github.com/gopherd/gonum@v0.0.4/lapack/gonum/dtgsja.go (about) 1 // Copyright ©2017 The Gonum Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package gonum 6 7 import ( 8 "math" 9 10 "github.com/gopherd/gonum/blas" 11 "github.com/gopherd/gonum/blas/blas64" 12 "github.com/gopherd/gonum/lapack" 13 ) 14 15 // Dtgsja computes the generalized singular value decomposition (GSVD) 16 // of two real upper triangular or trapezoidal matrices A and B. 17 // 18 // A and B have the following forms, which may be obtained by the 19 // preprocessing subroutine Dggsvp from a general m×n matrix A and p×n 20 // matrix B: 21 // 22 // n-k-l k l 23 // A = k [ 0 A12 A13 ] if m-k-l >= 0; 24 // l [ 0 0 A23 ] 25 // m-k-l [ 0 0 0 ] 26 // 27 // n-k-l k l 28 // A = k [ 0 A12 A13 ] if m-k-l < 0; 29 // m-k [ 0 0 A23 ] 30 // 31 // n-k-l k l 32 // B = l [ 0 0 B13 ] 33 // p-l [ 0 0 0 ] 34 // 35 // where the k×k matrix A12 and l×l matrix B13 are non-singular 36 // upper triangular. A23 is l×l upper triangular if m-k-l >= 0, 37 // otherwise A23 is (m-k)×l upper trapezoidal. 38 // 39 // On exit, 40 // 41 // Uᵀ*A*Q = D1*[ 0 R ], Vᵀ*B*Q = D2*[ 0 R ], 42 // 43 // where U, V and Q are orthogonal matrices. 44 // R is a non-singular upper triangular matrix, and D1 and D2 are 45 // diagonal matrices, which are of the following structures: 46 // 47 // If m-k-l >= 0, 48 // 49 // k l 50 // D1 = k [ I 0 ] 51 // l [ 0 C ] 52 // m-k-l [ 0 0 ] 53 // 54 // k l 55 // D2 = l [ 0 S ] 56 // p-l [ 0 0 ] 57 // 58 // n-k-l k l 59 // [ 0 R ] = k [ 0 R11 R12 ] k 60 // l [ 0 0 R22 ] l 61 // 62 // where 63 // 64 // C = diag( alpha_k, ... , alpha_{k+l} ), 65 // S = diag( beta_k, ... , beta_{k+l} ), 66 // C^2 + S^2 = I. 67 // 68 // R is stored in 69 // A[0:k+l, n-k-l:n] 70 // on exit. 71 // 72 // If m-k-l < 0, 73 // 74 // k m-k k+l-m 75 // D1 = k [ I 0 0 ] 76 // m-k [ 0 C 0 ] 77 // 78 // k m-k k+l-m 79 // D2 = m-k [ 0 S 0 ] 80 // k+l-m [ 0 0 I ] 81 // p-l [ 0 0 0 ] 82 // 83 // n-k-l k m-k k+l-m 84 // [ 0 R ] = k [ 0 R11 R12 R13 ] 85 // m-k [ 0 0 R22 R23 ] 86 // k+l-m [ 0 0 0 R33 ] 87 // 88 // where 89 // C = diag( alpha_k, ... , alpha_m ), 90 // S = diag( beta_k, ... , beta_m ), 91 // C^2 + S^2 = I. 92 // 93 // R = [ R11 R12 R13 ] is stored in A[0:m, n-k-l:n] 94 // [ 0 R22 R23 ] 95 // and R33 is stored in 96 // B[m-k:l, n+m-k-l:n] on exit. 97 // 98 // The computation of the orthogonal transformation matrices U, V or Q 99 // is optional. These matrices may either be formed explicitly, or they 100 // may be post-multiplied into input matrices U1, V1, or Q1. 101 // 102 // Dtgsja essentially uses a variant of Kogbetliantz algorithm to reduce 103 // min(l,m-k)×l triangular or trapezoidal matrix A23 and l×l 104 // matrix B13 to the form: 105 // 106 // U1ᵀ*A13*Q1 = C1*R1; V1ᵀ*B13*Q1 = S1*R1, 107 // 108 // where U1, V1 and Q1 are orthogonal matrices. C1 and S1 are diagonal 109 // matrices satisfying 110 // 111 // C1^2 + S1^2 = I, 112 // 113 // and R1 is an l×l non-singular upper triangular matrix. 114 // 115 // jobU, jobV and jobQ are options for computing the orthogonal matrices. The behavior 116 // is as follows 117 // jobU == lapack.GSVDU Compute orthogonal matrix U 118 // jobU == lapack.GSVDUnit Use unit-initialized matrix 119 // jobU == lapack.GSVDNone Do not compute orthogonal matrix. 120 // The behavior is the same for jobV and jobQ with the exception that instead of 121 // lapack.GSVDU these accept lapack.GSVDV and lapack.GSVDQ respectively. 