github.com/gopherd/gonum@v0.0.4/stat/distmv/normal.go (about)

     1  // Copyright ©2015 The Gonum Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package distmv
     6  
     7  import (
     8  	"math"
     9  
    10  	"math/rand"
    11  
    12  	"github.com/gopherd/gonum/floats"
    13  	"github.com/gopherd/gonum/mat"
    14  	"github.com/gopherd/gonum/stat"
    15  	"github.com/gopherd/gonum/stat/distuv"
    16  )
    17  
    18  const badInputLength = "distmv: input slice length mismatch"
    19  
    20  // Normal is a multivariate normal distribution (also known as the multivariate
    21  // Gaussian distribution). Its pdf in k dimensions is given by
    22  //  (2 π)^(-k/2) |Σ|^(-1/2) exp(-1/2 (x-μ)'Σ^-1(x-μ))
    23  // where μ is the mean vector and Σ the covariance matrix. Σ must be symmetric
    24  // and positive definite. Use NewNormal to construct.
    25  type Normal struct {
    26  	mu []float64
    27  
    28  	sigma mat.SymDense
    29  
    30  	chol       mat.Cholesky
    31  	logSqrtDet float64
    32  	dim        int
    33  
    34  	// If src is altered, rnd must be updated.
    35  	src rand.Source
    36  	rnd *rand.Rand
    37  }
    38  
    39  // NewNormal creates a new Normal with the given mean and covariance matrix.
    40  // NewNormal panics if len(mu) == 0, or if len(mu) != sigma.N. If the covariance
    41  // matrix is not positive-definite, the returned boolean is false.
    42  func NewNormal(mu []float64, sigma mat.Symmetric, src rand.Source) (*Normal, bool) {
    43  	if len(mu) == 0 {
    44  		panic(badZeroDimension)
    45  	}
    46  	dim := sigma.SymmetricDim()
    47  	if dim != len(mu) {
    48  		panic(badSizeMismatch)
    49  	}
    50  	n := &Normal{
    51  		src: src,
    52  		rnd: rand.New(src),
    53  		dim: dim,
    54  		mu:  make([]float64, dim),
    55  	}
    56  	copy(n.mu, mu)
    57  	ok := n.chol.Factorize(sigma)
    58  	if !ok {
    59  		return nil, false
    60  	}
    61  	n.sigma = *mat.NewSymDense(dim, nil)
    62  	n.sigma.CopySym(sigma)
    63  	n.logSqrtDet = 0.5 * n.chol.LogDet()
    64  	return n, true
    65  }
    66  
    67  // NewNormalChol creates a new Normal distribution with the given mean and
    68  // covariance matrix represented by its Cholesky decomposition. NewNormalChol
    69  // panics if len(mu) is not equal to chol.Size().
    70  func NewNormalChol(mu []float64, chol *mat.Cholesky, src rand.Source) *Normal {
    71  	dim := len(mu)
    72  	if dim != chol.SymmetricDim() {
    73  		panic(badSizeMismatch)
    74  	}
    75  	n := &Normal{
    76  		src: src,
    77  		rnd: rand.New(src),
    78  		dim: dim,
    79  		mu:  make([]float64, dim),
    80  	}
    81  	n.chol.Clone(chol)
    82  	copy(n.mu, mu)
    83  	n.logSqrtDet = 0.5 * n.chol.LogDet()
    84  	return n
    85  }
    86  
    87  // NewNormalPrecision creates a new Normal distribution with the given mean and
    88  // precision matrix (inverse of the covariance matrix). NewNormalPrecision
    89  // panics if len(mu) is not equal to prec.SymmetricDim(). If the precision matrix
    90  // is not positive-definite, NewNormalPrecision returns nil for norm and false
    91  // for ok.
    92  func NewNormalPrecision(mu []float64, prec *mat.SymDense, src rand.Source) (norm *Normal, ok bool) {
    93  	if len(mu) == 0 {
    94  		panic(badZeroDimension)
    95  	}
    96  	dim := prec.SymmetricDim()
    97  	if dim != len(mu) {
    98  		panic(badSizeMismatch)
    99  	}
   100  	// TODO(btracey): Computing a matrix inverse is generally numerically instable.
   101  	// This only has to compute the inverse of a positive definite matrix, which
   102  	// is much better, but this still loses precision. It is worth considering if
   103  	// instead the precision matrix should be stored explicitly and used instead
   104  	// of the Cholesky decomposition of the covariance matrix where appropriate.
