github.com/gopherd/gonum@v0.0.4/mat/svd_test.go (about)

     1  // Copyright ©2013 The Gonum Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package mat
     6  
     7  import (
     8  	"testing"
     9  
    10  	"math/rand"
    11  
    12  	"github.com/gopherd/gonum/floats"
    13  )
    14  
    15  func TestSVD(t *testing.T) {
    16  	t.Parallel()
    17  	rnd := rand.New(rand.NewSource(1))
    18  	// Hand coded tests
    19  	for _, test := range []struct {
    20  		a *Dense
    21  		u *Dense
    22  		v *Dense
    23  		s []float64
    24  	}{
    25  		{
    26  			a: NewDense(4, 2, []float64{2, 4, 1, 3, 0, 0, 0, 0}),
    27  			u: NewDense(4, 2, []float64{
    28  				-0.8174155604703632, -0.5760484367663209,
    29  				-0.5760484367663209, 0.8174155604703633,
    30  				0, 0,
    31  				0, 0,
    32  			}),
    33  			v: NewDense(2, 2, []float64{
    34  				-0.4045535848337571, -0.9145142956773044,
    35  				-0.9145142956773044, 0.4045535848337571,
    36  			}),
    37  			s: []float64{5.464985704219041, 0.365966190626258},
    38  		},
    39  		{
    40  			// Issue #5.
    41  			a: NewDense(3, 11, []float64{
    42  				1, 1, 0, 1, 0, 0, 0, 0, 0, 11, 1,
    43  				1, 0, 0, 0, 0, 0, 1, 0, 0, 12, 2,
    44  				1, 1, 0, 0, 0, 0, 0, 0, 1, 13, 3,
    45  			}),
    46  			u: NewDense(3, 3, []float64{
    47  				-0.5224167862273765, 0.7864430360363114, 0.3295270133658976,
    48  				-0.5739526766688285, -0.03852203026050301, -0.8179818935216693,
    49  				-0.6306021141833781, -0.6164603833618163, 0.4715056408282468,
    50  			}),
    51  			v: NewDense(11, 3, []float64{
    52  				-0.08123293141915189, 0.08528085505260324, -0.013165501690885152,
    53  				-0.05423546426886932, 0.1102707844980355, 0.622210623111631,
    54  				0, 0, 0,
    55  				-0.0245733326078166, 0.510179651760153, 0.25596360803140994,
    56  				0, 0, 0,
    57  				0, 0, 0,
    58  				-0.026997467150282436, -0.024989929445430496, -0.6353761248025164,
    59  				0, 0, 0,
    60  				-0.029662131661052707, -0.3999088672621176, 0.3662470150802212,
    61  				-0.9798839760830571, 0.11328174160898856, -0.047702613241813366,
    62  				-0.16755466189153964, -0.7395268089170608, 0.08395240366704032,
    63  			}),
    64  			s: []float64{21.259500881097434, 1.5415021616856566, 1.2873979074613628},
    65  		},
    66  	} {
    67  		var svd SVD
    68  		ok := svd.Factorize(test.a, SVDThin)
    69  		if !ok {
    70  			t.Errorf("SVD failed")
    71  		}
    72  		s, u, v := extractSVD(&svd)
    73  		if !floats.EqualApprox(s, test.s, 1e-10) {
    74  			t.Errorf("Singular value mismatch. Got %v, want %v.", s, test.s)
    75  		}
    76  		if !EqualApprox(u, test.u, 1e-10) {
    77  			t.Errorf("U mismatch.\nGot:\n%v\nWant:\n%v", Formatted(u), Formatted(test.u))
    78  		}
    79  		if !EqualApprox(v, test.v, 1e-10) {
    80  			t.Errorf("V mismatch.\nGot:\n%v\nWant:\n%v", Formatted(v), Formatted(test.v))
    81  		}
    82  		m, n := test.a.Dims()
    83  		sigma := NewDense(min(m, n), min(m, n), nil)
    84  		for i := 0; i < min(m, n); i++ {
    85  			sigma.Set(i, i, s[i])
    86  		}
    87  
    88  		var ans Dense
    89  		ans.Product(u, sigma, v.T())
    90  		if !EqualApprox(test.a, &ans, 1e-10) {
    91  			t.Errorf("A reconstruction mismatch.\nGot:\n%v\nWant:\n%v\n", Formatted(&ans), Formatted(test.a))
    92  		}
    93  
    94  		for _, kind := range []SVDKind{
    95  			SVDThinU, SVDFullU, SVDThinV, SVDFullV,
    96  		} {
    97  			var svd SVD
    98  			svd.Factorize(test.a, kind)
    99  			if kind&SVDThinU == 0 && kind&SVDFullU == 0 {
   100  				panicked, message := panics(func() {
   101  					var dst Dense
