github.com/gopherd/gonum@v0.0.4/lapack/testlapack/dtrevc3.go (about)

     1  // Copyright ©2016 The Gonum Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package testlapack
     6  
     7  import (
     8  	"fmt"
     9  	"math"
    10  	"testing"
    11  
    12  	"math/rand"
    13  
    14  	"github.com/gopherd/gonum/blas"
    15  	"github.com/gopherd/gonum/blas/blas64"
    16  	"github.com/gopherd/gonum/lapack"
    17  )
    18  
    19  type Dtrevc3er interface {
    20  	Dtrevc3(side lapack.EVSide, howmny lapack.EVHowMany, selected []bool, n int, t []float64, ldt int, vl []float64, ldvl int, vr []float64, ldvr int, mm int, work []float64, lwork int) int
    21  }
    22  
    23  func Dtrevc3Test(t *testing.T, impl Dtrevc3er) {
    24  	rnd := rand.New(rand.NewSource(1))
    25  
    26  	for _, side := range []lapack.EVSide{lapack.EVRight, lapack.EVLeft, lapack.EVBoth} {
    27  		var name string
    28  		switch side {
    29  		case lapack.EVRight:
    30  			name = "EVRigth"
    31  		case lapack.EVLeft:
    32  			name = "EVLeft"
    33  		case lapack.EVBoth:
    34  			name = "EVBoth"
    35  		}
    36  		t.Run(name, func(t *testing.T) {
    37  			runDtrevc3Test(t, impl, rnd, side)
    38  		})
    39  	}
    40  }
    41  
    42  func runDtrevc3Test(t *testing.T, impl Dtrevc3er, rnd *rand.Rand, side lapack.EVSide) {
    43  	for _, n := range []int{0, 1, 2, 3, 4, 5, 6, 7, 10, 34} {
    44  		for _, extra := range []int{0, 11} {
    45  			for _, optwork := range []bool{true, false} {
    46  				for cas := 0; cas < 10; cas++ {
    47  					dtrevc3Test(t, impl, side, n, extra, optwork, rnd)
    48  				}
    49  			}
    50  		}
    51  	}
    52  }
    53  
    54  // dtrevc3Test tests Dtrevc3 by generating a random matrix T in Schur canonical
    55  // form and performing the following checks:
    56  //  1. Compute all eigenvectors of T and check that they are indeed correctly
    57  //     normalized eigenvectors
    58  //  2. Compute selected eigenvectors and check that they are exactly equal to
    59  //     eigenvectors from check 1.
    60  //  3. Compute all eigenvectors multiplied into a matrix Q and check that the
    61  //     result is equal to eigenvectors from step 1 multiplied by Q and scaled
    62  //     appropriately.
    63  func dtrevc3Test(t *testing.T, impl Dtrevc3er, side lapack.EVSide, n, extra int, optwork bool, rnd *rand.Rand) {
    64  	const tol = 1e-15
    65  
    66  	name := fmt.Sprintf("n=%d,extra=%d,optwk=%v", n, extra, optwork)
    67  
    68  	right := side != lapack.EVLeft
    69  	left := side != lapack.EVRight
    70  
    71  	// Generate a random matrix in Schur canonical form possibly with tiny or zero eigenvalues.
    72  	// Zero elements of wi signify a real eigenvalue.
    73  	tmat, wr, wi := randomSchurCanonical(n, n+extra, true, rnd)
    74  	tmatCopy := cloneGeneral(tmat)
    75  
    76  	//  1. Compute all eigenvectors of T and check that they are indeed correctly
    77  	//     normalized eigenvectors
    78  
    79  	howmny := lapack.EVAll
    80  
    81  	var vr, vl blas64.General
    82  	if right {
    83  		// Fill VR and VL with NaN because they should be completely overwritten in Dtrevc3.