122 // The matrices U, V and Q must be m×m, p×p and n×n respectively unless the 123 // relevant job parameter is lapack.GSVDNone. 124 // 125 // k and l specify the sub-blocks in the input matrices A and B: 126 // A23 = A[k:min(k+l,m), n-l:n) and B13 = B[0:l, n-l:n] 127 // of A and B, whose GSVD is going to be computed by Dtgsja. 128 // 129 // tola and tolb are the convergence criteria for the Jacobi-Kogbetliantz 130 // iteration procedure. Generally, they are the same as used in the preprocessing 131 // step, for example, 132 // tola = max(m, n)*norm(A)*eps, 133 // tolb = max(p, n)*norm(B)*eps, 134 // where eps is the machine epsilon. 135 // 136 // work must have length at least 2*n, otherwise Dtgsja will panic. 137 // 138 // alpha and beta must have length n or Dtgsja will panic. On exit, alpha and 139 // beta contain the generalized singular value pairs of A and B 140 // alpha[0:k] = 1, 141 // beta[0:k] = 0, 142 // if m-k-l >= 0, 143 // alpha[k:k+l] = diag(C), 144 // beta[k:k+l] = diag(S), 145 // if m-k-l < 0, 146 // alpha[k:m]= C, alpha[m:k+l]= 0 147 // beta[k:m] = S, beta[m:k+l] = 1. 148 // if k+l < n, 149 // alpha[k+l:n] = 0 and 150 // beta[k+l:n] = 0. 151 // 152 // On exit, A[n-k:n, 0:min(k+l,m)] contains the triangular matrix R or part of R 153 // and if necessary, B[m-k:l, n+m-k-l:n] contains a part of R. 154 // 155 // Dtgsja returns whether the routine converged and the number of iteration cycles 156 // that were run. 157 // 158 // Dtgsja is an internal routine. It is exported for testing purposes. 159 func (impl Implementation) Dtgsja(jobU, jobV, jobQ lapack.GSVDJob, m, p, n, k, l int, a []float64, lda int, b []float64, ldb int, tola, tolb float64, alpha, beta, u []float64, ldu int, v []float64, ldv int, q []float64, ldq int, work []float64) (cycles int, ok bool) { 160 const maxit = 40 161 162 initu := jobU == lapack.GSVDUnit 163 wantu := initu || jobU == lapack.GSVDU 164 165 initv := jobV == lapack.GSVDUnit 166 wantv := initv || jobV == lapack.GSVDV 167 168 initq := jobQ == lapack.GSVDUnit 169 wantq := initq || jobQ == lapack.GSVDQ 170 171 switch { 172 case !initu && !wantu && jobU != lapack.GSVDNone: 173 panic(badGSVDJob + "U") 174 case !initv && !wantv && jobV != lapack.GSVDNone: 175 panic(badGSVDJob + "V") 176 case !initq && !wantq && jobQ != lapack.GSVDNone: 177 panic(badGSVDJob + "Q") 178 case m < 0: 179 panic(mLT0) 180 case p < 0: 181 panic(pLT0) 182 case n < 0: 183 panic(nLT0) 184 185 case lda < max(1, n): 186 panic(badLdA) 187 case len(a) < (m-1)*lda+n: 188 panic(shortA) 189 190 case ldb < max(1, n): 191 panic(badLdB) 192 case len(b) < (p-1)*ldb+n: 193 panic(shortB) 194 195 case len(alpha) != n: 196 panic(badLenAlpha) 197 case len(beta) != n: 198 panic(badLenBeta) 199 200 case ldu < 1, wantu && ldu < m: 201 panic(badLdU) 202 case wantu && len(u) < (m-1)*ldu+m: 203 panic(shortU) 204 205 case ldv < 1, wantv && ldv < p: 206 panic(badLdV) 207 case wantv && len(v) < (p-1)*ldv+p: 208 panic(shortV) 209 210 case ldq < 1, wantq && ldq < n: 211 panic(badLdQ) 212 case wantq && len(q) < (n-1)*ldq+n: 213 panic(shortQ) 214 215 case len(work) < 2*n: 216 panic(shortWork) 217 } 218 219 // Initialize U, V and Q, if necessary 220 if initu { 221 impl.Dlaset(blas.All, m, m, 0, 1, u, ldu) 222 } 223 if initv { 224 impl.Dlaset(blas.All, p, p, 0, 1, v, ldv) 225 } 226 if initq { 227 impl.Dlaset(blas.All, n, n, 0, 1, q, ldq) 228 } 229 230 bi := blas64.Implementation() 231 minTol := math.Min(tola, tolb) 232 233 // Loop until convergence. 