  	Step:       1e-4,
    80  }
    81  
    82  // Central represents a second-order accurate centered approximation
    83  // to the first derivative.
    84  var Central = Formula{
    85  	Stencil:    []Point{{Loc: -1, Coeff: -0.5}, {Loc: 1, Coeff: 0.5}},
    86  	Derivative: 1,
    87  	Step:       6e-6,
    88  }
    89  
    90  // Central2nd represents a secord-order accurate centered approximation
    91  // to the second derivative.
    92  var Central2nd = Formula{
    93  	Stencil:    []Point{{Loc: -1, Coeff: 1}, {Loc: 0, Coeff: -2}, {Loc: 1, Coeff: 1}},
    94  	Derivative: 2,
    95  	Step:       1e-4,
    96  }
    97  
    98  var negativeStep = "fd: negative step"
    99  
   100  // checkFormula checks if the formula is valid, and panics otherwise.
   101  func checkFormula(formula Formula) {
   102  	if formula.Derivative == 0 || formula.Stencil == nil || formula.Step <= 0 {
   103  		panic("fd: bad formula")
   104  	}
   105  }
   106  
   107  // computeWorkers returns the desired number of workers given the concurrency
   108  // level and number of evaluations.
   109  func computeWorkers(concurrent bool, evals int) int {
   110  	if !concurrent {
   111  		return 1
   112  	}
   113  	nWorkers := runtime.GOMAXPROCS(0)
   114  	if nWorkers > evals {
   115  		nWorkers = evals
   116  	}
   117  	return nWorkers
   118  }
   119  
   120  // usesOrigin returns whether the stencil uses the origin, which is true iff
   121  // one of the locations in the stencil equals 0.
   122  func usesOrigin(stencil []Point) bool {
   123  	for _, pt := range stencil {
   124  		if pt.Loc == 0 {
   125  			return true
   126  		}
   127  	}
   128  	return false
   129  }
   130  
   131  // getOrigin returns the value at the origin. It returns originValue if originKnown
   132  // is true. It returns the value returned by f if stencil contains a point with
   133  // zero location, and NaN otherwise.
   134  func getOrigin(originKnown bool, originValue float64, f func() float64, stencil []Point) float64 {
   135  	if originKnown {
   136  		return originValue
   137  	}
   138  	for _, pt := range stencil {
   139  		if pt.Loc == 0 {
   140  			return f()
   141  		}
   142  	}
   143  	return math.NaN()
   144  }
   145  
   146  const (
   147  	badDerivOrder = "fd: invalid derivative order"
   148  )