    84  		vr = nanGeneral(n, n, n+extra)
    85  	}
    86  	if left {
    87  		vl = nanGeneral(n, n, n+extra)
    88  	}
    89  
    90  	var work []float64
    91  	if optwork {
    92  		work = []float64{0}
    93  		impl.Dtrevc3(side, howmny, nil, n, tmat.Data, tmat.Stride,
    94  			vl.Data, max(1, vl.Stride), vr.Data, max(1, vr.Stride), n, work, -1)
    95  		work = make([]float64, int(work[0]))
    96  	} else {
    97  		work = make([]float64, max(1, 3*n))
    98  	}
    99  
   100  	mGot := impl.Dtrevc3(side, howmny, nil, n, tmat.Data, tmat.Stride,
   101  		vl.Data, max(1, vl.Stride), vr.Data, max(1, vr.Stride), n, work, len(work))
   102  
   103  	if !generalOutsideAllNaN(tmat) {
   104  		t.Errorf("%v: out-of-range write to T", name)
   105  	}
   106  	if !equalGeneral(tmat, tmatCopy) {
   107  		t.Errorf("%v: unexpected modification of T", name)
   108  	}
   109  	if !generalOutsideAllNaN(vr) {
   110  		t.Errorf("%v: out-of-range write to VR", name)
   111  	}
   112  	if !generalOutsideAllNaN(vl) {
   113  		t.Errorf("%v: out-of-range write to VL", name)
   114  	}
   115  
   116  	mWant := n
   117  	if mGot != mWant {
   118  		t.Errorf("%v: unexpected value of m=%d, want %d", name, mGot, mWant)
   119  	}
   120  
   121  	if right {
   122  		resid := residualRightEV(tmat, vr, wr, wi)
   123  		if resid > tol {
   124  			t.Errorf("%v: unexpected right eigenvectors; residual=%v, want<=%v", name, resid, tol)
   125  		}
   126  		resid = residualEVNormalization(vr, wi)
   127  		if resid > tol {
   128  			t.Errorf("%v: unexpected normalization of right eigenvectors; residual=%v, want<=%v", name, resid, tol)
   129  		}
   130  	}
   131  	if left {
   132  		resid := residualLeftEV(tmat, vl, wr, wi)
   133  		if resid > tol {
   134  			t.Errorf("%v: unexpected left eigenvectors; residual=%v, want<=%v", name, resid, tol)
   135  		}
   136  		resid = residualEVNormalization(vl, wi)
   137  		if resid > tol {
   138  			t.Errorf("%v: unexpected normalization of left eigenvectors; residual=%v, want<=%v", name, resid, tol)
   139  		}
   140  	}
   141  
   142  	//  2. Compute selected eigenvectors and check that they are exactly equal to
   143  	//     eigenvectors from check 1.
   144  
   145  	howmny = lapack.EVSelected
   146  
   147  	// Follow DCHKHS and select last max(1,n/4) real, max(1,n/4) complex
   148  	// eigenvectors instead of selecting them randomly.
   149  	selected := make([]bool, n)
   150  	selectedWant := make([]bool, n)
   151  	var nselr, nselc int
   152  	for j := n - 1; j > 0; {
   153  		if wi[j] == 0 {
   154  			if nselr < max(1, n/4) {
   155  				nselr++
   156  				selected[j] = true
   157  				selectedWant[j] = true
   158  			}
   159  			j--
   160  		} else {
   161  			if nselc < max(1, n/4) {
   162  				nselc++
   163  				// Select all columns to check that Dtrevc3 normalizes 'selected' correctly.
   164  				selected[j] = true
   165  				selected[j-1] = true
   166  				selectedWant[j] = false
   167  				selectedWant[j-1] = true
   168  			}
   169  			j -= 2
   170  		}
   171  	}
   172  	mWant = nselr + 2*nselc
   173  
   174  	var vrSel, vlSel blas64.General
   175  	if right {
   176  		vrSel = nanGeneral(n, mWant, n+extra)
   177  	}
   178  	if left {
   179  		vlSel = nanGeneral(n, mWant, n+extra)
   180  	}
   181  
   182  	if optwork {
   183  		// Reallocate optimal work in case it depends on howmny and selected.
