github.com/gopherd/gonum@v0.0.4/stat/distmv/normal_test.go (about)

     1  // Copyright ©2015 The Gonum Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package distmv
     6  
     7  import (
     8  	"math"
     9  	"testing"
    10  
    11  	"math/rand"
    12  
    13  	"github.com/gopherd/gonum/diff/fd"
    14  	"github.com/gopherd/gonum/floats"
    15  	"github.com/gopherd/gonum/mat"
    16  	"github.com/gopherd/gonum/stat"
    17  )
    18  
    19  func TestNormProbs(t *testing.T) {
    20  	dist1, ok := NewNormal([]float64{0, 0}, mat.NewSymDense(2, []float64{1, 0, 0, 1}), nil)
    21  	if !ok {
    22  		t.Errorf("bad test")
    23  	}
    24  	dist2, ok := NewNormal([]float64{6, 7}, mat.NewSymDense(2, []float64{8, 2, 0, 4}), nil)
    25  	if !ok {
    26  		t.Errorf("bad test")
    27  	}
    28  	testProbability(t, []probCase{
    29  		{
    30  			dist:    dist1,
    31  			loc:     []float64{0, 0},
    32  			logProb: -1.837877066409345,
    33  		},
    34  		{
    35  			dist:    dist2,
    36  			loc:     []float64{6, 7},
    37  			logProb: -3.503979321496947,
    38  		},
    39  		{
    40  			dist:    dist2,
    41  			loc:     []float64{1, 2},
    42  			logProb: -7.075407892925519,
    43  		},
    44  	})
    45  }
    46  
    47  func TestNewNormalChol(t *testing.T) {
    48  	for _, test := range []struct {
    49  		mean []float64
    50  		cov  *mat.SymDense
    51  	}{
    52  		{
    53  			mean: []float64{2, 3},
    54  			cov:  mat.NewSymDense(2, []float64{1, 0.1, 0.1, 1}),
    55  		},
    56  	} {
    57  		var chol mat.Cholesky
    58  		ok := chol.Factorize(test.cov)
    59  		if !ok {
    60  			panic("bad test")
    61  		}
    62  		n := NewNormalChol(test.mean, &chol, nil)
    63  		// Generate a random number and calculate probability to ensure things
    64  		// have been set properly. See issue #426.
    65  		x := n.Rand(nil)
    66  		_ = n.Prob(x)
    67  	}
    68  }
    69  
    70  func TestNormRand(t *testing.T) {
    71  	for _, test := range []struct {
    72  		mean []float64
    73  		cov  []float64
    74  	}{
    75  		{
    76  			mean: []float64{0, 0},
    77  			cov: []float64{
    78  				1, 0,
    79  				0, 1,
    80  			},
    81  		},
    82  		{
    83  			mean: []float64{0, 0},
    84  			cov: []float64{
    85  				1, 0.9,
    86  				0.9, 1,
    87  			},
    88  		},
    89  		{
    90  			mean: []float64{6, 7},
    91  			cov: []float64{
    92  				5, 0.9,
    93  				0.9, 2,
    94  			},
    95  		},
    96  	} {
    97  		dim := len(test.mean)
    98  		cov := mat.NewSymDense(dim, test.cov)
    99  		n, ok := NewNormal(test.mean, cov, nil)
   100  		if !ok {
   101  			t.Errorf("bad covariance matrix")
   102  		}
   103  
   104  		nSamples := 1000000
   105  		samps := mat.NewDense(nSamples, dim, nil)
   106  		for i := 0; i < nSamples; i++ {
   107  			n.Rand(samps.RawRowView(i))
   108  		}
   109  		estMean := make([]float64, dim)
   110  		for i := range estMean {
   111  			estMean[i] = stat.Mean(mat.Col(nil, i, samps), nil)
   112  		}
   113  		if !floats.EqualApprox(estMean, test.mean, 1e-2) {
   114  			t.Errorf("Mean mismatch: want: %v, got %v", test.mean, estMean)
   115  		}
   116  		var estCov mat.SymDense
   117  		stat.CovarianceMatrix(&estCov, samps, nil)
   118  		if !mat.EqualApprox(&estCov, cov, 1e-2) {
   119  			t.Errorf("Cov mismatch: want: %v, got %v", cov, &estCov)
