github.com/gopherd/gonum@v0.0.4/lapack/gonum/dlaexc.go (about)

     1  // Copyright ©2016 The Gonum Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package gonum
     6  
     7  import (
     8  	"math"
     9  
    10  	"github.com/gopherd/gonum/blas"
    11  	"github.com/gopherd/gonum/blas/blas64"
    12  	"github.com/gopherd/gonum/lapack"
    13  )
    14  
    15  // Dlaexc swaps two adjacent diagonal blocks of order 1 or 2 in an n×n upper
    16  // quasi-triangular matrix T by an orthogonal similarity transformation.
    17  //
    18  // T must be in Schur canonical form, that is, block upper triangular with 1×1
    19  // and 2×2 diagonal blocks; each 2×2 diagonal block has its diagonal elements
    20  // equal and its off-diagonal elements of opposite sign. On return, T will
    21  // contain the updated matrix again in Schur canonical form.
    22  //
    23  // If wantq is true, the transformation is accumulated in the n×n matrix Q,
    24  // otherwise Q is not referenced.
    25  //
    26  // j1 is the index of the first row of the first block. n1 and n2 are the order
    27  // of the first and second block, respectively.
    28  //
    29  // work must have length at least n, otherwise Dlaexc will panic.
    30  //
    31  // If ok is false, the transformed matrix T would be too far from Schur form.
    32  // The blocks are not swapped, and T and Q are not modified.
    33  //
    34  // If n1 and n2 are both equal to 1, Dlaexc will always return true.
    35  //
    36  // Dlaexc is an internal routine. It is exported for testing purposes.
    37  func (impl Implementation) Dlaexc(wantq bool, n int, t []float64, ldt int, q []float64, ldq int, j1, n1, n2 int, work []float64) (ok bool) {
    38  	switch {
    39  	case n < 0:
    40  		panic(nLT0)
    41  	case ldt < max(1, n):
    42  		panic(badLdT)
    43  	case wantq && ldt < max(1, n):
    44  		panic(badLdQ)
    45  	case j1 < 0 || n <= j1:
    46  		panic(badJ1)
    47  	case len(work) < n:
    48  		panic(shortWork)
    49  	case n1 < 0 || 2 < n1:
    50  		panic(badN1)
    51  	case n2 < 0 || 2 < n2:
    52  		panic(badN2)
    53  	}
    54  
    55  	if n == 0 || n1 == 0 || n2 == 0 {
    56  		return true
    57  	}
    58  
    59  	switch {
    60  	case len(t) < (n-1)*ldt+n:
    61  		panic(shortT)
    62  	case wantq && len(q) < (n-1)*ldq+n:
    63  		panic(shortQ)
    64  	}
    65  
    66  	if j1+n1 >= n {
    67  		// TODO(vladimir-ch): Reference LAPACK does this check whether
    68  		// the start of the second block is in the matrix T. It returns
    69  		// true if it is not and moreover it does not check whether the
    70  		// whole second block fits into T. This does not feel
    71  		// satisfactory. The only caller of Dlaexc is Dtrexc, so if the
    72  		// caller makes sure that this does not happen, we could be
    73  		// stricter here.
    74  		return true
    75  	}
    76  
    77  	j2 := j1 + 1
    78  	j3 := j1 + 2
    79  
    80  	bi := blas64.Implementation()
    81  
    82  	if n1 == 1 && n2 == 1 {
    83  		// Swap two 1×1 blocks.
    84  		t11 := t[j1*ldt+j1]
    85  		t22 := t[j2*ldt+j2]
    86  
    87  		// Determine the transformation to perform the interchange.
    88  		cs, sn, _ := impl.Dlartg(t[j1*ldt+j2], t22-t11)
    89  
    90  		// Apply transformation to the matrix T.
    91  		if n-j3 > 0 {
    92  			bi.Drot(n-j3, t[j1*ldt+j3:], 1, t[j2*ldt+j3:], 1, cs, sn)
    93  		}
    94  		if j1 > 0 {
    95  			bi.Drot(j1, t[j1:], ldt, t[j2:], ldt, cs, sn)
    96  		}
    97  
    98  		t[j1*ldt+j1] = t22
    99  		t[j2*ldt+j2] = t11
   100  
   101  		if wantq {
   102  			// Accumulate transformation in the matrix Q.
   103  			bi.Drot(n, q[j1:], ldq, q[j2:], ldq, cs, sn)
   104  		}
   105  
   106  		return true
   107  	}
   108  
   109  	// Swapping involves at least one 2×2 block.
   110  	//
   111  	// Copy the diagonal block of order n1+n2 to the local array d and
   112  	// compute its norm.
