github.com/gopherd/gonum@v0.0.4/lapack/gonum/dpotf2.go (about) 1 // Copyright ©2015 The Gonum Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package gonum 6 7 import ( 8 "math" 9 10 "github.com/gopherd/gonum/blas" 11 "github.com/gopherd/gonum/blas/blas64" 12 ) 13 14 // Dpotf2 computes the Cholesky decomposition of the symmetric positive definite 15 // matrix a. If ul == blas.Upper, then a is stored as an upper-triangular matrix, 16 // and a = Uᵀ U is stored in place into a. If ul == blas.Lower, then a = L Lᵀ 17 // is computed and stored in-place into a. If a is not positive definite, false 18 // is returned. This is the unblocked version of the algorithm. 19 // 20 // Dpotf2 is an internal routine. It is exported for testing purposes. 21 func (Implementation) Dpotf2(ul blas.Uplo, n int, a []float64, lda int) (ok bool) { 22 switch { 23 case ul != blas.Upper && ul != blas.Lower: 24 panic(badUplo) 25 case n < 0: 26 panic(nLT0) 27 case lda < max(1, n): 28 panic(badLdA) 29 } 30 31 // Quick return if possible. 32 if n == 0 { 33 return true 34 } 35 36 if len(a) < (n-1)*lda+n { 37 panic(shortA) 38 } 39 40 bi := blas64.Implementation() 41 42 if ul == blas.Upper { 43 for j := 0; j < n; j++ { 44 ajj := a[j*lda+j] 45 if j != 0 { 46 ajj -= bi.Ddot(j, a[j:], lda, a[j:], lda) 47 } 48 if ajj <= 0 || math.IsNaN(ajj) { 49 a[j*lda+j] = ajj 50 return false 51 } 52 ajj = math.Sqrt(ajj) 53 a[j*lda+j] = ajj 54 if j < n-1 { 55 bi.Dgemv(blas.Trans, j, n-j-1, 56 -1, a[j+1:], lda, a[j:], lda, 57 1, a[j*lda+j+1:], 1) 58 bi.Dscal(n-j-1, 1/ajj, a[j*lda+j+1:], 1) 59 } 60 } 61 return true 62 } 63 for j := 0; j < n; j++ { 64 ajj := a[j*lda+j] 65 if j != 0 { 66 ajj -= bi.Ddot(j, a[j*lda:], 1, a[j*lda:], 1) 67 } 68 if ajj <= 0 || math.IsNaN(ajj) { 69 a[j*lda+j] = ajj 70 return false 71 } 72 ajj = math.Sqrt(ajj) 73 a[j*lda+j] = ajj 74 if j < n-1 { 75 bi.Dgemv(blas.NoTrans, n-j-1, j, 76 -1, a[(j+1)*lda:], lda, a[j*lda:], 1, 77 1, a[(j+1)*lda+j:], lda) 78 bi.Dscal(n-j-1, 1/ajj, a[(j+1)*lda+j:], lda) 79 } 80 } 81 return true 82 }