   105  	var chol mat.Cholesky
   106  	ok = chol.Factorize(prec)
   107  	if !ok {
   108  		return nil, false
   109  	}
   110  	var sigma mat.SymDense
   111  	err := chol.InverseTo(&sigma)
   112  	if err != nil {
   113  		return nil, false
   114  	}
   115  	return NewNormal(mu, &sigma, src)
   116  }
   117  
   118  // ConditionNormal returns the Normal distribution that is the receiver conditioned
   119  // on the input evidence. The returned multivariate normal has dimension
   120  // n - len(observed), where n is the dimension of the original receiver. The updated
   121  // mean and covariance are
   122  //  mu = mu_un + sigma_{ob,un}ᵀ * sigma_{ob,ob}^-1 (v - mu_ob)
   123  //  sigma = sigma_{un,un} - sigma_{ob,un}ᵀ * sigma_{ob,ob}^-1 * sigma_{ob,un}
   124  // where mu_un and mu_ob are the original means of the unobserved and observed
   125  // variables respectively, sigma_{un,un} is the unobserved subset of the covariance
   126  // matrix, sigma_{ob,ob} is the observed subset of the covariance matrix, and
   127  // sigma_{un,ob} are the cross terms. The elements of x_2 have been observed with
   128  // values v. The dimension order is preserved during conditioning, so if the value
   129  // of dimension 1 is observed, the returned normal represents dimensions {0, 2, ...}
   130  // of the original Normal distribution.
   131  //
   132  // ConditionNormal returns {nil, false} if there is a failure during the update.
   133  // Mathematically this is impossible, but can occur with finite precision arithmetic.
   134  func (n *Normal) ConditionNormal(observed []int, values []float64, src rand.Source) (*Normal, bool) {
   135  	if len(observed) == 0 {
   136  		panic("normal: no observed value")
   137  	}
   138  	if len(observed) != len(values) {
   139  		panic(badInputLength)
   140  	}
   141  	for _, v := range observed {
   142  		if v < 0 || v >= n.Dim() {
   143  			panic("normal: observed value out of bounds")
   144  		}
   145  	}
   146  
   147  	_, mu1, sigma11 := studentsTConditional(observed, values, math.Inf(1), n.mu, &n.sigma)
   148  	if mu1 == nil {
   149  		return nil, false
   150  	}
   151  	return NewNormal(mu1, sigma11, src)
   152  }
   153  
   154  // CovarianceMatrix stores the covariance matrix of the distribution in dst.
   155  // Upon return, the value at element {i, j} of the covariance matrix is equal
   156  // to the covariance of the i^th and j^th variables.
   157  //  covariance(i, j) = E[(x_i - E[x_i])(x_j - E[x_j])]
   158  // If the dst matrix is empty it will be resized to the correct dimensions,
   159  // otherwise dst must match the dimension of the receiver or CovarianceMatrix
   160  // will panic.
   161  func (n *Normal) CovarianceMatrix(dst *mat.SymDense) {
   162  	if dst.IsEmpty() {
   163  		*dst = *(dst.GrowSym(n.dim).(*mat.SymDense))
   164  	} else if dst.SymmetricDim() != n.dim {
   165  		panic("normal: input matrix size mismatch")
   166  	}
   167  	dst.CopySym(&n.sigma)
   168  }
   169  
   170  // Dim returns the dimension of the distribution.
   171  func (n *Normal) Dim() int {
   172  	return n.dim
   173  }
   174  
   175  // Entropy returns the differential entropy of the distribution.
   176  func (n *Normal) Entropy() float64 {
   177  	return float64(n.dim)/2*(1+logTwoPi) + n.logSqrtDet
   178  }
   179  
   180  // LogProb computes the log of the pdf of the point x.
   181  func (n *Normal) LogProb(x []float64) float64 {
   182  	dim := n.dim
   183  	if len(x) != dim {
   184  		panic(badSizeMismatch)
   185  	}
   186  	return normalLogProb(x, n.mu, &n.chol, n.logSqrtDet)
   187  }
   188  
   189  // NormalLogProb computes the log probability of the location x for a Normal
   190  // distribution the given mean and Cholesky decomposition of the covariance matrix.
   191  // NormalLogProb panics if len(x) is not equal to len(mu), or if len(mu) != chol.Size().
   192  //
   193  // This function saves time and memory if the Cholesky decomposition is already
   194  // available. Otherwise, the NewNormal function should be used.
