github.com/gopherd/gonum@v0.0.4/lapack/gonum/dgeev.go (about)

     1  // Copyright ©2016 The Gonum Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package gonum
     6  
     7  import (
     8  	"math"
     9  
    10  	"github.com/gopherd/gonum/blas"
    11  	"github.com/gopherd/gonum/blas/blas64"
    12  	"github.com/gopherd/gonum/lapack"
    13  )
    14  
    15  // Dgeev computes the eigenvalues and, optionally, the left and/or right
    16  // eigenvectors for an n×n real nonsymmetric matrix A.
    17  //
    18  // The right eigenvector v_j of A corresponding to an eigenvalue λ_j
    19  // is defined by
    20  //  A v_j = λ_j v_j,
    21  // and the left eigenvector u_j corresponding to an eigenvalue λ_j is defined by
    22  //  u_jᴴ A = λ_j u_jᴴ,
    23  // where u_jᴴ is the conjugate transpose of u_j.
    24  //
    25  // On return, A will be overwritten and the left and right eigenvectors will be
    26  // stored, respectively, in the columns of the n×n matrices VL and VR in the
    27  // same order as their eigenvalues. If the j-th eigenvalue is real, then
    28  //  u_j = VL[:,j],
    29  //  v_j = VR[:,j],
    30  // and if it is not real, then j and j+1 form a complex conjugate pair and the
    31  // eigenvectors can be recovered as
    32  //  u_j     = VL[:,j] + i*VL[:,j+1],
    33  //  u_{j+1} = VL[:,j] - i*VL[:,j+1],
    34  //  v_j     = VR[:,j] + i*VR[:,j+1],
    35  //  v_{j+1} = VR[:,j] - i*VR[:,j+1],
    36  // where i is the imaginary unit. The computed eigenvectors are normalized to
    37  // have Euclidean norm equal to 1 and largest component real.
    38  //
    39  // Left eigenvectors will be computed only if jobvl == lapack.LeftEVCompute,
    40  // otherwise jobvl must be lapack.LeftEVNone.
    41  // Right eigenvectors will be computed only if jobvr == lapack.RightEVCompute,
    42  // otherwise jobvr must be lapack.RightEVNone.
    43  // For other values of jobvl and jobvr Dgeev will panic.
    44  //
    45  // wr and wi contain the real and imaginary parts, respectively, of the computed
    46  // eigenvalues. Complex conjugate pairs of eigenvalues appear consecutively with
    47  // the eigenvalue having the positive imaginary part first.
    48  // wr and wi must have length n, and Dgeev will panic otherwise.
    49  //
    50  // work must have length at least lwork and lwork must be at least max(1,4*n) if
    51  // the left or right eigenvectors are computed, and at least max(1,3*n) if no
    52  // eigenvectors are computed. For good performance, lwork must generally be
    53  // larger.  On return, optimal value of lwork will be stored in work[0].
    54  //
    55  // If lwork == -1, instead of performing Dgeev, the function only calculates the
    56  // optimal value of lwork and stores it into work[0].
    57  //
    58  // On return, first is the index of the first valid eigenvalue. If first == 0,
    59  // all eigenvalues and eigenvectors have been computed. If first is positive,
    60  // Dgeev failed to compute all the eigenvalues, no eigenvectors have been
    61  // computed and wr[first:] and wi[first:] contain those eigenvalues which have
    62  // converged.
    63  func (impl Implementation) Dgeev(jobvl lapack.LeftEVJob, jobvr lapack.RightEVJob, n int, a []float64, lda int, wr, wi []float64, vl []float64, ldvl int, vr []float64, ldvr int, work []float64, lwork int) (first int) {
    64  	wantvl := jobvl == lapack.LeftEVCompute
    65  	wantvr := jobvr == lapack.RightEVCompute
    66  	var minwrk int
    67  	if wantvl || wantvr {
    68  		minwrk = max(1, 4*n)
    69  	} else {
    70  		minwrk = max(1, 3*n)
    71  	}
    72  	switch {
    73  	case jobvl != lapack.LeftEVCompute && jobvl != lapack.LeftEVNone:
    74  		panic(badLeftEVJob)
    75  	case jobvr != lapack.RightEVCompute && jobvr != lapack.RightEVNone:
    76  		panic(badRightEVJob)
    77  	case n < 0:
    78  		panic(nLT0)
    79  	case lda < max(1, n):
    80  		panic(badLdA)
    81  	case ldvl < 1 || (ldvl < n && wantvl):
    82  		panic(badLdVL)
    83  	case ldvr < 1 || (ldvr < n && wantvr):
    84  		panic(badLdVR)
    85  	case lwork < minwrk && lwork != -1:
    86  		panic(badLWork)
    87  	case len(work) < lwork:
    88  		panic(shortWork)
    89  	}
    90  
    91  	// Quick return if possible.