   113  	nd := n1 + n2
   114  	var d [16]float64
   115  	const ldd = 4
   116  	impl.Dlacpy(blas.All, nd, nd, t[j1*ldt+j1:], ldt, d[:], ldd)
   117  	dnorm := impl.Dlange(lapack.MaxAbs, nd, nd, d[:], ldd, work)
   118  
   119  	// Compute machine-dependent threshold for test for accepting swap.
   120  	eps := dlamchP
   121  	thresh := math.Max(10*eps*dnorm, dlamchS/eps)
   122  
   123  	// Solve T11*X - X*T22 = scale*T12 for X.
   124  	var x [4]float64
   125  	const ldx = 2
   126  	scale, _, _ := impl.Dlasy2(false, false, -1, n1, n2, d[:], ldd, d[n1*ldd+n1:], ldd, d[n1:], ldd, x[:], ldx)
   127  
   128  	// Swap the adjacent diagonal blocks.
   129  	switch {
   130  	case n1 == 1 && n2 == 2:
   131  		// Generate elementary reflector H so that
   132  		//  ( scale, X11, X12 ) H = ( 0, 0, * )
   133  		u := [3]float64{scale, x[0], 1}
   134  		_, tau := impl.Dlarfg(3, x[1], u[:2], 1)
   135  		t11 := t[j1*ldt+j1]
   136  
   137  		// Perform swap provisionally on diagonal block in d.
   138  		impl.Dlarfx(blas.Left, 3, 3, u[:], tau, d[:], ldd, work)
   139  		impl.Dlarfx(blas.Right, 3, 3, u[:], tau, d[:], ldd, work)
   140  
   141  		// Test whether to reject swap.
   142  		if math.Max(math.Abs(d[2*ldd]), math.Max(math.Abs(d[2*ldd+1]), math.Abs(d[2*ldd+2]-t11))) > thresh {
   143  			return false
   144  		}
   145  
   146  		// Accept swap: apply transformation to the entire matrix T.
   147  		impl.Dlarfx(blas.Left, 3, n-j1, u[:], tau, t[j1*ldt+j1:], ldt, work)
   148  		impl.Dlarfx(blas.Right, j2+1, 3, u[:], tau, t[j1:], ldt, work)
   149  
   150  		t[j3*ldt+j1] = 0
   151  		t[j3*ldt+j2] = 0
   152  		t[j3*ldt+j3] = t11
   153  
   154  		if wantq {
   155  			// Accumulate transformation in the matrix Q.
   156  			impl.Dlarfx(blas.Right, n, 3, u[:], tau, q[j1:], ldq, work)
   157  		}
   158  
   159  	case n1 == 2 && n2 == 1:
   160  		//  Generate elementary reflector H so that:
   161  		//   H (  -X11 ) = ( * )
   162  		//     (  -X21 ) = ( 0 )
   163  		//     ( scale ) = ( 0 )
   164  		u := [3]float64{1, -x[ldx], scale}
   165  		_, tau := impl.Dlarfg(3, -x[0], u[1:], 1)
   166  		t33 := t[j3*ldt+j3]
   167  
   168  		// Perform swap provisionally on diagonal block in D.
   169  		impl.Dlarfx(blas.Left, 3, 3, u[:], tau, d[:], ldd, work)
   170  		impl.Dlarfx(blas.Right, 3, 3, u[:], tau, d[:], ldd, work)
   171  
   172  		// Test whether to reject swap.
   173  		if math.Max(math.Abs(d[ldd]), math.Max(math.Abs(d[2*ldd]), math.Abs(d[0]-t33))) > thresh {
   174  			return false
   175  		}
   176  
   177  		// Accept swap: apply transformation to the entire matrix T.
   178  		impl.Dlarfx(blas.Right, j3+1, 3, u[:], tau, t[j1:], ldt, work)
   179  		impl.Dlarfx(blas.Left, 3, n-j1-1, u[:], tau, t[j1*ldt+j2:], ldt, work)
   180  
   181  		t[j1*ldt+j1] = t33
   182  		t[j2*ldt+j1] = 0
   183  		t[j3*ldt+j1] = 0
   184  
   185  		if wantq {
   186  			// Accumulate transformation in the matrix Q.
   187  			impl.Dlarfx(blas.Right, n, 3, u[:], tau, q[j1:], ldq, work)
   188  		}
   189  
   190  	default: // n1 == 2 && n2 == 2
   191  		// Generate elementary reflectors H_1 and H_2 so that:
   192  		//  H_2 H_1 (  -X11  -X12 ) = (  *  * )
   193  		//          (  -X21  -X22 )   (  0  * )
   194  		//          ( scale    0  )   (  0  0 )
   195  		//          (    0  scale )   (  0  0 )
   196  		u1 := [3]float64{1, -x[ldx], scale}
   197  		_, tau1 := impl.Dlarfg(3, -x[0], u1[1:], 1)
   198  
   199  		temp := -tau1 * (x[1] + u1[1]*x[ldx+1])
   200  		u2 := [3]float64{1, -temp * u1[2], scale}
   201  		_, tau2 := impl.Dlarfg(3, -temp*u1[1]-x[ldx+1], u2[1:], 1)
   202  
   203  		// Perform swap provisionally on diagonal block in D.