   195  func NormalLogProb(x, mu []float64, chol *mat.Cholesky) float64 {
   196  	dim := len(mu)
   197  	if len(x) != dim {
   198  		panic(badSizeMismatch)
   199  	}
   200  	if chol.SymmetricDim() != dim {
   201  		panic(badSizeMismatch)
   202  	}
   203  	logSqrtDet := 0.5 * chol.LogDet()
   204  	return normalLogProb(x, mu, chol, logSqrtDet)
   205  }
   206  
   207  // normalLogProb is the same as NormalLogProb, but does not make size checks and
   208  // additionally requires log(|Σ|^-0.5)
   209  func normalLogProb(x, mu []float64, chol *mat.Cholesky, logSqrtDet float64) float64 {
   210  	dim := len(mu)
   211  	c := -0.5*float64(dim)*logTwoPi - logSqrtDet
   212  	dst := stat.Mahalanobis(mat.NewVecDense(dim, x), mat.NewVecDense(dim, mu), chol)
   213  	return c - 0.5*dst*dst
   214  }
   215  
   216  // MarginalNormal returns the marginal distribution of the given input variables.
   217  // That is, MarginalNormal returns
   218  //  p(x_i) = \int_{x_o} p(x_i | x_o) p(x_o) dx_o
   219  // where x_i are the dimensions in the input, and x_o are the remaining dimensions.
   220  // See https://en.wikipedia.org/wiki/Marginal_distribution for more information.
   221  //
   222  // The input src is passed to the call to NewNormal.
   223  func (n *Normal) MarginalNormal(vars []int, src rand.Source) (*Normal, bool) {
   224  	newMean := make([]float64, len(vars))
   225  	for i, v := range vars {
   226  		newMean[i] = n.mu[v]
   227  	}
   228  	var s mat.SymDense
   229  	s.SubsetSym(&n.sigma, vars)
   230  	return NewNormal(newMean, &s, src)
   231  }
   232  
   233  // MarginalNormalSingle returns the marginal of the given input variable.
   234  // That is, MarginalNormal returns
   235  //  p(x_i) = \int_{x_¬i} p(x_i | x_¬i) p(x_¬i) dx_¬i
   236  // where i is the input index.
   237  // See https://en.wikipedia.org/wiki/Marginal_distribution for more information.
   238  //
   239  // The input src is passed to the constructed distuv.Normal.
   240  func (n *Normal) MarginalNormalSingle(i int, src rand.Source) distuv.Normal {
   241  	return distuv.Normal{
   242  		Mu:    n.mu[i],
   243  		Sigma: math.Sqrt(n.sigma.At(i, i)),
   244  		Src:   src,
   245  	}
   246  }
   247  
   248  // Mean returns the mean of the probability distribution at x. If the
   249  // input argument is nil, a new slice will be allocated, otherwise the result
   250  // will be put in-place into the receiver.
   251  func (n *Normal) Mean(x []float64) []float64 {
   252  	x = reuseAs(x, n.dim)
   253  	copy(x, n.mu)
   254  	return x
   255  }
   256  
   257  // Prob computes the value of the probability density function at x.
   258  func (n *Normal) Prob(x []float64) float64 {
   259  	return math.Exp(n.LogProb(x))
   260  }
   261  
   262  // Quantile returns the multi-dimensional inverse cumulative distribution function.
   263  // If x is nil, a new slice will be allocated and returned. If x is non-nil,
   264  // len(x) must equal len(p) and the quantile will be stored in-place into x.
   265  // All of the values of p must be between 0 and 1, inclusive, or Quantile will panic.
   266  func (n *Normal) Quantile(x, p []float64) []float64 {
   267  	dim := n.Dim()
   268  	if len(p) != dim {
   269  		panic(badInputLength)
   270  	}
   271  	if x == nil {
   272  		x = make([]float64, dim)
   273  	}
   274  	if len(x) != len(p) {
   275  		panic(badInputLength)
   276  	}
   277  
   278  	// Transform to a standard normal and then transform to a multivariate Gaussian.
   279  	tmp := make([]float64, len(x))
   280  	for i, v := range p {
   281  		tmp[i] = distuv.UnitNormal.Quantile(v)
   282  	}
   283  	n.TransformNormal(x, tmp)
   284  	return x
   285  }
   286  
   287  // Rand generates a random number according to the distributon.
   288  // If the input slice is nil, new memory is allocated, otherwise the result is stored
   289  // in place.