    92  	if n == 0 {
    93  		work[0] = 1
    94  		return 0
    95  	}
    96  
    97  	maxwrk := 2*n + n*impl.Ilaenv(1, "DGEHRD", " ", n, 1, n, 0)
    98  	if wantvl || wantvr {
    99  		maxwrk = max(maxwrk, 2*n+(n-1)*impl.Ilaenv(1, "DORGHR", " ", n, 1, n, -1))
   100  		impl.Dhseqr(lapack.EigenvaluesAndSchur, lapack.SchurOrig, n, 0, n-1,
   101  			a, lda, wr, wi, nil, n, work, -1)
   102  		maxwrk = max(maxwrk, max(n+1, n+int(work[0])))
   103  		side := lapack.EVLeft
   104  		if wantvr {
   105  			side = lapack.EVRight
   106  		}
   107  		impl.Dtrevc3(side, lapack.EVAllMulQ, nil, n, a, lda, vl, ldvl, vr, ldvr,
   108  			n, work, -1)
   109  		maxwrk = max(maxwrk, n+int(work[0]))
   110  		maxwrk = max(maxwrk, 4*n)
   111  	} else {
   112  		impl.Dhseqr(lapack.EigenvaluesOnly, lapack.SchurNone, n, 0, n-1,
   113  			a, lda, wr, wi, vr, ldvr, work, -1)
   114  		maxwrk = max(maxwrk, max(n+1, n+int(work[0])))
   115  	}
   116  	maxwrk = max(maxwrk, minwrk)
   117  
   118  	if lwork == -1 {
   119  		work[0] = float64(maxwrk)
   120  		return 0
   121  	}
   122  
   123  	switch {
   124  	case len(a) < (n-1)*lda+n:
   125  		panic(shortA)
   126  	case len(wr) != n:
   127  		panic(badLenWr)
   128  	case len(wi) != n:
   129  		panic(badLenWi)
   130  	case len(vl) < (n-1)*ldvl+n && wantvl:
   131  		panic(shortVL)
   132  	case len(vr) < (n-1)*ldvr+n && wantvr:
   133  		panic(shortVR)
   134  	}
   135  
   136  	// Get machine constants.
   137  	smlnum := math.Sqrt(dlamchS) / dlamchP
   138  	bignum := 1 / smlnum
   139  
   140  	// Scale A if max element outside range [smlnum,bignum].
   141  	anrm := impl.Dlange(lapack.MaxAbs, n, n, a, lda, nil)
   142  	var scalea bool
   143  	var cscale float64
   144  	if 0 < anrm && anrm < smlnum {
   145  		scalea = true
   146  		cscale = smlnum
   147  	} else if anrm > bignum {
   148  		scalea = true
   149  		cscale = bignum
   150  	}
   151  	if scalea {
   152  		impl.Dlascl(lapack.General, 0, 0, anrm, cscale, n, n, a, lda)
   153  	}
   154  
   155  	// Balance the matrix.
   156  	workbal := work[:n]
   157  	ilo, ihi := impl.Dgebal(lapack.PermuteScale, n, a, lda, workbal)
   158  
   159  	// Reduce to upper Hessenberg form.
   160  	iwrk := 2 * n
   161  	tau := work[n : iwrk-1]
   162  	impl.Dgehrd(n, ilo, ihi, a, lda, tau, work[iwrk:], lwork-iwrk)
   163  
   164  	var side lapack.EVSide
   165  	if wantvl {
   166  		side = lapack.EVLeft
   167  		// Copy Householder vectors to VL.
   168  		impl.Dlacpy(blas.Lower, n, n, a, lda, vl, ldvl)
   169  		// Generate orthogonal matrix in VL.
   170  		impl.Dorghr(n, ilo, ihi, vl, ldvl, tau, work[iwrk:], lwork-iwrk)
   171  		// Perform QR iteration, accumulating Schur vectors in VL.
   172  		iwrk = n
   173  		first = impl.Dhseqr(lapack.EigenvaluesAndSchur, lapack.SchurOrig, n, ilo, ihi,
   174  			a, lda, wr, wi, vl, ldvl, work[iwrk:], lwork-iwrk)
   175  		if wantvr {
   176  			// Want left and right eigenvectors.
   177  			// Copy Schur vectors to VR.
   178  			side = lapack.EVBoth
   179  			impl.Dlacpy(blas.All, n, n, vl, ldvl, vr, ldvr)
   180  		}
   181  	} else if wantvr {
   182  		side = lapack.EVRight
   183  		// Copy Householder vectors to VR.
   184  		impl.Dlacpy(blas.Lower, n, n, a, lda, vr, ldvr)
   185  		// Generate orthogonal matrix in VR.
   186  		impl.Dorghr(n, ilo, ihi, vr, ldvr, tau, work[iwrk:], lwork-iwrk)
   187  		// Perform QR iteration, accumulating Schur vectors in VR.
   188  		iwrk = n
   189  		first = impl.Dhseqr(lapack.EigenvaluesAndSchur, lapack.SchurOrig, n, ilo, ihi,
   190  			a, lda, wr, wi, vr, ldvr, work[iwrk:], lwork-iwrk)
   191  	} else {
   192  		// Compute eigenvalues only.
