github.com/gopherd/gonum@v0.0.4/graph/community/bisect.go (about) 1 // Copyright ©2016 The Gonum Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package community 6 7 import ( 8 "errors" 9 "fmt" 10 "math" 11 12 "math/rand" 13 14 "github.com/gopherd/gonum/graph" 15 ) 16 17 // Interval is an interval of resolutions with a common score. 18 type Interval struct { 19 // Low and High delimit the interval 20 // such that the interval is [low, high). 21 Low, High float64 22 23 // Score is the score of the interval. 24 Score float64 25 26 // Reduced is the best scoring 27 // community membership found for the 28 // interval. 29 Reduced 30 } 31 32 // Reduced is a graph reduction. 33 type Reduced interface { 34 // Communities returns the community 35 // structure of the reduction. 36 Communities() [][]graph.Node 37 } 38 39 // Size is a score function that is the reciprocal of the number of communities. 40 func Size(g ReducedGraph) float64 { return 1 / float64(len(g.Structure())) } 41 42 // Weight is a score function that is the sum of community weights. The concrete 43 // type of g must be a pointer to a ReducedUndirected or a ReducedDirected, otherwise 44 // Weight will panic. 45 func Weight(g ReducedGraph) float64 { 46 var w float64 47 switch g := g.(type) { 48 case *ReducedUndirected: 49 for _, n := range g.nodes { 50 w += n.weight 51 } 52 case *ReducedDirected: 53 for _, n := range g.nodes { 54 w += n.weight 55 } 56 default: 57 panic(fmt.Sprintf("community: invalid graph type: %T", g)) 58 } 59 return w 60 } 61 62 // ModularScore returns a modularized scoring function for Profile based on the 63 // graph g and the given score function. The effort parameter determines how 64 // many attempts will be made to get an improved score for any given resolution. 65 func ModularScore(g graph.Graph, score func(ReducedGraph) float64, effort int, src rand.Source) func(float64) (float64, Reduced) { 66 return func(resolution float64) (float64, Reduced) { 67 max := math.Inf(-1) 68 var best Reduced 69 for i := 0; i < effort; i++ { 70 r := Modularize(g, resolution, src) 71 s := score(r) 72 if s > max { 73 max = s 74 best = r 75 } 76 } 77 return max, best 78 } 79 } 80 81 // SizeMultiplex is a score function that is the reciprocal of the number of communities. 82 func SizeMultiplex(g ReducedMultiplex) float64 { return 1 / float64(len(g.Structure())) } 83 84 // WeightMultiplex is a score function that is the sum of community weights. The concrete 85 // type of g must be pointer to a ReducedUndirectedMultiplex or a ReducedDirectedMultiplex, 86 // otherwise WeightMultiplex will panic. 87 func WeightMultiplex(g ReducedMultiplex) float64 { 88 var w float64 89 switch g := g.(type) { 90 case *ReducedUndirectedMultiplex: 91 for _, n := range g.nodes { 92 for _, lw := range n.weights { 93 w += lw 94 } 95 } 96 case *ReducedDirectedMultiplex: 97 for _, n := range g.nodes { 98 for _, lw := range n.weights { 99 w += lw 100 } 101 } 102 default: 103 panic(fmt.Sprintf("community: invalid graph type: %T", g)) 104 } 105 return w 106 } 107 108 // ModularMultiplexScore returns a modularized scoring function for Profile based 109 // on the graph g and the given score function. The effort parameter determines how 110 // many attempts will be made to get an improved score for any given resolution. 111 func ModularMultiplexScore(g Multiplex, weights []float64, all bool, score func(ReducedMultiplex) float64, effort int, src rand.Source) func(float64) (float64, Reduced) { 112 return func(resolution float64) (float64, Reduced) { 113 max := math.Inf(-1) 114 var best Reduced 115 for i := 0; i < effort; i++ { 116 r := ModularizeMultiplex(g, weights, []float64{resolution}, all, src) 117 s := score(r) 118 if s > max { 119 max = s 120 best = r 121 } 122 } 123 return max, best 124 } 125 } 126 127 // Profile returns an approximate profile of score values in the resolution domain [low,high) 128 // at the given granularity. The score is calculated by bisecting calls to fn. If log is true, 129 // log space bisection is used, otherwise bisection is linear. The function fn should be 130 // monotonically decreasing in at least 1/grain evaluations. Profile will attempt to detect 131 // non-monotonicity during the bisection. 