github.com/gopherd/gonum@v0.0.4/internal/cmplx64/cmath_test.go (about) 1 // Copyright 2010 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Copyright ©2017 The Gonum Authors. All rights reserved. 6 // Use of this source code is governed by a BSD-style 7 // license that can be found in the LICENSE file. 8 9 package cmplx64 10 11 import ( 12 "testing" 13 14 math "github.com/gopherd/gonum/internal/math32" 15 ) 16 17 // The higher-precision values in vc26 were used to derive the 18 // input arguments vc (see also comment below). For reference 19 // only (do not delete). 20 var vc26 = []complex64{ 21 (4.97901192488367350108546816 + 7.73887247457810456552351752i), 22 (7.73887247457810456552351752 - 0.27688005719200159404635997i), 23 (-0.27688005719200159404635997 - 5.01060361827107492160848778i), 24 (-5.01060361827107492160848778 + 9.63629370719841737980004837i), 25 (9.63629370719841737980004837 + 2.92637723924396464525443662i), 26 (2.92637723924396464525443662 + 5.22908343145930665230025625i), 27 (5.22908343145930665230025625 + 2.72793991043601025126008608i), 28 (2.72793991043601025126008608 + 1.82530809168085506044576505i), 29 (1.82530809168085506044576505 - 8.68592476857560136238589621i), 30 (-8.68592476857560136238589621 + 4.97901192488367350108546816i), 31 } 32 33 var vc = []complex64{ 34 (4.9790119248836735e+00 + 7.7388724745781045e+00i), 35 (7.7388724745781045e+00 - 2.7688005719200159e-01i), 36 (-2.7688005719200159e-01 - 5.0106036182710749e+00i), 37 (-5.0106036182710749e+00 + 9.6362937071984173e+00i), 38 (9.6362937071984173e+00 + 2.9263772392439646e+00i), 39 (2.9263772392439646e+00 + 5.2290834314593066e+00i), 40 (5.2290834314593066e+00 + 2.7279399104360102e+00i), 41 (2.7279399104360102e+00 + 1.8253080916808550e+00i), 42 (1.8253080916808550e+00 - 8.6859247685756013e+00i), 43 (-8.6859247685756013e+00 + 4.9790119248836735e+00i), 44 } 45 46 // The expected results below were computed by the high precision calculators 47 // at http://keisan.casio.com/. More exact input values (array vc[], above) 48 // were obtained by printing them with "%.26f". The answers were calculated 49 // to 26 digits (by using the "Digit number" drop-down control of each 50 // calculator). 51 52 var abs = []float32{ 53 9.2022120669932650313380972e+00, 54 7.7438239742296106616261394e+00, 55 5.0182478202557746902556648e+00, 56 1.0861137372799545160704002e+01, 57 1.0070841084922199607011905e+01, 58 5.9922447613166942183705192e+00, 59 5.8978784056736762299945176e+00, 60 3.2822866700678709020367184e+00, 61 8.8756430028990417290744307e+00, 62 1.0011785496777731986390856e+01, 63 } 64 65 var conj = []complex64{ 66 (4.9790119248836735e+00 - 7.7388724745781045e+00i), 67 (7.7388724745781045e+00 + 2.7688005719200159e-01i), 68 (-2.7688005719200159e-01 + 5.0106036182710749e+00i), 69 (-5.0106036182710749e+00 - 9.6362937071984173e+00i), 70 (9.6362937071984173e+00 - 2.9263772392439646e+00i), 71 (2.9263772392439646e+00 - 5.2290834314593066e+00i), 72 (5.2290834314593066e+00 - 2.7279399104360102e+00i), 73 (2.7279399104360102e+00 - 1.8253080916808550e+00i), 74 (1.8253080916808550e+00 + 8.6859247685756013e+00i), 75 (-8.6859247685756013e+00 - 4.9790119248836735e+00i), 76 } 77 78 var sqrt = []complex64{ 79 (2.6628203086086130543813948e+00 + 1.4531345674282185229796902e+00i), 80 (2.7823278427251986247149295e+00 - 4.9756907317005224529115567e-02i), 81 (1.5397025302089642757361015e+00 - 1.6271336573016637535695727e+00i), 82 (1.7103411581506875260277898e+00 + 2.8170677122737589676157029e+00i), 83 (3.1390392472953103383607947e+00 + 4.6612625849858653248980849e-01i), 84 (2.1117080764822417640789287e+00 + 1.2381170223514273234967850e+00i), 85 (2.3587032281672256703926939e+00 + 5.7827111903257349935720172e-01i), 86 (1.7335262588873410476661577e+00 + 