github.com/gopherd/gonum@v0.0.4/mat/band.go (about) 1 // Copyright ©2017 The Gonum Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package mat 6 7 import ( 8 "github.com/gopherd/gonum/blas" 9 "github.com/gopherd/gonum/blas/blas64" 10 "github.com/gopherd/gonum/lapack" 11 "github.com/gopherd/gonum/lapack/lapack64" 12 ) 13 14 var ( 15 bandDense *BandDense 16 _ Matrix = bandDense 17 _ allMatrix = bandDense 18 _ denseMatrix = bandDense 19 _ Banded = bandDense 20 _ RawBander = bandDense 21 22 _ NonZeroDoer = bandDense 23 _ RowNonZeroDoer = bandDense 24 _ ColNonZeroDoer = bandDense 25 ) 26 27 // BandDense represents a band matrix in dense storage format. 28 type BandDense struct { 29 mat blas64.Band 30 } 31 32 // Banded is a band matrix representation. 33 type Banded interface { 34 Matrix 35 // Bandwidth returns the lower and upper bandwidth values for 36 // the matrix. The total bandwidth of the matrix is kl+ku+1. 37 Bandwidth() (kl, ku int) 38 39 // TBand is the equivalent of the T() method in the Matrix 40 // interface but guarantees the transpose is of banded type. 41 TBand() Banded 42 } 43 44 // A RawBander can return a blas64.Band representation of the receiver. 45 // Changes to the blas64.Band.Data slice will be reflected in the original 46 // matrix, changes to the Rows, Cols, KL, KU and Stride fields will not. 47 type RawBander interface { 48 RawBand() blas64.Band 49 } 50 51 // A MutableBanded can set elements of a band matrix. 52 type MutableBanded interface { 53 Banded 54 55 // SetBand sets the element at row i, column j to the value v. 56 // It panics if the location is outside the appropriate region of the matrix. 57 SetBand(i, j int, v float64) 58 } 59 60 var ( 61 _ Matrix = TransposeBand{} 62 _ Banded = TransposeBand{} 63 _ UntransposeBander = TransposeBand{} 64 ) 65 66 // TransposeBand is a type for performing an implicit transpose of a band 67 // matrix. It implements the Banded interface, returning values from the 68 // transpose of the matrix within. 69 type TransposeBand struct { 70 Banded Banded 71 } 72 73 // At returns the value of the element at row i and column j of the transposed 74 // matrix, that is, row j and column i of the Banded field. 75 func (t TransposeBand) At(i, j int) float64 { 76 return t.Banded.At(j, i) 77 } 78 79 // Dims returns the dimensions of the transposed matrix. 80 func (t TransposeBand) Dims() (r, c int) { 81 c, r = t.Banded.Dims() 82 return r, c 83 } 84 85 // T performs an implicit transpose by returning the Banded field. 86 func (t TransposeBand) T() Matrix { 87 return t.Banded 88 } 89 90 // Bandwidth returns the lower and upper bandwidth values for 91 // the transposed matrix. 92 func (t TransposeBand) Bandwidth() (kl, ku int) { 93 kl, ku = t.Banded.Bandwidth() 94 return ku, kl 95 } 96 97 // TBand performs an implicit transpose by returning the Banded field. 98 func (t TransposeBand) TBand() Banded { 99 return t.Banded 100 } 101 102 // Untranspose returns the Banded field. 103 func (t TransposeBand) Untranspose() Matrix { 104 return t.Banded 105 } 106 107 // UntransposeBand returns the Banded field. 108 func (t TransposeBand) UntransposeBand() Banded { 109 return t.Banded 110 } 111 112 // NewBandDense creates a new Band matrix with r rows and c columns. If data == nil, 113 // a new slice is allocated for the backing slice. If len(data) == min(r, c+kl)*(kl+ku+1), 114 // data is used as the backing slice, and changes to the elements of the returned 115 // BandDense will be reflected in data. If neither of these is true, NewBandDense 116 // will panic. kl must be at least zero and less r, and ku must be at least zero and 117 // less than c, otherwise NewBandDense will panic. 