132 // 133 // Since exact modularity optimization is known to be NP-hard and Profile calls modularization 134 // routines repeatedly, it is unlikely to return the exact resolution profile. 135 func Profile(fn func(float64) (float64, Reduced), log bool, grain, low, high float64) (profile []Interval, err error) { 136 if low >= high { 137 return nil, errors.New("community: zero or negative width domain") 138 } 139 140 defer func() { 141 r := recover() 142 e, ok := r.(nonDecreasing) 143 if ok { 144 err = e 145 return 146 } 147 if r != nil { 148 panic(r) 149 } 150 }() 151 left, comm := fn(low) 152 right, _ := fn(high) 153 for i := 1; i < int(1/grain); i++ { 154 rt, _ := fn(high) 155 right = math.Max(right, rt) 156 } 157 profile = bisect(fn, log, grain, low, left, high, right, comm) 158 159 // We may have missed some non-monotonicity, 160 // so merge low score discordant domains into 161 // their lower resolution neighbours. 162 return fixUp(profile), nil 163 } 164 165 type nonDecreasing int 166 167 func (n nonDecreasing) Error() string { 168 return fmt.Sprintf("community: profile does not reliably monotonically decrease: tried %d times", n) 169 } 170 171 func bisect(fn func(float64) (float64, Reduced), log bool, grain, low, scoreLow, high, scoreHigh float64, comm Reduced) []Interval { 172 if low >= high { 173 panic("community: zero or negative width domain") 174 } 175 if math.IsNaN(scoreLow) || math.IsNaN(scoreHigh) { 176 return nil 177 } 178 179 // Heuristically determine a reasonable number 180 // of times to try to get a higher value. 181 maxIter := int(1 / grain) 182 183 lowComm := comm 184 for n := 0; scoreLow < scoreHigh; n++ { 185 if n > maxIter { 186 panic(nonDecreasing(n)) 187 } 188 scoreLow, lowComm = fn(low) 189 } 190 191 if scoreLow == scoreHigh || tooSmall(low, high, grain, log) { 192 return []Interval{{Low: low, High: high, Score: scoreLow, Reduced: lowComm}} 193 } 194 195 var mid float64 196 if log { 197 mid = math.Sqrt(low * high) 198 } else { 199 mid = (low + high) / 2 200 } 201 202 scoreMid := math.Inf(-1) 203 var midComm Reduced 204 for n := 0; scoreMid < scoreHigh; n++ { 205 if n > maxIter { 206 panic(nonDecreasing(n)) 207 } 208 scoreMid, midComm = fn(mid) 209 } 210 211 lower := bisect(fn, log, grain, low, scoreLow, mid, scoreMid, lowComm) 212 higher := bisect(fn, log, grain, mid, scoreMid, high, scoreHigh, midComm) 213 for n := 0; lower[len(lower)-1].Score < higher[0].Score; n++ { 214 if n > maxIter { 215 panic(nonDecreasing(n)) 216 } 217 lower[len(lower)-1].Score, lower[len(lower)-1].Reduced = fn(low) 218 } 219 220 if lower[len(lower)-1].Score == higher[0].Score { 221 higher[0].Low = lower[len(lower)-1].Low 222 lower = lower[:len(lower)-1] 223 if len(lower) == 0 { 224 return higher 225 } 226 } 227 return append(lower, higher...) 228 } 229 230 // fixUp non-monotonically decreasing interval scores. 231 func fixUp(profile []Interval) []Interval { 232 max := profile[len(profile)-1].Score 233 for i := len(profile) - 2; i >= 0; i-- { 234 if profile[i].Score > max { 235 max = profile[i].Score 236 continue 237 } 238 profile[i+1].Low = profile[i].Low 239 profile = append(profile[:i], profile[i+1:]...) 240 } 241 return profile 242 } 243 244 func tooSmall(low, high, grain float64, log bool) bool { 245 if log { 246 return math.Log(high/low) < grain 247 } 248 return high-low < grain 249 }