   184  		work = []float64{0}
   185  		impl.Dtrevc3(side, howmny, selected, n, tmat.Data, tmat.Stride,
   186  			vlSel.Data, max(1, vlSel.Stride), vrSel.Data, max(1, vrSel.Stride), mWant, work, -1)
   187  		work = make([]float64, int(work[0]))
   188  	}
   189  
   190  	mGot = impl.Dtrevc3(side, howmny, selected, n, tmat.Data, tmat.Stride,
   191  		vlSel.Data, max(1, vlSel.Stride), vrSel.Data, max(1, vrSel.Stride), mWant, work, len(work))
   192  
   193  	if !generalOutsideAllNaN(tmat) {
   194  		t.Errorf("%v: out-of-range write to T", name)
   195  	}
   196  	if !equalGeneral(tmat, tmatCopy) {
   197  		t.Errorf("%v: unexpected modification of T", name)
   198  	}
   199  	if !generalOutsideAllNaN(vrSel) {
   200  		t.Errorf("%v: out-of-range write to selected VR", name)
   201  	}
   202  	if !generalOutsideAllNaN(vlSel) {
   203  		t.Errorf("%v: out-of-range write to selected VL", name)
   204  	}
   205  
   206  	if mGot != mWant {
   207  		t.Errorf("%v: unexpected value of selected m=%d, want %d", name, mGot, mWant)
   208  	}
   209  
   210  	for i := range selected {
   211  		if selected[i] != selectedWant[i] {
   212  			t.Errorf("%v: unexpected selected[%v]", name, i)
   213  		}
   214  	}
   215  
   216  	// Check that selected columns of vrSel are equal to the corresponding
   217  	// columns of vr.
   218  	var k int
   219  	match := true
   220  	if right {
   221  	loopVR:
   222  		for j := 0; j < n; j++ {
   223  			if selected[j] && wi[j] == 0 {
   224  				for i := 0; i < n; i++ {
   225  					if vrSel.Data[i*vrSel.Stride+k] != vr.Data[i*vr.Stride+j] {
   226  						match = false
   227  						break loopVR
   228  					}
   229  				}
   230  				k++
   231  			} else if selected[j] && wi[j] != 0 {
   232  				for i := 0; i < n; i++ {
   233  					if vrSel.Data[i*vrSel.Stride+k] != vr.Data[i*vr.Stride+j] ||
   234  						vrSel.Data[i*vrSel.Stride+k+1] != vr.Data[i*vr.Stride+j+1] {
   235  						match = false
   236  						break loopVR
   237  					}
   238  				}
   239  				k += 2
   240  			}
   241  		}
   242  	}
   243  	if !match {
   244  		t.Errorf("%v: unexpected selected VR", name)
   245  	}
   246  
   247  	// Check that selected columns of vlSel are equal to the corresponding
   248  	// columns of vl.
   249  	match = true
   250  	k = 0
   251  	if left {
   252  	loopVL:
   253  		for j := 0; j < n; j++ {
   254  			if selected[j] && wi[j] == 0 {
   255  				for i := 0; i < n; i++ {
   256  					if vlSel.Data[i*vlSel.Stride+k] != vl.Data[i*vl.Stride+j] {
   257  						match = false
   258  						break loopVL
   259  					}
   260  				}
   261  				k++
   262  			} else if selected[j] && wi[j] != 0 {
   263  				for i := 0; i < n; i++ {
   264  					if vlSel.Data[i*vlSel.Stride+k] != vl.Data[i*vl.Stride+j] ||
   265  						vlSel.Data[i*vlSel.Stride+k+1] != vl.Data[i*vl.Stride+j+1] {
   266  						match = false
   267  						break loopVL
   268  					}
   269  				}
   270  				k += 2
   271  			}
   272  		}
   273  	}
   274  	if !match {
   275  		t.Errorf("%v: unexpected selected VL", name)
   276  	}
   277  
   278  	//  3. Compute all eigenvectors multiplied into a matrix Q and check that the
   279  	//     result is equal to eigenvectors from step 1 multiplied by Q and scaled
   280  	//     appropriately.