   193  		iwrk = n
   194  		first = impl.Dhseqr(lapack.EigenvaluesOnly, lapack.SchurNone, n, ilo, ihi,
   195  			a, lda, wr, wi, nil, 1, work[iwrk:], lwork-iwrk)
   196  	}
   197  
   198  	if first > 0 {
   199  		if scalea {
   200  			// Undo scaling.
   201  			impl.Dlascl(lapack.General, 0, 0, cscale, anrm, n-first, 1, wr[first:], 1)
   202  			impl.Dlascl(lapack.General, 0, 0, cscale, anrm, n-first, 1, wi[first:], 1)
   203  			impl.Dlascl(lapack.General, 0, 0, cscale, anrm, ilo, 1, wr, 1)
   204  			impl.Dlascl(lapack.General, 0, 0, cscale, anrm, ilo, 1, wi, 1)
   205  		}
   206  		work[0] = float64(maxwrk)
   207  		return first
   208  	}
   209  
   210  	if wantvl || wantvr {
   211  		// Compute left and/or right eigenvectors.
   212  		impl.Dtrevc3(side, lapack.EVAllMulQ, nil, n,
   213  			a, lda, vl, ldvl, vr, ldvr, n, work[iwrk:], lwork-iwrk)
   214  	}
   215  	bi := blas64.Implementation()
   216  	if wantvl {
   217  		// Undo balancing of left eigenvectors.
   218  		impl.Dgebak(lapack.PermuteScale, lapack.EVLeft, n, ilo, ihi, workbal, n, vl, ldvl)
   219  		// Normalize left eigenvectors and make largest component real.
   220  		for i, wii := range wi {
   221  			if wii < 0 {
   222  				continue
   223  			}
   224  			if wii == 0 {
   225  				scl := 1 / bi.Dnrm2(n, vl[i:], ldvl)
   226  				bi.Dscal(n, scl, vl[i:], ldvl)
   227  				continue
   228  			}
   229  			scl := 1 / impl.Dlapy2(bi.Dnrm2(n, vl[i:], ldvl), bi.Dnrm2(n, vl[i+1:], ldvl))
   230  			bi.Dscal(n, scl, vl[i:], ldvl)
   231  			bi.Dscal(n, scl, vl[i+1:], ldvl)
   232  			for k := 0; k < n; k++ {
   233  				vi := vl[k*ldvl+i]
   234  				vi1 := vl[k*ldvl+i+1]
   235  				work[iwrk+k] = vi*vi + vi1*vi1
   236  			}
   237  			k := bi.Idamax(n, work[iwrk:iwrk+n], 1)
   238  			cs, sn, _ := impl.Dlartg(vl[k*ldvl+i], vl[k*ldvl+i+1])
   239  			bi.Drot(n, vl[i:], ldvl, vl[i+1:], ldvl, cs, sn)
   240  			vl[k*ldvl+i+1] = 0
   241  		}
   242  	}
   243  	if wantvr {
   244  		// Undo balancing of right eigenvectors.
   245  		impl.Dgebak(lapack.PermuteScale, lapack.EVRight, n, ilo, ihi, workbal, n, vr, ldvr)
   246  		// Normalize right eigenvectors and make largest component real.
   247  		for i, wii := range wi {
   248  			if wii < 0 {
   249  				continue
   250  			}
   251  			if wii == 0 {
   252  				scl := 1 / bi.Dnrm2(n, vr[i:], ldvr)
   253  				bi.Dscal(n, scl, vr[i:], ldvr)
   254  				continue
   255  			}
   256  			scl := 1 / impl.Dlapy2(bi.Dnrm2(n, vr[i:], ldvr), bi.Dnrm2(n, vr[i+1:], ldvr))
   257  			bi.Dscal(n, scl, vr[i:], ldvr)
   258  			bi.Dscal(n, scl, vr[i+1:], ldvr)
   259  			for k := 0; k < n; k++ {
   260  				vi := vr[k*ldvr+i]
   261  				vi1 := vr[k*ldvr+i+1]
   262  				work[iwrk+k] = vi*vi + vi1*vi1
   263  			}
   264  			k := bi.Idamax(n, work[iwrk:iwrk+n], 1)
   265  			cs, sn, _ := impl.Dlartg(vr[k*ldvr+i], vr[k*ldvr+i+1])
   266  			bi.Drot(n, vr[i:], ldvr, vr[i+1:], ldvr, cs, sn)
   267  			vr[k*ldvr+i+1] = 0
   268  		}
   269  	}
   270  
   271  	if scalea {
   272  		// Undo scaling.
   273  		impl.Dlascl(lapack.General, 0, 0, cscale, anrm, n-first, 1, wr[first:], 1)
   274  		impl.Dlascl(lapack.General, 0, 0, cscale, anrm, n-first, 1, wi[first:], 1)
   275  	}
   276  
   277  	work[0] = float64(maxwrk)
   278  	return first
   279  }