   120  		}
   121  	}
   122  }
   123  
   124  func TestNormalQuantile(t *testing.T) {
   125  	for _, test := range []struct {
   126  		mean []float64
   127  		cov  []float64
   128  	}{
   129  		{
   130  			mean: []float64{6, 7},
   131  			cov: []float64{
   132  				5, 0.9,
   133  				0.9, 2,
   134  			},
   135  		},
   136  	} {
   137  		dim := len(test.mean)
   138  		cov := mat.NewSymDense(dim, test.cov)
   139  		n, ok := NewNormal(test.mean, cov, nil)
   140  		if !ok {
   141  			t.Errorf("bad covariance matrix")
   142  		}
   143  
   144  		nSamples := 1000000
   145  		rnd := rand.New(rand.NewSource(1))
   146  		samps := mat.NewDense(nSamples, dim, nil)
   147  		tmp := make([]float64, dim)
   148  		for i := 0; i < nSamples; i++ {
   149  			for j := range tmp {
   150  				tmp[j] = rnd.Float64()
   151  			}
   152  			n.Quantile(samps.RawRowView(i), tmp)
   153  		}
   154  		estMean := make([]float64, dim)
   155  		for i := range estMean {
   156  			estMean[i] = stat.Mean(mat.Col(nil, i, samps), nil)
   157  		}
   158  		if !floats.EqualApprox(estMean, test.mean, 1e-2) {
   159  			t.Errorf("Mean mismatch: want: %v, got %v", test.mean, estMean)
   160  		}
   161  		var estCov mat.SymDense
   162  		stat.CovarianceMatrix(&estCov, samps, nil)
   163  		if !mat.EqualApprox(&estCov, cov, 1e-2) {
   164  			t.Errorf("Cov mismatch: want: %v, got %v", cov, &estCov)
   165  		}
   166  	}
   167  }
   168  
   169  func TestConditionNormal(t *testing.T) {
   170  	// Uncorrelated values shouldn't influence the updated values.
   171  	for _, test := range []struct {
   172  		mu       []float64
   173  		sigma    *mat.SymDense
   174  		observed []int
   175  		values   []float64
   176  
   177  		newMu    []float64
   178  		newSigma *mat.SymDense
   179  	}{
   180  		{
   181  			mu:       []float64{2, 3},
   182  			sigma:    mat.NewSymDense(2, []float64{2, 0, 0, 5}),
   183  			observed: []int{0},
   184  			values:   []float64{10},
   185  
   186  			newMu:    []float64{3},
   187  			newSigma: mat.NewSymDense(1, []float64{5}),
   188  		},
   189  		{
   190  			mu:       []float64{2, 3},
   191  			sigma:    mat.NewSymDense(2, []float64{2, 0, 0, 5}),
   192  			observed: []int{1},
   193  			values:   []float64{10},
   194  
   195  			newMu:    []float64{2},
   196  			newSigma: mat.NewSymDense(1, []float64{2}),
   197  		},
   198  		{
   199  			mu:       []float64{2, 3, 4},
   200  			sigma:    mat.NewSymDense(3, []float64{2, 0, 0, 0, 5, 0, 0, 0, 10}),
   201  			observed: []int{1},
   202  			values:   []float64{10},
   203  
   204  			newMu:    []float64{2, 4},
   205  			newSigma: mat.NewSymDense(2, []float64{2, 0, 0, 10}),
   206  		},
   207  		{
   208  			mu:       []float64{2, 3, 4},
   209  			sigma:    mat.NewSymDense(3, []float64{2, 0, 0, 0, 5, 0, 0, 0, 10}),
   210  			observed: []int{0, 1},
   211  			values:   []float64{10, 15},
   212  
   213  			newMu:    []float64{4},
   214  			newSigma: mat.NewSymDense(1, []float64{10}),
   215  		},
   216  		{
   217  			mu:       []float64{2, 3, 4, 5},
   218  			sigma:    mat.NewSymDense(4, []float64{2, 0.5, 0, 0, 0.5, 5, 0, 0, 0, 0, 10, 2, 0, 0, 2, 3}),
   219  			observed: []int{0, 1},
   220  			values:   []float64{10, 15},
   221  
   222  			newMu:    []float64{4, 5},
   223  			newSigma: mat.NewSymDense(2, []float64{10, 2, 2, 3}),
   224  		},
   225  	} {