   281  
   282  	howmny = lapack.EVAllMulQ
   283  
   284  	var vrMul, qr blas64.General
   285  	var vlMul, ql blas64.General
   286  	if right {
   287  		vrMul = randomGeneral(n, n, n+extra, rnd)
   288  		qr = cloneGeneral(vrMul)
   289  	}
   290  	if left {
   291  		vlMul = randomGeneral(n, n, n+extra, rnd)
   292  		ql = cloneGeneral(vlMul)
   293  	}
   294  
   295  	if optwork {
   296  		// Reallocate optimal work in case it depends on howmny and selected.
   297  		work = []float64{0}
   298  		impl.Dtrevc3(side, howmny, nil, n, tmat.Data, tmat.Stride,
   299  			vlMul.Data, max(1, vlMul.Stride), vrMul.Data, max(1, vrMul.Stride), n, work, -1)
   300  		work = make([]float64, int(work[0]))
   301  	}
   302  
   303  	mGot = impl.Dtrevc3(side, howmny, selected, n, tmat.Data, tmat.Stride,
   304  		vlMul.Data, max(1, vlMul.Stride), vrMul.Data, max(1, vrMul.Stride), n, work, len(work))
   305  
   306  	if !generalOutsideAllNaN(tmat) {
   307  		t.Errorf("%v: out-of-range write to T", name)
   308  	}
   309  	if !equalGeneral(tmat, tmatCopy) {
   310  		t.Errorf("%v: unexpected modification of T", name)
   311  	}
   312  	if !generalOutsideAllNaN(vrMul) {
   313  		t.Errorf("%v: out-of-range write to VRMul", name)
   314  	}
   315  	if !generalOutsideAllNaN(vlMul) {
   316  		t.Errorf("%v: out-of-range write to VLMul", name)
   317  	}
   318  
   319  	mWant = n
   320  	if mGot != mWant {
   321  		t.Errorf("%v: unexpected value of m=%d, want %d", name, mGot, mWant)
   322  	}
   323  
   324  	if right {
   325  		// Compute Q * VR explicitly and normalize to match Dtrevc3 output.
   326  		qvWant := zeros(n, n, n)
   327  		blas64.Gemm(blas.NoTrans, blas.NoTrans, 1, qr, vr, 0, qvWant)
   328  		normalizeEV(qvWant, wi)
   329  
   330  		// Compute the difference between Dtrevc3 output and Q * VR.
   331  		r := zeros(n, n, n)
   332  		for i := 0; i < n; i++ {
   333  			for j := 0; j < n; j++ {
   334  				r.Data[i*r.Stride+j] = vrMul.Data[i*vrMul.Stride+j] - qvWant.Data[i*qvWant.Stride+j]
   335  			}
   336  		}
   337  		qvNorm := dlange(lapack.MaxColumnSum, n, n, qvWant.Data, qvWant.Stride)
   338  		resid := dlange(lapack.MaxColumnSum, n, n, r.Data, r.Stride) / qvNorm / float64(n)
   339  		if resid > tol {
   340  			t.Errorf("%v: unexpected VRMul; resid=%v, want <=%v", name, resid, tol)
   341  		}
   342  	}
   343  	if left {
   344  		// Compute Q * VL explicitly and normalize to match Dtrevc3 output.
   345  		qvWant := zeros(n, n, n)
   346  		blas64.Gemm(blas.NoTrans, blas.NoTrans, 1, ql, vl, 0, qvWant)
   347  		normalizeEV(qvWant, wi)
   348  
   349  		// Compute the difference between Dtrevc3 output and Q * VL.