   102  					svd.UTo(&dst)
   103  				})
   104  				if !panicked {
   105  					t.Error("expected panic with no U matrix requested")
   106  					continue
   107  				}
   108  				want := "svd: u not computed during factorization"
   109  				if message != want {
   110  					t.Errorf("unexpected message: got:%q want:%q", message, want)
   111  				}
   112  			}
   113  			if kind&SVDThinV == 0 && kind&SVDFullV == 0 {
   114  				panicked, message := panics(func() {
   115  					var dst Dense
   116  					svd.VTo(&dst)
   117  				})
   118  				if !panicked {
   119  					t.Error("expected panic with no V matrix requested")
   120  					continue
   121  				}
   122  				want := "svd: v not computed during factorization"
   123  				if message != want {
   124  					t.Errorf("unexpected message: got:%q want:%q", message, want)
   125  				}
   126  			}
   127  		}
   128  	}
   129  
   130  	for _, test := range []struct {
   131  		m, n int
   132  	}{
   133  		{5, 5},
   134  		{5, 3},
   135  		{3, 5},
   136  		{150, 150},
   137  		{200, 150},
   138  		{150, 200},
   139  	} {
   140  		m := test.m
   141  		n := test.n
   142  		for trial := 0; trial < 10; trial++ {
   143  			a := NewDense(m, n, nil)
   144  			for i := range a.mat.Data {
   145  				a.mat.Data[i] = rnd.NormFloat64()
   146  			}
   147  			aCopy := DenseCopyOf(a)
   148  
   149  			// Test Full decomposition.
   150  			var svd SVD
   151  			ok := svd.Factorize(a, SVDFull)
   152  			if !ok {
   153  				t.Errorf("SVD factorization failed")
   154  			}
   155  			if !Equal(a, aCopy) {
   156  				t.Errorf("A changed during call to SVD with full")
   157  			}
   158  			s, u, v := extractSVD(&svd)
   159  			sigma := NewDense(m, n, nil)
   160  			for i := 0; i < min(m, n); i++ {
   161  				sigma.Set(i, i, s[i])
   162  			}
   163  			var ansFull Dense
   164  			ansFull.Product(u, sigma, v.T())
   165  			if !EqualApprox(&ansFull, a, 1e-8) {
   166  				t.Errorf("Answer mismatch when SVDFull")
   167  			}
   168  
   169  			// Test Thin decomposition.
   170  			ok = svd.Factorize(a, SVDThin)
   171  			if !ok {
   172  				t.Errorf("SVD factorization failed")
   173  			}
   174  			if !Equal(a, aCopy) {
   175  				t.Errorf("A changed during call to SVD with Thin")
   176  			}
   177  			sThin, u, v := extractSVD(&svd)
   178  			if !floats.EqualApprox(s, sThin, 1e-8) {
   179  				t.Errorf("Singular value mismatch between Full and Thin decomposition")
   180  			}
   181  			sigma = NewDense(min(m, n), min(m, n), nil)
   182  			for i := 0; i < min(m, n); i++ {
   183  				sigma.Set(i, i, sThin[i])
   184  			}
   185  			ansFull.Reset()
   186  			ansFull.Product(u, sigma, v.T())
   187  			if !EqualApprox(&ansFull, a, 1e-8) {
   188  				t.Errorf("Answer mismatch when SVDFull")
   189  			}
   190  
   191  			// Test None decomposition.
   192  			ok = svd.Factorize(a, SVDNone)
   193  			if !ok {
   194  				t.Errorf("SVD factorization failed")
   195  			}
   196  			if !Equal(a, aCopy) {
   197  				t.Errorf("A changed during call to SVD with none")
   198  			}
   199  			sNone := make([]float64, min(m, n))
   200  			svd.Values(sNone)
   201  			if !floats.EqualApprox(s, sNone, 1e-8) {
   202  				t.Errorf("Singular value mismatch between Full and None decomposition")
   203  			}
   204  		}
   205  	}
   206  }
   207  
   208  func extractSVD(svd *SVD) (s []float64, u, v *Dense) {
   209  	u = &Dense{}
   210  	svd.UTo(u)
   211  	v = &Dense{}
   212  	svd.VTo(v)
   213  	return svd.Values(nil), u, v
   214  }
   215  
   216  func TestSVDSolveTo(t *testing.T) {
   217  	t.Parallel()
   218  	rnd := rand.New(rand.NewSource(1))
   219  	// Hand-coded cases.
