github.com/gopherd/gonum@v0.0.4/lapack/gonum/dgebal.go (about)

     1  // Copyright ©2016 The Gonum Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package gonum
     6  
     7  import (
     8  	"math"
     9  
    10  	"github.com/gopherd/gonum/blas/blas64"
    11  	"github.com/gopherd/gonum/lapack"
    12  )
    13  
    14  // Dgebal balances an n×n matrix A. Balancing consists of two stages, permuting
    15  // and scaling. Both steps are optional and depend on the value of job.
    16  //
    17  // Permuting consists of applying a permutation matrix P such that the matrix
    18  // that results from Pᵀ*A*P takes the upper block triangular form
    19  //           [ T1  X  Y  ]
    20  //  Pᵀ A P = [  0  B  Z  ],
    21  //           [  0  0  T2 ]
    22  // where T1 and T2 are upper triangular matrices and B contains at least one
    23  // nonzero off-diagonal element in each row and column. The indices ilo and ihi
    24  // mark the starting and ending columns of the submatrix B. The eigenvalues of A
    25  // isolated in the first 0 to ilo-1 and last ihi+1 to n-1 elements on the
    26  // diagonal can be read off without any roundoff error.
    27  //
    28  // Scaling consists of applying a diagonal similarity transformation D such that
    29  // D^{-1}*B*D has the 1-norm of each row and its corresponding column nearly
    30  // equal. The output matrix is
    31  //  [ T1     X*D          Y    ]
    32  //  [  0  inv(D)*B*D  inv(D)*Z ].
    33  //  [  0      0           T2   ]
    34  // Scaling may reduce the 1-norm of the matrix, and improve the accuracy of
    35  // the computed eigenvalues and/or eigenvectors.
    36  //
    37  // job specifies the operations that will be performed on A.
    38  // If job is lapack.BalanceNone, Dgebal sets scale[i] = 1 for all i and returns ilo=0, ihi=n-1.
    39  // If job is lapack.Permute, only permuting will be done.
    40  // If job is lapack.Scale, only scaling will be done.
    41  // If job is lapack.PermuteScale, both permuting and scaling will be done.
    42  //
    43  // On return, if job is lapack.Permute or lapack.PermuteScale, it will hold that
    44  //  A[i,j] == 0,   for i > j and j ∈ {0, ..., ilo-1, ihi+1, ..., n-1}.
    45  // If job is lapack.BalanceNone or lapack.Scale, or if n == 0, it will hold that
    46  //  ilo == 0 and ihi == n-1.
    47  //
    48  // On return, scale will contain information about the permutations and scaling
    49  // factors applied to A. If π(j) denotes the index of the column interchanged
    50  // with column j, and D[j,j] denotes the scaling factor applied to column j,
    51  // then
    52  //  scale[j] == π(j),     for j ∈ {0, ..., ilo-1, ihi+1, ..., n-1},
    53  //           == D[j,j],   for j ∈ {ilo, ..., ihi}.
    54  // scale must have length equal to n, otherwise Dgebal will panic.
    55  //
    56  // Dgebal is an internal routine. It is exported for testing purposes.
    57  func (impl Implementation) Dgebal(job lapack.BalanceJob, n int, a []float64, lda int, scale []float64) (ilo, ihi int) {
    58  	switch {
    59  	case job != lapack.BalanceNone && job != lapack.Permute && job != lapack.Scale && job != lapack.PermuteScale:
    60  		panic(badBalanceJob)
    61  	case n < 0:
    62  		panic(nLT0)
    63  	case lda < max(1, n):
    64  		panic(badLdA)
    65  	}
    66  
    67  	ilo = 0
    68  	ihi = n - 1
    69  
    70  	if n == 0 {
    71  		return ilo, ihi
    72  	}
    73  
    74  	if len(scale) != n {
    75  		panic(shortScale)
    76  	}
    77  
    78  	if job == lapack.BalanceNone {
    79  		for i := range scale {
    80  			scale[i] = 1
    81  		}
    82  		return ilo, ihi
    83  	}
    84  
    85  	if len(a) < (n-1)*lda+n {
    86  		panic(shortA)
    87  	}
    88  
    89  	bi := blas64.Implementation()
    90  	swapped := true
    91  
    92  	if job == lapack.Scale {
    93  		goto scaling
    94  	}
    95  
    96  	// Permutation to isolate eigenvalues if possible.
    97  	//
    98  	// Search for rows isolating an eigenvalue and push them down.
    99  	for swapped {
   100  		swapped = false
   101  	rows:
   102  		for i := ihi; i >= 0; i-- {
   103  			for j := 0; j <= ihi; j++ {
   104  				if i == j {
   105  					continue
   106  				}
   107  				if a[i*lda+j] != 0 {
   108  					continue rows
   109  				}
   110  			}
   111  			// Row i has only zero off-diagonal elements in the
   112  			// block A[ilo:ihi+1,ilo:ihi+1].