   290  func (n *Normal) Rand(x []float64) []float64 {
   291  	return NormalRand(x, n.mu, &n.chol, n.src)
   292  }
   293  
   294  // NormalRand generates a random number with the given mean and Cholesky
   295  // decomposition of the covariance matrix.
   296  // If x is nil, new memory is allocated and returned, otherwise the result is stored
   297  // in place into x. NormalRand panics if x is non-nil and not equal to len(mu),
   298  // or if len(mu) != chol.Size().
   299  //
   300  // This function saves time and memory if the Cholesky decomposition is already
   301  // available. Otherwise, the NewNormal function should be used.
   302  func NormalRand(x, mean []float64, chol *mat.Cholesky, src rand.Source) []float64 {
   303  	x = reuseAs(x, len(mean))
   304  	if len(mean) != chol.SymmetricDim() {
   305  		panic(badInputLength)
   306  	}
   307  	if src == nil {
   308  		for i := range x {
   309  			x[i] = rand.NormFloat64()
   310  		}
   311  	} else {
   312  		rnd := rand.New(src)
   313  		for i := range x {
   314  			x[i] = rnd.NormFloat64()
   315  		}
   316  	}
   317  	transformNormal(x, x, mean, chol)
   318  	return x
   319  }
   320  
   321  // ScoreInput returns the gradient of the log-probability with respect to the
   322  // input x. That is, ScoreInput computes
   323  //  ∇_x log(p(x))
   324  // If score is nil, a new slice will be allocated and returned. If score is of
   325  // length the dimension of Normal, then the result will be put in-place into score.
   326  // If neither of these is true, ScoreInput will panic.
   327  func (n *Normal) ScoreInput(score, x []float64) []float64 {
   328  	// Normal log probability is
   329  	//  c - 0.5*(x-μ)' Σ^-1 (x-μ).
   330  	// So the derivative is just
   331  	//  -Σ^-1 (x-μ).
   332  	if len(x) != n.Dim() {
   333  		panic(badInputLength)
   334  	}
   335  	if score == nil {
   336  		score = make([]float64, len(x))
   337  	}
   338  	if len(score) != len(x) {
   339  		panic(badSizeMismatch)
   340  	}
   341  	tmp := make([]float64, len(x))
   342  	copy(tmp, x)
   343  	floats.Sub(tmp, n.mu)
   344  
   345  	err := n.chol.SolveVecTo(mat.NewVecDense(len(score), score), mat.NewVecDense(len(tmp), tmp))
   346  	if err != nil {
   347  		panic(err)
   348  	}
   349  	floats.Scale(-1, score)
   350  	return score
   351  }
   352  
   353  // SetMean changes the mean of the normal distribution. SetMean panics if len(mu)
   354  // does not equal the dimension of the normal distribution.
   355  func (n *Normal) SetMean(mu []float64) {
   356  	if len(mu) != n.Dim() {
   357  		panic(badSizeMismatch)
   358  	}
   359  	copy(n.mu, mu)
   360  }
   361  
   362  // TransformNormal transforms the vector, normal, generated from a standard
   363  // multidimensional normal into a vector that has been generated under the
   364  // distribution of the receiver.
   365  //
   366  // If dst is non-nil, the result will be stored into dst, otherwise a new slice
   367  // will be allocated. TransformNormal will panic if the length of normal is not
   368  // the dimension of the receiver, or if dst is non-nil and len(dist) != len(normal).
   369  func (n *Normal) TransformNormal(dst, normal []float64) []float64 {
   370  	if len(normal) != n.dim {
   371  		panic(badInputLength)
   372  	}
   373  	dst = reuseAs(dst, n.dim)
   374  	if len(dst) != len(normal) {
   375  		panic(badInputLength)
   376  	}
   377  	transformNormal(dst, normal, n.mu, &n.chol)
   378  	return dst
   379  }
   380  
   381  // transformNormal performs the same operation as Normal.TransformNormal except
   382  // no safety checks are performed and all memory must be provided.
   383  func transformNormal(dst, normal, mu []float64, chol *mat.Cholesky) []float64 {
   384  	dim := len(mu)
   385  	dstVec := mat.NewVecDense(dim, dst)
   386  	srcVec := mat.NewVecDense(dim, normal)
   387  	// If dst and normal are the same slice, make them the same Vector otherwise
   388  	// mat complains about being tricky.
   389  	if &normal[0] == &dst[0] {
   390  		srcVec = dstVec
   391  	}
   392  	dstVec.MulVec(chol.RawU().T(), srcVec)
   393  	floats.Add(dst, mu)
   394  	return dst
   395  }