   220  	for i, test := range []struct {
   221  		a      []float64
   222  		m, n   int
   223  		b      []float64
   224  		bc     int
   225  		rcond  float64
   226  		want   []float64
   227  		wm, wn int
   228  	}{
   229  		{
   230  			a: []float64{6}, m: 1, n: 1,
   231  			b: []float64{3}, bc: 1,
   232  			want: []float64{0.5}, wm: 1, wn: 1,
   233  		},
   234  		{
   235  			a: []float64{
   236  				1, 0, 0,
   237  				0, 1, 0,
   238  				0, 0, 1,
   239  			}, m: 3, n: 3,
   240  			b: []float64{
   241  				3,
   242  				2,
   243  				1,
   244  			}, bc: 1,
   245  			want: []float64{
   246  				3,
   247  				2,
   248  				1,
   249  			}, wm: 3, wn: 1,
   250  		},
   251  		{
   252  			a: []float64{
   253  				0.8147, 0.9134, 0.5528,
   254  				0.9058, 0.6324, 0.8723,
   255  				0.1270, 0.0975, 0.7612,
   256  			}, m: 3, n: 3,
   257  			b: []float64{
   258  				0.278,
   259  				0.547,
   260  				0.958,
   261  			}, bc: 1,
   262  			want: []float64{
   263  				-0.932687281002860,
   264  				0.303963920182067,
   265  				1.375216503507109,
   266  			}, wm: 3, wn: 1,
   267  		},
   268  		{
   269  			a: []float64{
   270  				0.8147, 0.9134, 0.5528,
   271  				0.9058, 0.6324, 0.8723,
   272  			}, m: 2, n: 3,
   273  			b: []float64{
   274  				0.278,
   275  				0.547,
   276  			}, bc: 1,
   277  			want: []float64{
   278  				0.25919787248965376,
   279  				-0.25560256266441034,
   280  				0.5432324059702451,
   281  			}, wm: 3, wn: 1,
   282  		},
   283  		{
   284  			a: []float64{
   285  				0.8147, 0.9134, 0.9,
   286  				0.9058, 0.6324, 0.9,
   287  				0.1270, 0.0975, 0.1,
   288  				1.6, 2.8, -3.5,
   289  			}, m: 4, n: 3,
   290  			b: []float64{
   291  				0.278,
   292  				0.547,
   293  				-0.958,
   294  				1.452,
   295  			}, bc: 1,
   296  			want: []float64{
   297  				0.820970340787782,
   298  				-0.218604626527306,
   299  				-0.212938815234215,
   300  			}, wm: 3, wn: 1,
   301  		},
   302  		{
   303  			a: []float64{
   304  				0.8147, 0.9134, 0.231, -1.65,
   305  				0.9058, 0.6324, 0.9, 0.72,
   306  				0.1270, 0.0975, 0.1, 1.723,
   307  				1.6, 2.8, -3.5, 0.987,
   308  				7.231, 9.154, 1.823, 0.9,
   309  			}, m: 5, n: 4,
   310  			b: []float64{
   311  				0.278, 8.635,
   312  				0.547, 9.125,
   313  				-0.958, -0.762,
   314  				1.452, 1.444,
   315  				1.999, -7.234,
   316  			}, bc: 2,
   317  			want: []float64{
   318  				1.863006789511373, 44.467887791812750,
   319  				-1.127270935407224, -34.073794226035126,
   320  				-0.527926457947330, -8.032133759788573,
   321  				-0.248621916204897, -2.366366415805275,
   322  			}, wm: 4, wn: 2,
   323  		},
   324  		{
   325  			// Test rank-deficient case compared with numpy.