   204  		impl.Dlarfx(blas.Left, 3, 4, u1[:], tau1, d[:], ldd, work)
   205  		impl.Dlarfx(blas.Right, 4, 3, u1[:], tau1, d[:], ldd, work)
   206  		impl.Dlarfx(blas.Left, 3, 4, u2[:], tau2, d[ldd:], ldd, work)
   207  		impl.Dlarfx(blas.Right, 4, 3, u2[:], tau2, d[1:], ldd, work)
   208  
   209  		// Test whether to reject swap.
   210  		m1 := math.Max(math.Abs(d[2*ldd]), math.Abs(d[2*ldd+1]))
   211  		m2 := math.Max(math.Abs(d[3*ldd]), math.Abs(d[3*ldd+1]))
   212  		if math.Max(m1, m2) > thresh {
   213  			return false
   214  		}
   215  
   216  		// Accept swap: apply transformation to the entire matrix T.
   217  		j4 := j1 + 3
   218  		impl.Dlarfx(blas.Left, 3, n-j1, u1[:], tau1, t[j1*ldt+j1:], ldt, work)
   219  		impl.Dlarfx(blas.Right, j4+1, 3, u1[:], tau1, t[j1:], ldt, work)
   220  		impl.Dlarfx(blas.Left, 3, n-j1, u2[:], tau2, t[j2*ldt+j1:], ldt, work)
   221  		impl.Dlarfx(blas.Right, j4+1, 3, u2[:], tau2, t[j2:], ldt, work)
   222  
   223  		t[j3*ldt+j1] = 0
   224  		t[j3*ldt+j2] = 0
   225  		t[j4*ldt+j1] = 0
   226  		t[j4*ldt+j2] = 0
   227  
   228  		if wantq {
   229  			// Accumulate transformation in the matrix Q.
   230  			impl.Dlarfx(blas.Right, n, 3, u1[:], tau1, q[j1:], ldq, work)
   231  			impl.Dlarfx(blas.Right, n, 3, u2[:], tau2, q[j2:], ldq, work)
   232  		}
   233  	}
   234  
   235  	if n2 == 2 {
   236  		// Standardize new 2×2 block T11.
   237  		a, b := t[j1*ldt+j1], t[j1*ldt+j2]
   238  		c, d := t[j2*ldt+j1], t[j2*ldt+j2]
   239  		var cs, sn float64
   240  		t[j1*ldt+j1], t[j1*ldt+j2], t[j2*ldt+j1], t[j2*ldt+j2], _, _, _, _, cs, sn = impl.Dlanv2(a, b, c, d)
   241  		if n-j1-2 > 0 {
   242  			bi.Drot(n-j1-2, t[j1*ldt+j1+2:], 1, t[j2*ldt+j1+2:], 1, cs, sn)
   243  		}
   244  		if j1 > 0 {
   245  			bi.Drot(j1, t[j1:], ldt, t[j2:], ldt, cs, sn)
   246  		}
   247  		if wantq {
   248  			bi.Drot(n, q[j1:], ldq, q[j2:], ldq, cs, sn)
   249  		}
   250  	}
   251  	if n1 == 2 {
   252  		// Standardize new 2×2 block T22.
   253  		j3 := j1 + n2
   254  		j4 := j3 + 1
   255  		a, b := t[j3*ldt+j3], t[j3*ldt+j4]
   256  		c, d := t[j4*ldt+j3], t[j4*ldt+j4]
   257  		var cs, sn float64
   258  		t[j3*ldt+j3], t[j3*ldt+j4], t[j4*ldt+j3], t[j4*ldt+j4], _, _, _, _, cs, sn = impl.Dlanv2(a, b, c, d)
   259  		if n-j3-2 > 0 {
   260  			bi.Drot(n-j3-2, t[j3*ldt+j3+2:], 1, t[j4*ldt+j3+2:], 1, cs, sn)
   261  		}
   262  		bi.Drot(j3, t[j3:], ldt, t[j4:], ldt, cs, sn)
   263  		if wantq {
   264  			bi.Drot(n, q[j3:], ldq, q[j4:], ldq, cs, sn)
   265  		}
   266  	}
   267  
   268  	return true
   269  }