github.com/gopherd/gonum@v0.0.4/lapack/gonum/dgesc2.go (about) 1 // Copyright ©2021 The Gonum Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package gonum 6 7 import ( 8 "math" 9 10 "github.com/gopherd/gonum/blas/blas64" 11 ) 12 13 // Dgesc2 solves a system of linear equations 14 // A * x = scale * b 15 // with a general n×n matrix A represented by the LU factorization with complete 16 // pivoting 17 // A = P * L * U * Q 18 // as computed by Dgetc2. 19 // 20 // On entry, rhs contains the right hand side vector b. On return, it is 21 // overwritten with the solution vector x. 22 // 23 // Dgesc2 returns a scale factor 24 // 0 <= scale <= 1 25 // chosen to prevent overflow in the solution. 26 // 27 // Dgesc2 is an internal routine. It is exported for testing purposes. 28 func (impl Implementation) Dgesc2(n int, a []float64, lda int, rhs []float64, ipiv, jpiv []int) (scale float64) { 29 switch { 30 case n < 0: 31 panic(nLT0) 32 case lda < max(1, n): 33 panic(badLdA) 34 } 35 36 // Quick return if possible. 37 if n == 0 { 38 return 0 39 } 40 41 switch { 42 case len(a) < (n-1)*lda+n: 43 panic(shortA) 44 case len(rhs) < n: 45 panic(shortRHS) 46 case len(ipiv) != n: 47 panic(badLenIpiv) 48 case len(jpiv) != n: 49 panic(badLenJpiv) 50 } 51 52 const smlnum = dlamchS / dlamchP 53 54 // Apply permutations ipiv to rhs. 55 impl.Dlaswp(1, rhs, 1, 0, n-1, ipiv[:n], 1) 56 57 // Solve for L part. 58 for i := 0; i < n-1; i++ { 59 for j := i + 1; j < n; j++ { 60 rhs[j] -= float64(a[j*lda+i] * rhs[i]) 61 } 62 } 63 64 // Check for scaling. 65 scale = 1.0 66 bi := blas64.Implementation() 67 i := bi.Idamax(n, rhs, 1) 68 if 2*smlnum*math.Abs(rhs[i]) > math.Abs(a[(n-1)*lda+(n-1)]) { 69 temp := 0.5 / math.Abs(rhs[i]) 70 bi.Dscal(n, temp, rhs, 1) 71 scale *= temp 72 } 73 74 // Solve for U part. 75 for i := n - 1; i >= 0; i-- { 76 temp := 1.0 / a[i*lda+i] 77 rhs[i] *= temp 78 for j := i + 1; j < n; j++ { 79 rhs[i] -= float64(rhs[j] * (a[i*lda+j] * temp)) 80 } 81 } 82 83 // Apply permutations jpiv to the solution (rhs). 84 impl.Dlaswp(1, rhs, 1, 0, n-1, jpiv[:n], -1) 85 86 return scale 87 }