   326  			// >>> import numpy as np
   327  			// >>> b = np.array([[-2.3181340317357653],
   328  			// ...     [-0.7146777651358073],
   329  			// ...     [1.8361340927945298],
   330  			// ...     [-0.35699930593018775],
   331  			// ...     [-1.6359508076249094]])
   332  			// >>> A = np.array([[-1.7854591879711257, -0.42687285925779594, -0.12730256811265162],
   333  			// ...     [-0.5728984211439724, -0.10093393134001777, -0.1181901192353067],
   334  			// ...     [1.2484316018707418, 0.5646683943038734, -0.48229492403243485],
   335  			// ...     [0.10174927665169475, -0.5805410929482445, 1.3054473231942054],
   336  			// ...     [-1.134174808195733, -0.4732430202414438, 0.3528489486370508]])
   337  			// >>> np.linalg.lstsq(A, b, rcond=None)
   338  			// (array([[ 1.21208422],
   339  			//        [ 0.41541503],
   340  			//        [-0.18320349]]), array([], dtype=float64), 2, array([2.68451480e+00, 1.52593185e+00, 6.82840229e-17]))
   341  
   342  			a: []float64{
   343  				-1.7854591879711257, -0.42687285925779594, -0.12730256811265162,
   344  				-0.5728984211439724, -0.10093393134001777, -0.1181901192353067,
   345  				1.2484316018707418, 0.5646683943038734, -0.48229492403243485,
   346  				0.10174927665169475, -0.5805410929482445, 1.3054473231942054,
   347  				-1.134174808195733, -0.4732430202414438, 0.3528489486370508,
   348  			}, m: 5, n: 3,
   349  			b: []float64{
   350  				-2.3181340317357653,
   351  				-0.7146777651358073,
   352  				1.8361340927945298,
   353  				-0.35699930593018775,
   354  				-1.6359508076249094,
   355  			}, bc: 1,
   356  			rcond: 1e-15,
   357  			want: []float64{
   358  				1.2120842180372118,
   359  				0.4154150318658529,
   360  				-0.1832034870198265,
   361  			}, wm: 3, wn: 1,
   362  		},
   363  		{
   364  			a: []float64{
   365  				0, 0,
   366  				0, 0,
   367  			}, m: 2, n: 2,
   368  			b: []float64{
   369  				3,
   370  				2,
   371  			}, bc: 1,
   372  		},
   373  		{
   374  			a: []float64{
   375  				0, 0,
   376  				0, 0,
   377  				0, 0,
   378  			}, m: 3, n: 2,
   379  			b: []float64{
   380  				3,
   381  				2,
   382  				1,
   383  			}, bc: 1,
   384  		},
   385  		{
   386  			a: []float64{
   387  				0, 0, 0,
   388  				0, 0, 0,
   389  			}, m: 2, n: 3,
   390  			b: []float64{
   391  				3,
   392  				2,
   393  			}, bc: 1,
   394  		},
   395  	} {
   396  		a := NewDense(test.m, test.n, test.a)
   397  		b := NewDense(test.m, test.bc, test.b)
   398  
   399  		var want *Dense
   400  		if test.want != nil {
   401  			want = NewDense(test.wm, test.wn, test.want)
   402  		}
   403  
   404  		var svd SVD
   405  		ok := svd.Factorize(a, SVDFull)
   406  		if !ok {
   407  			t.Errorf("unexpected factorization failure for test %d", i)
   408  			continue
   409  		}
   410  
   411  		var x Dense
   412  		rank := svd.Rank(test.rcond)
   413  		if rank == 0 {
   414  			continue
   415  		}
   416  		svd.SolveTo(&x, b, rank)
   417  		if !EqualApprox(&x, want, 1e-12) {
   418  			t.Errorf("Solve answer mismatch. Want %v, got %v", want, x)
   419  		}
   420  	}
   421  
   422  	// Random Cases.
   423  	for i, test := range []struct {
   424  		m, n, bc int
   425  		rcond    float64
   426  	}{
   427  		{m: 5, n: 5, bc: 1},
   428  		{m: 5, n: 10, bc: 1},
   429  		{m: 10, n: 5, bc: 1},
   430  		{m: 5, n: 5, bc: 7},
   431  		{m: 5, n: 10, bc: 7},
   432  		{m: 10, n: 5, bc: 7},
   433  		{m: 5, n: 5, bc: 12},
   434  		{m: 5, n: 10, bc: 12},
   435  		{m: 10, n: 5, bc: 12},
   436  	} {
   437  		m := test.m
   438  		n := test.n
   439  		bc := test.bc
   440  		a := NewDense(m, n, nil)
   441  		for i := 0; i < m; i++ {
   442  			for j := 0; j < n; j++ {
   443  				a.Set(i, j, rnd.Float64())
   444  			}
   445  		}
   446  		br := m
   447  		b := NewDense(br, bc, nil)
   448  		for i := 0; i < br; i++ {
   449  			for j := 0; j < bc; j++ {
   450  				b.Set(i, j, rnd.Float64())
   451  			}
   452  		}
   453  
   454  		var svd SVD
   455  		ok := svd.Factorize(a, SVDFull)
   456  		if !ok {
   457  			t.Errorf("unexpected factorization failure for test %d", i)
   458  			continue
   459  		}
   460  
   461  		var x Dense
   462  		rank := svd.Rank(test.rcond)
   463  		if rank == 0 {
   464  			continue
   465  		}
   466  		svd.SolveTo(&x, b, rank)
   467  
   468  		// Test that the normal equations hold.