118 // NewBandDense will panic if either r or c is zero. 119 // 120 // The data must be arranged in row-major order constructed by removing the zeros 121 // from the rows outside the band and aligning the diagonals. For example, the matrix 122 // 1 2 3 0 0 0 123 // 4 5 6 7 0 0 124 // 0 8 9 10 11 0 125 // 0 0 12 13 14 15 126 // 0 0 0 16 17 18 127 // 0 0 0 0 19 20 128 // becomes (* entries are never accessed) 129 // * 1 2 3 130 // 4 5 6 7 131 // 8 9 10 11 132 // 12 13 14 15 133 // 16 17 18 * 134 // 19 20 * * 135 // which is passed to NewBandDense as []float64{*, 1, 2, 3, 4, ...} with kl=1 and ku=2. 136 // Only the values in the band portion of the matrix are used. 137 func NewBandDense(r, c, kl, ku int, data []float64) *BandDense { 138 if r <= 0 || c <= 0 || kl < 0 || ku < 0 { 139 if r == 0 || c == 0 { 140 panic(ErrZeroLength) 141 } 142 panic(ErrNegativeDimension) 143 } 144 if kl+1 > r || ku+1 > c { 145 panic(ErrBandwidth) 146 } 147 bc := kl + ku + 1 148 if data != nil && len(data) != min(r, c+kl)*bc { 149 panic(ErrShape) 150 } 151 if data == nil { 152 data = make([]float64, min(r, c+kl)*bc) 153 } 154 return &BandDense{ 155 mat: blas64.Band{ 156 Rows: r, 157 Cols: c, 158 KL: kl, 159 KU: ku, 160 Stride: bc, 161 Data: data, 162 }, 163 } 164 } 165 166 // NewDiagonalRect is a convenience function that returns a diagonal matrix represented by a 167 // BandDense. The length of data must be min(r, c) otherwise NewDiagonalRect will panic. 168 func NewDiagonalRect(r, c int, data []float64) *BandDense { 169 return NewBandDense(r, c, 0, 0, data) 170 } 171 172 // Dims returns the number of rows and columns in the matrix. 173 func (b *BandDense) Dims() (r, c int) { 174 return b.mat.Rows, b.mat.Cols 175 } 176 177 // Bandwidth returns the upper and lower bandwidths of the matrix. 178 func (b *BandDense) Bandwidth() (kl, ku int) { 179 return b.mat.KL, b.mat.KU 180 } 181 182 // T performs an implicit transpose by returning the receiver inside a Transpose. 183 func (b *BandDense) T() Matrix { 184 return Transpose{b} 185 } 186 187 // TBand performs an implicit transpose by returning the receiver inside a TransposeBand. 188 func (b *BandDense) TBand() Banded { 189 return TransposeBand{b} 190 } 191 192 // RawBand returns the underlying blas64.Band used by the receiver. 193 // Changes to elements in the receiver following the call will be reflected 194 // in returned blas64.Band. 195 func (b *BandDense) RawBand() blas64.Band { 196 return b.mat 197 } 198 199 // SetRawBand sets the underlying blas64.Band used by the receiver. 200 // Changes to elements in the receiver following the call will be reflected 201 // in the input. 202 func (b *BandDense) SetRawBand(mat blas64.Band) { 203 b.mat = mat 204 } 205 206 // IsEmpty returns whether the receiver is empty. Empty matrices can be the 207 // receiver for size-restricted operations. The receiver can be zeroed using Reset. 208 func (b *BandDense) IsEmpty() bool { 209 return b.mat.Stride == 0 210 } 211 212 // Reset empties the matrix so that it can be reused as the 213 // receiver of a dimensionally restricted operation. 214 // 215 // Reset should not be used when the matrix shares backing data. 216 // See the Reseter interface for more information. 217 func (b *BandDense) Reset() { 218 b.mat.Rows = 0 219 b.mat.Cols = 0 220 b.mat.KL = 0 221 b.mat.KU = 0 222 b.mat.Stride = 0 223 b.mat.Data = b.mat.Data[:0] 224 } 225 226 // DiagView returns the diagonal as a matrix backed by the original data. 227 func (b *BandDense) DiagView() Diagonal { 228 n := min(b.mat.Rows, b.mat.Cols) 229 return &DiagDense{ 230 mat: blas64.Vector{ 231 N: n, 232 Inc: b.mat.Stride, 233 Data: b.mat.Data[b.mat.KL : (n-1)*b.mat.Stride+b.mat.KL+1], 234 }, 235 } 236 } 237 238 // DoNonZero calls the function fn for each of the non-zero elements of b. The function fn 239 // takes a row/column index and the element value of b at (i, j). 