github.com/gopherd/gonum@v0.0.4/lapack/gonum/dorghr.go (about) 1 // Copyright ©2016 The Gonum Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package gonum 6 7 // Dorghr generates an n×n orthogonal matrix Q which is defined as the product 8 // of ihi-ilo elementary reflectors: 9 // Q = H_{ilo} H_{ilo+1} ... H_{ihi-1}. 10 // 11 // a and lda represent an n×n matrix that contains the elementary reflectors, as 12 // returned by Dgehrd. On return, a is overwritten by the n×n orthogonal matrix 13 // Q. Q will be equal to the identity matrix except in the submatrix 14 // Q[ilo+1:ihi+1,ilo+1:ihi+1]. 15 // 16 // ilo and ihi must have the same values as in the previous call of Dgehrd. It 17 // must hold that 18 // 0 <= ilo <= ihi < n if n > 0, 19 // ilo = 0, ihi = -1 if n == 0. 20 // 21 // tau contains the scalar factors of the elementary reflectors, as returned by 22 // Dgehrd. tau must have length n-1. 23 // 24 // work must have length at least max(1,lwork) and lwork must be at least 25 // ihi-ilo. For optimum performance lwork must be at least (ihi-ilo)*nb where nb 26 // is the optimal blocksize. On return, work[0] will contain the optimal value 27 // of lwork. 28 // 29 // If lwork == -1, instead of performing Dorghr, only the optimal value of lwork 30 // will be stored into work[0]. 31 // 32 // If any requirement on input sizes is not met, Dorghr will panic. 33 // 34 // Dorghr is an internal routine. It is exported for testing purposes. 35 func (impl Implementation) Dorghr(n, ilo, ihi int, a []float64, lda int, tau, work []float64, lwork int) { 36 nh := ihi - ilo 37 switch { 38 case ilo < 0 || max(1, n) <= ilo: 39 panic(badIlo) 40 case ihi < min(ilo, n-1) || n <= ihi: 41 panic(badIhi) 42 case lda < max(1, n): 43 panic(badLdA) 44 case lwork < max(1, nh) && lwork != -1: 45 panic(badLWork) 46 case len(work) < max(1, lwork): 47 panic(shortWork) 48 } 49 50 // Quick return if possible. 51 if n == 0 { 52 work[0] = 1 53 return 54 } 55 56 lwkopt := max(1, nh) * impl.Ilaenv(1, "DORGQR", " ", nh, nh, nh, -1) 57 if lwork == -1 { 58 work[0] = float64(lwkopt) 59 return 60 } 61 62 switch { 63 case len(a) < (n-1)*lda+n: 64 panic(shortA) 65 case len(tau) < n-1: 66 panic(shortTau) 67 } 68 69 // Shift the vectors which define the elementary reflectors one column 70 // to the right. 71 for i := ilo + 2; i < ihi+1; i++ { 72 copy(a[i*lda+ilo+1:i*lda+i], a[i*lda+ilo:i*lda+i-1]) 73 } 74 // Set the first ilo+1 and the last n-ihi-1 rows and columns to those of 75 // the identity matrix. 76 for i := 0; i < ilo+1; i++ { 77 for j := 0; j < n; j++ { 78 a[i*lda+j] = 0 79 } 80 a[i*lda+i] = 1 81 } 82 for i := ilo + 1; i < ihi+1; i++ { 83 for j := 0; j <= ilo; j++ { 84 a[i*lda+j] = 0 85 } 86 for j := i; j < n; j++ { 87 a[i*lda+j] = 0 88 } 89 } 90 for i := ihi + 1; i < n; i++ { 91 for j := 0; j < n; j++ { 92 a[i*lda+j] = 0 93 } 94 a[i*lda+i] = 1 95 } 96 if nh > 0 { 97 // Generate Q[ilo+1:ihi+1,ilo+1:ihi+1]. 98 impl.Dorgqr(nh, nh, nh, a[(ilo+1)*lda+ilo+1:], lda, tau[ilo:ihi], work, lwork) 99 } 100 work[0] = float64(lwkopt) 101 }