   469  		// Aᵀ * A * x = Aᵀ * b
   470  		var tmp, lhs, rhs Dense
   471  		tmp.Mul(a.T(), a)
   472  		lhs.Mul(&tmp, &x)
   473  		rhs.Mul(a.T(), b)
   474  		if !EqualApprox(&lhs, &rhs, 1e-10) {
   475  			t.Errorf("Normal equations do not hold.\nLHS: %v\n, RHS: %v\n", lhs, rhs)
   476  		}
   477  	}
   478  }
   479  
   480  func TestSVDSolveVecTo(t *testing.T) {
   481  	t.Parallel()
   482  	rnd := rand.New(rand.NewSource(1))
   483  	// Hand-coded cases.
   484  	for i, test := range []struct {
   485  		a     []float64
   486  		m, n  int
   487  		b     []float64
   488  		rcond float64
   489  		want  []float64
   490  	}{
   491  		{
   492  			a: []float64{6}, m: 1, n: 1,
   493  			b:    []float64{3},
   494  			want: []float64{0.5},
   495  		},
   496  		{
   497  			a: []float64{
   498  				1, 0, 0,
   499  				0, 1, 0,
   500  				0, 0, 1,
   501  			}, m: 3, n: 3,
   502  			b:    []float64{3, 2, 1},
   503  			want: []float64{3, 2, 1},
   504  		},
   505  		{
   506  			a: []float64{
   507  				0.8147, 0.9134, 0.5528,
   508  				0.9058, 0.6324, 0.8723,
   509  				0.1270, 0.0975, 0.7612,
   510  			}, m: 3, n: 3,
   511  			b:    []float64{0.278, 0.547, 0.958},
   512  			want: []float64{-0.932687281002860, 0.303963920182067, 1.375216503507109},
   513  		},
   514  		{
   515  			a: []float64{
   516  				0.8147, 0.9134, 0.5528,
   517  				0.9058, 0.6324, 0.8723,
   518  			}, m: 2, n: 3,
   519  			b:    []float64{0.278, 0.547},
   520  			want: []float64{0.25919787248965376, -0.25560256266441034, 0.5432324059702451},
   521  		},
   522  		{
   523  			a: []float64{
   524  				0.8147, 0.9134, 0.9,
   525  				0.9058, 0.6324, 0.9,
   526  				0.1270, 0.0975, 0.1,
   527  				1.6, 2.8, -3.5,
   528  			}, m: 4, n: 3,
   529  			b:    []float64{0.278, 0.547, -0.958, 1.452},
   530  			want: []float64{0.820970340787782, -0.218604626527306, -0.212938815234215},
   531  		},
   532  		{
   533  			// Test rank-deficient case compared with numpy.