   350  		r := zeros(n, n, n)
   351  		for i := 0; i < n; i++ {
   352  			for j := 0; j < n; j++ {
   353  				r.Data[i*r.Stride+j] = vlMul.Data[i*vlMul.Stride+j] - qvWant.Data[i*qvWant.Stride+j]
   354  			}
   355  		}
   356  		qvNorm := dlange(lapack.MaxColumnSum, n, n, qvWant.Data, qvWant.Stride)
   357  		resid := dlange(lapack.MaxColumnSum, n, n, r.Data, r.Stride) / qvNorm / float64(n)
   358  		if resid > tol {
   359  			t.Errorf("%v: unexpected VLMul; resid=%v, want <=%v", name, resid, tol)
   360  		}
   361  	}
   362  }
   363  
   364  // residualEVNormalization returns the maximum normalization error in E:
   365  //  max |max-norm(E[:,j]) - 1|
   366  func residualEVNormalization(emat blas64.General, wi []float64) float64 {
   367  	n := emat.Rows
   368  	if n == 0 {
   369  		return 0
   370  	}
   371  	var (
   372  		e      = emat.Data
   373  		lde    = emat.Stride
   374  		enrmin = math.Inf(1)
   375  		enrmax float64
   376  		ipair  int
   377  	)
   378  	for j := 0; j < n; j++ {
   379  		if ipair == 0 && j < n-1 && wi[j] != 0 {
   380  			ipair = 1
   381  		}
   382  		var nrm float64
   383  		switch ipair {
   384  		case 0:
   385  			// Real eigenvector
   386  			for i := 0; i < n; i++ {
   387  				nrm = math.Max(nrm, math.Abs(e[i*lde+j]))
   388  			}
   389  			enrmin = math.Min(enrmin, nrm)
   390  			enrmax = math.Max(enrmax, nrm)
   391  		case 1:
   392  			// Complex eigenvector
   393  			for i := 0; i < n; i++ {
   394  				nrm = math.Max(nrm, math.Abs(e[i*lde+j])+math.Abs(e[i*lde+j+1]))
   395  			}
   396  			enrmin = math.Min(enrmin, nrm)
   397  			enrmax = math.Max(enrmax, nrm)
   398  			ipair = 2
   399  		case 2:
   400  			ipair = 0
   401  		}
   402  	}
   403  	return math.Max(math.Abs(enrmin-1), math.Abs(enrmin-1))
   404  }
   405  
   406  // normalizeEV normalizes eigenvectors in the columns of E so that the element
   407  // of largest magnitude has magnitude 1.
   408  func normalizeEV(emat blas64.General, wi []float64) {
   409  	n := emat.Rows
   410  	if n == 0 {
   411  		return
   412  	}
   413  	var (
   414  		bi    = blas64.Implementation()
   415  		e     = emat.Data
   416  		lde   = emat.Stride
   417  		ipair int
   418  	)
   419  	for j := 0; j < n; j++ {
   420  		if ipair == 0 && j < n-1 && wi[j] != 0 {
   421  			ipair = 1
   422  		}
   423  		switch ipair {
   424  		case 0:
   425  			// Real eigenvector
   426  			ii := bi.Idamax(n, e[j:], lde)
   427  			remax := 1 / math.Abs(e[ii*lde+j])
   428  			bi.Dscal(n, remax, e[j:], lde)
   429  		case 1:
   430  			// Complex eigenvector
   431  			var emax float64
   432  			for i := 0; i < n; i++ {
   433  				emax = math.Max(emax, math.Abs(e[i*lde+j])+math.Abs(e[i*lde+j+1]))
   434  			}
   435  			bi.Dscal(n, 1/emax, e[j:], lde)
   436  			bi.Dscal(n, 1/emax, e[j+1:], lde)
   437  			ipair = 2
   438  		case 2:
   439  			ipair = 0
   440  		}
   441  	}
   442  }