   113  			scale[ihi] = float64(i)
   114  			if i != ihi {
   115  				bi.Dswap(ihi+1, a[i:], lda, a[ihi:], lda)
   116  				bi.Dswap(n, a[i*lda:], 1, a[ihi*lda:], 1)
   117  			}
   118  			if ihi == 0 {
   119  				scale[0] = 1
   120  				return ilo, ihi
   121  			}
   122  			ihi--
   123  			swapped = true
   124  			break
   125  		}
   126  	}
   127  	// Search for columns isolating an eigenvalue and push them left.
   128  	swapped = true
   129  	for swapped {
   130  		swapped = false
   131  	columns:
   132  		for j := ilo; j <= ihi; j++ {
   133  			for i := ilo; i <= ihi; i++ {
   134  				if i == j {
   135  					continue
   136  				}
   137  				if a[i*lda+j] != 0 {
   138  					continue columns
   139  				}
   140  			}
   141  			// Column j has only zero off-diagonal elements in the
   142  			// block A[ilo:ihi+1,ilo:ihi+1].
   143  			scale[ilo] = float64(j)
   144  			if j != ilo {
   145  				bi.Dswap(ihi+1, a[j:], lda, a[ilo:], lda)
   146  				bi.Dswap(n-ilo, a[j*lda+ilo:], 1, a[ilo*lda+ilo:], 1)
   147  			}
   148  			swapped = true
   149  			ilo++
   150  			break
   151  		}
   152  	}
   153  
   154  scaling:
   155  	for i := ilo; i <= ihi; i++ {
   156  		scale[i] = 1
   157  	}
   158  
   159  	if job == lapack.Permute {
   160  		return ilo, ihi
   161  	}
   162  
   163  	// Balance the submatrix in rows ilo to ihi.
   164  
   165  	const (
   166  		// sclfac should be a power of 2 to avoid roundoff errors.
   167  		// Elements of scale are restricted to powers of sclfac,
   168  		// therefore the matrix will be only nearly balanced.
   169  		sclfac = 2
   170  		// factor determines the minimum reduction of the row and column
   171  		// norms that is considered non-negligible. It must be less than 1.
   172  		factor = 0.95
   173  	)
   174  	sfmin1 := dlamchS / dlamchP
   175  	sfmax1 := 1 / sfmin1
   176  	sfmin2 := sfmin1 * sclfac
   177  	sfmax2 := 1 / sfmin2
   178  
   179  	// Iterative loop for norm reduction.
   180  	var conv bool
   181  	for !conv {
   182  		conv = true
   183  		for i := ilo; i <= ihi; i++ {
   184  			c := bi.Dnrm2(ihi-ilo+1, a[ilo*lda+i:], lda)
   185  			r := bi.Dnrm2(ihi-ilo+1, a[i*lda+ilo:], 1)
   186  			ica := bi.Idamax(ihi+1, a[i:], lda)
   187  			ca := math.Abs(a[ica*lda+i])
   188  			ira := bi.Idamax(n-ilo, a[i*lda+ilo:], 1)
   189  			ra := math.Abs(a[i*lda+ilo+ira])
   190  
   191  			// Guard against zero c or r due to underflow.
   192  			if c == 0 || r == 0 {
   193  				continue
   194  			}
   195  			g := r / sclfac
   196  			f := 1.0
   197  			s := c + r
   198  			for c < g && math.Max(f, math.Max(c, ca)) < sfmax2 && math.Min(r, math.Min(g, ra)) > sfmin2 {
   199  				if math.IsNaN(c + f + ca + r + g + ra) {
   200  					// Panic if NaN to avoid infinite loop.
   201  					panic("lapack: NaN")
   202  				}
   203  				f *= sclfac
   204  				c *= sclfac
   205  				ca *= sclfac
   206  				g /= sclfac
   207  				r /= sclfac
   208  				ra /= sclfac
   209  			}
   210  			g = c / sclfac
   211  			for r <= g && math.Max(r, ra) < sfmax2 && math.Min(math.Min(f, c), math.Min(g, ca)) > sfmin2 {
   212  				f /= sclfac
   213  				c /= sclfac
   214  				ca /= sclfac
   215  				g /= sclfac
   216  				r *= sclfac
   217  				ra *= sclfac
   218  			}
   219  
   220  			if c+r >= factor*s {
   221  				// Reduction would be negligible.
   222  				continue
   223  			}
   224  			if f < 1 && scale[i] < 1 && f*scale[i] <= sfmin1 {
   225  				continue
   226  			}
   227  			if f > 1 && scale[i] > 1 && scale[i] >= sfmax1/f {
   228  				continue
   229  			}
   230  
   231  			// Now balance.
   232  			scale[i] *= f
   233  			bi.Dscal(n-ilo, 1/f, a[i*lda+ilo:], 1)
   234  			bi.Dscal(ihi+1, f, a[i:], lda)
   235  			conv = false
   236  		}
   237  	}
   238  	return ilo, ihi
   239  }