240 func (b *BandDense) DoNonZero(fn func(i, j int, v float64)) { 241 for i := 0; i < min(b.mat.Rows, b.mat.Cols+b.mat.KL); i++ { 242 for j := max(0, i-b.mat.KL); j < min(b.mat.Cols, i+b.mat.KU+1); j++ { 243 v := b.at(i, j) 244 if v != 0 { 245 fn(i, j, v) 246 } 247 } 248 } 249 } 250 251 // DoRowNonZero calls the function fn for each of the non-zero elements of row i of b. The function fn 252 // takes a row/column index and the element value of b at (i, j). 253 func (b *BandDense) DoRowNonZero(i int, fn func(i, j int, v float64)) { 254 if i < 0 || b.mat.Rows <= i { 255 panic(ErrRowAccess) 256 } 257 for j := max(0, i-b.mat.KL); j < min(b.mat.Cols, i+b.mat.KU+1); j++ { 258 v := b.at(i, j) 259 if v != 0 { 260 fn(i, j, v) 261 } 262 } 263 } 264 265 // DoColNonZero calls the function fn for each of the non-zero elements of column j of b. The function fn 266 // takes a row/column index and the element value of b at (i, j). 267 func (b *BandDense) DoColNonZero(j int, fn func(i, j int, v float64)) { 268 if j < 0 || b.mat.Cols <= j { 269 panic(ErrColAccess) 270 } 271 for i := 0; i < min(b.mat.Rows, b.mat.Cols+b.mat.KL); i++ { 272 if i-b.mat.KL <= j && j < i+b.mat.KU+1 { 273 v := b.at(i, j) 274 if v != 0 { 275 fn(i, j, v) 276 } 277 } 278 } 279 } 280 281 // Zero sets all of the matrix elements to zero. 282 func (b *BandDense) Zero() { 283 m := b.mat.Rows 284 kL := b.mat.KL 285 nCol := b.mat.KU + 1 + kL 286 for i := 0; i < m; i++ { 287 l := max(0, kL-i) 288 u := min(nCol, m+kL-i) 289 zero(b.mat.Data[i*b.mat.Stride+l : i*b.mat.Stride+u]) 290 } 291 } 292 293 // Norm returns the specified norm of the receiver. Valid norms are: 294 // 1 - The maximum absolute column sum 295 // 2 - The Frobenius norm, the square root of the sum of the squares of the elements 296 // Inf - The maximum absolute row sum 297 // 298 // Norm will panic with ErrNormOrder if an illegal norm is specified and with 299 // ErrZeroLength if the matrix has zero size. 300 func (b *BandDense) Norm(norm float64) float64 { 301 if b.IsEmpty() { 302 panic(ErrZeroLength) 303 } 304 lnorm := normLapack(norm, false) 305 if lnorm == lapack.MaxColumnSum || lnorm == lapack.MaxRowSum { 306 return lapack64.Langb(lnorm, b.mat) 307 } 308 return lapack64.Langb(lnorm, b.mat) 309 } 310 311 // Trace returns the trace of the matrix. 312 // 313 // Trace will panic with ErrSquare if the matrix is not square and with 314 // ErrZeroLength if the matrix has zero size. 315 func (b *BandDense) Trace() float64 { 316 r, c := b.Dims() 317 if r != c { 318 panic(ErrSquare) 319 } 320 if b.IsEmpty() { 321 panic(ErrZeroLength) 322 } 323 rb := b.RawBand() 324 var tr float64 325 for i := 0; i < r; i++ { 326 tr += rb.Data[rb.KL+i*rb.Stride] 327 } 328 return tr 329 } 330 331 // MulVecTo computes B⋅x or Bᵀ⋅x storing the result into dst. 332 func (b *BandDense) MulVecTo(dst *VecDense, trans bool, x Vector) { 333 m, n := b.Dims() 334 if trans { 335 m, n = n, m 336 } 337 if x.Len() != n { 338 panic(ErrShape) 339 } 340 dst.reuseAsNonZeroed(m) 341 342 t := blas.NoTrans 343 if trans { 344 t = blas.Trans 345 } 346 347 xMat, _ := untransposeExtract(x) 348 if xVec, ok := xMat.(*VecDense); ok { 349 if dst != xVec { 350 dst.checkOverlap(xVec.mat) 351 blas64.Gbmv(t, 1, b.mat, xVec.mat, 0, dst.mat) 352 } else { 353 xCopy := getVecDenseWorkspace(n, false) 354 xCopy.CloneFromVec(xVec) 355 blas64.Gbmv(t, 1, b.mat, xCopy.mat, 0, dst.mat) 356 putVecDenseWorkspace(xCopy) 357 } 358 } else { 359 xCopy := getVecDenseWorkspace(n, false) 360 xCopy.CloneFromVec(x) 361 blas64.Gbmv(t, 1, b.mat, xCopy.mat, 0, dst.mat) 362 putVecDenseWorkspace(xCopy) 363 } 364 }