github.com/gopherd/gonum@v0.0.4/lapack/gonum/dgebrd.go (about) 1 // Copyright ©2015 The Gonum Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package gonum 6 7 import ( 8 "github.com/gopherd/gonum/blas" 9 "github.com/gopherd/gonum/blas/blas64" 10 ) 11 12 // Dgebrd reduces a general m×n matrix A to upper or lower bidiagonal form B by 13 // an orthogonal transformation: 14 // Qᵀ * A * P = B. 15 // The diagonal elements of B are stored in d and the off-diagonal elements are stored 16 // in e. These are additionally stored along the diagonal of A and the off-diagonal 17 // of A. If m >= n B is an upper-bidiagonal matrix, and if m < n B is a 18 // lower-bidiagonal matrix. 19 // 20 // The remaining elements of A store the data needed to construct Q and P. 21 // The matrices Q and P are products of elementary reflectors 22 // if m >= n, Q = H_0 * H_1 * ... * H_{n-1}, 23 // P = G_0 * G_1 * ... * G_{n-2}, 24 // if m < n, Q = H_0 * H_1 * ... * H_{m-2}, 25 // P = G_0 * G_1 * ... * G_{m-1}, 26 // where 27 // H_i = I - tauQ[i] * v_i * v_iᵀ, 28 // G_i = I - tauP[i] * u_i * u_iᵀ. 29 // 30 // As an example, on exit the entries of A when m = 6, and n = 5 31 // [ d e u1 u1 u1] 32 // [v1 d e u2 u2] 33 // [v1 v2 d e u3] 34 // [v1 v2 v3 d e] 35 // [v1 v2 v3 v4 d] 36 // [v1 v2 v3 v4 v5] 37 // and when m = 5, n = 6 38 // [ d u1 u1 u1 u1 u1] 39 // [ e d u2 u2 u2 u2] 40 // [v1 e d u3 u3 u3] 41 // [v1 v2 e d u4 u4] 42 // [v1 v2 v3 e d u5] 43 // 44 // d, tauQ, and tauP must all have length at least min(m,n), and e must have 45 // length min(m,n) - 1, unless lwork is -1 when there is no check except for 46 // work which must have a length of at least one. 47 // 48 // work is temporary storage, and lwork specifies the usable memory length. 49 // At minimum, lwork >= max(1,m,n) or be -1 and this function will panic otherwise. 50 // Dgebrd is blocked decomposition, but the block size is limited 51 // by the temporary space available. If lwork == -1, instead of performing Dgebrd, 52 // the optimal work length will be stored into work[0]. 53 // 54 // Dgebrd is an internal routine. It is exported for testing purposes. 55 func (impl Implementation) Dgebrd(m, n int, a []float64, lda int, d, e, tauQ, tauP, work []float64, lwork int) { 56 switch { 57 case m < 0: 58 panic(mLT0) 59 case n < 0: 60 panic(nLT0) 61 case lda < max(1, n): 62 panic(badLdA) 63 case lwork < max(1, max(m, n)) && lwork != -1: 64 panic(badLWork) 65 case len(work) < max(1, lwork): 66 panic(shortWork) 67 } 68 69 // Quick return if possible. 70 minmn := min(m, n) 71 if minmn == 0 { 72 work[0] = 1 73 return 74 } 75 76 nb := impl.Ilaenv(1, "DGEBRD", " ", m, n, -1, -1) 77 lwkopt := (m + n) * nb 78 if lwork == -1 { 79 work[0] = float64(lwkopt) 80 return 81 } 82 83 switch { 84 case len(a) < (m-1)*lda+n: 85 panic(shortA) 86 case len(d) < minmn: 87 panic(shortD) 88 case len(e) < minmn-1: 89 panic(shortE) 90 case len(tauQ) < minmn: 91 panic(shortTauQ) 92 case len(tauP) < minmn: 93 panic(shortTauP) 94 } 95 96 nx := minmn 97 ws := max(m, n) 98 if 1 < nb && nb < minmn { 99 // At least one blocked operation can be done. 100 // Get the crossover point nx. 101 nx = max(nb, impl.Ilaenv(3, "DGEBRD", " ", m, n, -1, -1)) 102 // Determine when to switch from blocked to unblocked code. 103 if nx < minmn { 104 // At least one blocked operation will be done. 105 ws = (m + n) * nb 106 if lwork < ws { 107 // Not enough work space for the optimal nb, 108 // consider using a smaller block size. 109 nbmin := impl.Ilaenv(2, "DGEBRD", " ", m, n, -1, -1) 110 if lwork >= (m+n)*nbmin { 111 // Enough work space for minimum block size. 112 nb = lwork / (m + n) 113 } else { 114 nb = minmn 115 nx = minmn 116 } 117 } 118 } 119 } 120 bi := blas64.Implementation() 121 ldworkx := nb 122 ldworky := nb 123 var i int 124 for i = 0; i < minmn-nx; i += nb { 125 // Reduce rows and columns i:i+nb to bidiagonal form and return 126 // the matrices X and Y which are needed to update the unreduced 127 // part of the matrix. 128 // X is stored in the first m rows of work, y in the next rows. 129 x := work[:m*ldworkx] 130 y := work[m*ldworkx:] 131 impl.Dlabrd(m-i, n-i, nb, a[i*lda+i:], lda, 132 d[i:], e[i:], tauQ[i:], tauP[i:], 133 x, ldworkx, y, ldworky) 134 135 // Update the trailing submatrix A[i+nb:m,i+nb:n], using an update 136 // of the form A := A - V*Y**T - X*U**T 137 bi.Dgemm(blas.NoTrans, blas.Trans, m-i-nb, n-i-nb, nb, 138 -1, a[(i+nb)*lda+i:], lda, y[nb*ldworky:], ldworky, 139 1, a[(i+nb)*lda+i+nb:], lda) 140 141 bi.Dgemm(blas.NoTrans, blas.NoTrans, m-i-nb, n-i-nb, nb, 142 -1, x[nb*ldworkx:], ldworkx, a[i*lda+i+nb:], lda, 143 1, a[(i+nb)*lda+i+nb:], lda) 144 145 // Copy diagonal and off-diagonal elements of B back into A. 146 if m >= n { 147 for j := i; j < i+nb; j++ { 148 a[j*lda+j] = d[j] 149 a[j*lda+j+1] = e[j] 150 } 151 } else { 152 for j := i; j < i+nb; j++ { 153 a[j*lda+j] = d[j] 154 a[(j+1)*lda+j] = e[j] 155 } 156 } 157 } 158 // Use unblocked code to reduce the remainder of the matrix. 159 impl.Dgebd2(m-i, n-i, a[i*lda+i:], lda, d[i:], e[i:], tauQ[i:], tauP[i:], work) 160 work[0] = float64(ws) 161 }