   534  			// >>> import numpy as np
   535  			// >>> b = np.array([[-2.3181340317357653],
   536  			// ...     [-0.7146777651358073],
   537  			// ...     [1.8361340927945298],
   538  			// ...     [-0.35699930593018775],
   539  			// ...     [-1.6359508076249094]])
   540  			// >>> A = np.array([[-1.7854591879711257, -0.42687285925779594, -0.12730256811265162],
   541  			// ...     [-0.5728984211439724, -0.10093393134001777, -0.1181901192353067],
   542  			// ...     [1.2484316018707418, 0.5646683943038734, -0.48229492403243485],
   543  			// ...     [0.10174927665169475, -0.5805410929482445, 1.3054473231942054],
   544  			// ...     [-1.134174808195733, -0.4732430202414438, 0.3528489486370508]])
   545  			// >>> np.linalg.lstsq(A, b, rcond=None)
   546  			// (array([[ 1.21208422],
   547  			//        [ 0.41541503],
   548  			//        [-0.18320349]]), array([], dtype=float64), 2, array([2.68451480e+00, 1.52593185e+00, 6.82840229e-17]))
   549  
   550  			a: []float64{
   551  				-1.7854591879711257, -0.42687285925779594, -0.12730256811265162,
   552  				-0.5728984211439724, -0.10093393134001777, -0.1181901192353067,
   553  				1.2484316018707418, 0.5646683943038734, -0.48229492403243485,
   554  				0.10174927665169475, -0.5805410929482445, 1.3054473231942054,
   555  				-1.134174808195733, -0.4732430202414438, 0.3528489486370508,
   556  			}, m: 5, n: 3,
   557  			b:     []float64{-2.3181340317357653, -0.7146777651358073, 1.8361340927945298, -0.35699930593018775, -1.6359508076249094},
   558  			rcond: 1e-15,
   559  			want:  []float64{1.2120842180372118, 0.4154150318658529, -0.1832034870198265},
   560  		},
   561  		{
   562  			a: []float64{
   563  				0, 0,
   564  				0, 0,
   565  			}, m: 2, n: 2,
   566  			b: []float64{3, 2},
   567  		},
   568  		{
   569  			a: []float64{
   570  				0, 0,
   571  				0, 0,
   572  				0, 0,
   573  			}, m: 3, n: 2,
   574  			b: []float64{3, 2, 1},
   575  		},
   576  		{
   577  			a: []float64{
   578  				0, 0, 0,
   579  				0, 0, 0,
   580  			}, m: 2, n: 3,
   581  			b: []float64{3, 2},
   582  		},
   583  	} {
   584  		a := NewDense(test.m, test.n, test.a)
   585  		b := NewVecDense(len(test.b), test.b)
   586  
   587  		var want *VecDense
   588  		if test.want != nil {
   589  			want = NewVecDense(len(test.want), test.want)
   590  		}
   591  
   592  		var svd SVD
   593  		ok := svd.Factorize(a, SVDFull)
   594  		if !ok {
   595  			t.Errorf("unexpected factorization failure for test %d", i)
   596  			continue
   597  		}
   598  
   599  		var x VecDense
   600  		rank := svd.Rank(test.rcond)
   601  		if rank == 0 {
   602  			continue
   603  		}
   604  		svd.SolveVecTo(&x, b, rank)
   605  		if !EqualApprox(&x, want, 1e-12) {
   606  			t.Errorf("Solve answer mismatch. Want %v, got %v", want, x)
   607  		}
   608  	}
   609  
   610  	// Random Cases.
   611  	for i, test := range []struct {
   612  		m, n  int
   613  		rcond float64
   614  	}{
   615  		{m: 5, n: 5},
   616  		{m: 5, n: 10},
   617  		{m: 10, n: 5},
   618  		{m: 5, n: 5},
   619  		{m: 5, n: 10},
   620  		{m: 10, n: 5},
   621  		{m: 5, n: 5},
   622  		{m: 5, n: 10},
   623  		{m: 10, n: 5},
   624  	} {
   625  		m := test.m
   626  		n := test.n
   627  		a := NewDense(m, n, nil)
   628  		for i := 0; i < m; i++ {
   629  			for j := 0; j < n; j++ {
   630  				a.Set(i, j, rnd.Float64())
   631  			}
   632  		}
   633  		br := m
   634  		b := NewVecDense(br, nil)
   635  		for i := 0; i < br; i++ {
   636  			b.SetVec(i, rnd.Float64())
   637  		}
   638  
   639  		var svd SVD
   640  		ok := svd.Factorize(a, SVDFull)
   641  		if !ok {
   642  			t.Errorf("unexpected factorization failure for test %d", i)
   643  			continue
   644  		}
   645  
   646  		var x VecDense
   647  		rank := svd.Rank(test.rcond)
   648  		if rank == 0 {
   649  			continue
   650  		}
   651  		svd.SolveVecTo(&x, b, rank)
   652  
   653  		// Test that the normal equations hold.
   654  		// Aᵀ * A * x = Aᵀ * b
   655  		var tmp, lhs, rhs Dense
   656  		tmp.Mul(a.T(), a)
   657  		lhs.Mul(&tmp, &x)
   658  		rhs.Mul(a.T(), b)
   659  		if !EqualApprox(&lhs, &rhs, 1e-10) {
   660  			t.Errorf("Normal equations do not hold.\nLHS: %v\n, RHS: %v\n", lhs, rhs)
   661  		}
   662  	}
   663  }