234 upper := false 235 for cycles = 1; cycles <= maxit; cycles++ { 236 upper = !upper 237 238 for i := 0; i < l-1; i++ { 239 for j := i + 1; j < l; j++ { 240 var a1, a2, a3 float64 241 if k+i < m { 242 a1 = a[(k+i)*lda+n-l+i] 243 } 244 if k+j < m { 245 a3 = a[(k+j)*lda+n-l+j] 246 } 247 248 b1 := b[i*ldb+n-l+i] 249 b3 := b[j*ldb+n-l+j] 250 251 var b2 float64 252 if upper { 253 if k+i < m { 254 a2 = a[(k+i)*lda+n-l+j] 255 } 256 b2 = b[i*ldb+n-l+j] 257 } else { 258 if k+j < m { 259 a2 = a[(k+j)*lda+n-l+i] 260 } 261 b2 = b[j*ldb+n-l+i] 262 } 263 264 csu, snu, csv, snv, csq, snq := impl.Dlags2(upper, a1, a2, a3, b1, b2, b3) 265 266 // Update (k+i)-th and (k+j)-th rows of matrix A: Uᵀ*A. 267 if k+j < m { 268 bi.Drot(l, a[(k+j)*lda+n-l:], 1, a[(k+i)*lda+n-l:], 1, csu, snu) 269 } 270 271 // Update i-th and j-th rows of matrix B: Vᵀ*B. 272 bi.Drot(l, b[j*ldb+n-l:], 1, b[i*ldb+n-l:], 1, csv, snv) 273 274 // Update (n-l+i)-th and (n-l+j)-th columns of matrices 275 // A and B: A*Q and B*Q. 276 bi.Drot(min(k+l, m), a[n-l+j:], lda, a[n-l+i:], lda, csq, snq) 277 bi.Drot(l, b[n-l+j:], ldb, b[n-l+i:], ldb, csq, snq) 278 279 if upper { 280 if k+i < m { 281 a[(k+i)*lda+n-l+j] = 0 282 } 283 b[i*ldb+n-l+j] = 0 284 } else { 285 if k+j < m { 286 a[(k+j)*lda+n-l+i] = 0 287 } 288 b[j*ldb+n-l+i] = 0 289 } 290 291 // Update orthogonal matrices U, V, Q, if desired. 292 if wantu && k+j < m { 293 bi.Drot(m, u[k+j:], ldu, u[k+i:], ldu, csu, snu) 294 } 295 if wantv { 296 bi.Drot(p, v[j:], ldv, v[i:], ldv, csv, snv) 297 } 298 if wantq { 299 bi.Drot(n, q[n-l+j:], ldq, q[n-l+i:], ldq, csq, snq) 300 } 301 } 302 } 303 304 if !upper { 305 // The matrices A13 and B13 were lower triangular at the start 306 // of the cycle, and are now upper triangular. 307 // 308 // Convergence test: test the parallelism of the corresponding 309 // rows of A and B. 310 var error float64 311 for i := 0; i < min(l, m-k); i++ { 312 bi.Dcopy(l-i, a[(k+i)*lda+n-l+i:], 1, work, 1) 313 bi.Dcopy(l-i, b[i*ldb+n-l+i:], 1, work[l:], 1) 314 ssmin := impl.Dlapll(l-i, work, 1, work[l:], 1) 315 error = math.Max(error, ssmin) 316 } 317 if math.Abs(error) <= minTol { 318 // The algorithm has converged. 319 // Compute the generalized singular value pairs (alpha, beta) 320 // and set the triangular matrix R to array A. 321 for i := 0; i < k; i++ { 322 alpha[i] = 1 323 beta[i] = 0 324 } 325 326 for i := 0; i < min(l, m-k); i++ { 327 a1 := a[(k+i)*lda+n-l+i] 328 b1 := b[i*ldb+n-l+i] 329 gamma := b1 / a1 330 if !math.IsInf(gamma, 0) { 331 // Change sign if necessary. 332 if gamma < 0 { 333 bi.Dscal(l-i, -1, b[i*ldb+n-l+i:], 1) 334 if wantv { 335 bi.Dscal(p, -1, v[i:], ldv) 336 } 337 } 338 beta[k+i], alpha[k+i], _ = impl.Dlartg(math.Abs(gamma), 1) 339 340 if alpha[k+i] >= beta[k+i] { 341 bi.Dscal(l-i, 1/alpha[k+i], a[(k+i)*lda+n-l+i:], 1) 342 } else { 343 bi.Dscal(l-i, 1/beta[k+i], b[i*ldb+n-l+i:], 1) 344 bi.Dcopy(l-i, b[i*ldb+n-l+i:], 1, a[(k+i)*lda+n-l+i:], 1) 345 } 346 } else { 347 alpha[k+i] = 0 348 beta[k+i] = 1 349 bi.Dcopy(l-i, b[i*ldb+n-l+i:], 1, a[(k+i)*lda+n-l+i:], 1) 350 } 351 } 352 353 for i := m; i < k+l; i++ { 354 alpha[i] = 0 355 beta[i] = 1 356 } 357 if k+l < n { 358 for i := k + l; i < n; i++ { 359 alpha[i] = 0 360 beta[i] = 0 361 } 362 } 363 364 return cycles, true 365 } 366 } 367 } 368 369 // The algorithm has not converged after maxit cycles. 370 return cycles, false 371 }