5.2647258220721269141550382e-01i), 87 (2.3131094974708716531499282e+00 - 1.8775429304303785570775490e+00i), 88 (8.1420535745048086240947359e-01 + 3.0575897587277248522656113e+00i), 89 } 90 91 // special cases 92 var vcAbsSC = []complex64{ 93 NaN(), 94 } 95 var absSC = []float32{ 96 math.NaN(), 97 } 98 var vcConjSC = []complex64{ 99 NaN(), 100 } 101 var conjSC = []complex64{ 102 NaN(), 103 } 104 var vcIsNaNSC = []complex64{ 105 complex(math.Inf(-1), math.Inf(-1)), 106 complex(math.Inf(-1), math.NaN()), 107 complex(math.NaN(), math.Inf(-1)), 108 complex(0, math.NaN()), 109 complex(math.NaN(), 0), 110 complex(math.Inf(1), math.Inf(1)), 111 complex(math.Inf(1), math.NaN()), 112 complex(math.NaN(), math.Inf(1)), 113 complex(math.NaN(), math.NaN()), 114 } 115 var isNaNSC = []bool{ 116 false, 117 false, 118 false, 119 true, 120 true, 121 false, 122 false, 123 false, 124 true, 125 } 126 var vcSqrtSC = []complex64{ 127 NaN(), 128 } 129 var sqrtSC = []complex64{ 130 NaN(), 131 } 132 133 // functions borrowed from pkg/math/all_test.go 134 func tolerance(a, b, e float32) bool { 135 d := a - b 136 if d < 0 { 137 d = -d 138 } 139 140 // note: b is correct (expected) value, a is actual value. 141 // make error tolerance a fraction of b, not a. 142 if b != 0 { 143 e = e * b 144 if e < 0 { 145 e = -e 146 } 147 } 148 return d < e 149 } 150 func veryclose(a, b float32) bool { return tolerance(a, b, 1e-7) } 151 func alike(a, b float32) bool { 152 switch { 153 case a != a && b != b: // math.IsNaN(a) && math.IsNaN(b): 154 return true 155 case a == b: 156 return math.Signbit(a) == math.Signbit(b) 157 } 158 return false 159 } 160 161 func cTolerance(a, b complex64, e float32) bool { 162 d := Abs(a - b) 163 if b != 0 { 164 e = e * Abs(b) 165 if e < 0 { 166 e = -e 167 } 168 } 169 return d < e 170 } 171 func cVeryclose(a, b complex64) bool { return cTolerance(a, b, 1e-6) } 172 func cAlike(a, b complex64) bool { 173 switch { 174 case IsNaN(a) && IsNaN(b): 175 return true 176 case a == b: 177 return math.Signbit(real(a)) == math.Signbit(real(b)) && math.Signbit(imag(a)) == math.Signbit(imag(b)) 178 } 179 return false 180 } 181 182 func TestAbs(t *testing.T) { 183 for i := 0; i < len(vc); i++ { 184 if f := Abs(vc[i]); !veryclose(abs[i], f) { 185 t.Errorf("Abs(%g) = %g, want %g", vc[i], f, abs[i]) 186 } 187 } 188 for i := 0; i < len(vcAbsSC); i++ { 189 if f := Abs(vcAbsSC[i]); !alike(absSC[i], f) { 190 t.Errorf("Abs(%g) = %g, want %g", vcAbsSC[i], f, absSC[i]) 191 } 192 } 193 } 194 func TestConj(t *testing.T) { 195 for i := 0; i < len(vc); i++ { 196 if f := Conj(vc[i]); !cVeryclose(conj[i], f) { 197 t.Errorf("Conj(%g) = %g, want %g", vc[i], f, conj[i]) 198 } 199 } 200 for i := 0; i < len(vcConjSC); i++ { 201 if f := Conj(vcConjSC[i]); !cAlike(conjSC[i], f) { 202 t.Errorf("Conj(%g) = %g, want %g", vcConjSC[i], f, conjSC[i]) 203 } 204 } 205 } 206 func TestIsNaN(t *testing.T) { 207 for i := 0; i < len(vcIsNaNSC); i++ { 208 if f := IsNaN(vcIsNaNSC[i]); isNaNSC[i] != f { 209 t.Errorf("IsNaN(%v) = %v, want %v", vcIsNaNSC[i], f, isNaNSC[i]) 210 } 211 } 212 } 213 func TestSqrt(t *testing.T) { 214 for i := 0; i < len(vc); i++ { 215 if f := Sqrt(vc[i]); !cVeryclose(sqrt[i], f) { 216 t.Errorf("Sqrt(%g) = %g, want %g", vc[i], f, sqrt[i]) 217 } 218 } 219 for i := 0; i < len(vcSqrtSC); i++ { 220 if f := Sqrt(vcSqrtSC[i]); !cAlike(sqrtSC[i], f) { 221 t.Errorf("Sqrt(%g) = %g, want %g", vcSqrtSC[i], f, sqrtSC[i]) 222 } 223 } 224 } 225 226 func BenchmarkAbs(b *testing.B) { 227 for i := 0; i < b.N; i++ { 228 Abs(complex(2.5, 3.5)) 229 } 230 } 231 func BenchmarkConj(b *testing.B) { 232 for i := 0; i < b.N; i++ { 233 Conj(complex(2.5, 3.5)) 234 } 235 } 236 func BenchmarkSqrt(b *testing.B) { 237 for i := 0; i < b.N; i++ { 238 Sqrt(complex(2.5, 3.5)) 239 } 240 }