   226  		normal, ok := NewNormal(test.mu, test.sigma, nil)
   227  		if !ok {
   228  			t.Fatalf("Bad test, original sigma not positive definite")
   229  		}
   230  		newNormal, ok := normal.ConditionNormal(test.observed, test.values, nil)
   231  		if !ok {
   232  			t.Fatalf("Bad test, update failure")
   233  		}
   234  
   235  		if !floats.EqualApprox(test.newMu, newNormal.mu, 1e-12) {
   236  			t.Errorf("Updated mean mismatch. Want %v, got %v.", test.newMu, newNormal.mu)
   237  		}
   238  
   239  		var sigma mat.SymDense
   240  		newNormal.chol.ToSym(&sigma)
   241  		if !mat.EqualApprox(test.newSigma, &sigma, 1e-12) {
   242  			t.Errorf("Updated sigma mismatch\n.Want:\n% v\nGot:\n% v\n", test.newSigma, sigma)
   243  		}
   244  	}
   245  
   246  	// Test bivariate case where the update rule is analytic
   247  	for _, test := range []struct {
   248  		mu    []float64
   249  		std   []float64
   250  		rho   float64
   251  		value float64
   252  	}{
   253  		{
   254  			mu:    []float64{2, 3},
   255  			std:   []float64{3, 5},
   256  			rho:   0.9,
   257  			value: 1000,
   258  		},
   259  		{
   260  			mu:    []float64{2, 3},
   261  			std:   []float64{3, 5},
   262  			rho:   -0.9,
   263  			value: 1000,
   264  		},
   265  	} {
   266  		std := test.std
   267  		rho := test.rho
   268  		sigma := mat.NewSymDense(2, []float64{std[0] * std[0], std[0] * std[1] * rho, std[0] * std[1] * rho, std[1] * std[1]})
   269  		normal, ok := NewNormal(test.mu, sigma, nil)
   270  		if !ok {
   271  			t.Fatalf("Bad test, original sigma not positive definite")
   272  		}
   273  		newNormal, ok := normal.ConditionNormal([]int{1}, []float64{test.value}, nil)
   274  		if !ok {
   275  			t.Fatalf("Bad test, update failed")
   276  		}
   277  		var newSigma mat.SymDense
   278  		newNormal.chol.ToSym(&newSigma)
   279  		trueMean := test.mu[0] + rho*(std[0]/std[1])*(test.value-test.mu[1])
   280  		if math.Abs(trueMean-newNormal.mu[0]) > 1e-14 {
   281  			t.Errorf("Mean mismatch. Want %v, got %v", trueMean, newNormal.mu[0])
   282  		}
   283  		trueVar := (1 - rho*rho) * std[0] * std[0]
   284  		if math.Abs(trueVar-newSigma.At(0, 0)) > 1e-14 {
   285  			t.Errorf("Std mismatch. Want %v, got %v", trueMean, newNormal.mu[0])
   286  		}
   287  	}
   288  
   289  	// Test via sampling.
   290  	for _, test := range []struct {
   291  		mu         []float64
   292  		sigma      *mat.SymDense
   293  		observed   []int
   294  		unobserved []int
   295  		value      []float64
   296  	}{
   297  		// The indices in unobserved must be in ascending order for this test.
   298  		{
   299  			mu:    []float64{2, 3, 4},
   300  			sigma: mat.NewSymDense(3, []float64{2, 0.5, 3, 0.5, 1, 0.6, 3, 0.6, 10}),
   301  
   302  			observed:   []int{0},
   303  			unobserved: []int{1, 2},
   304  			value:      []float64{1.9},
   305  		},
   306  		{
   307  			mu:    []float64{2, 3, 4, 5},
   308  			sigma: mat.NewSymDense(4, []float64{2, 0.5, 3, 0.1, 0.5, 1, 0.6, 0.2, 3, 0.6, 10, 0.3, 0.1, 0.2, 0.3, 3}),
   309  
   310  			observed:   []int{0, 3},
   311  			unobserved: []int{1, 2},
   312  			value:      []float64{1.9, 2.9},
   313  		},
   314  	} {
   315  		totalSamp := 4000000
   316  		var nSamp int
   317  		samples := mat.NewDense(totalSamp, len(test.mu), nil)
   318  		normal, ok := NewNormal(test.mu, test.sigma, nil)
   319  		if !ok {
   320  			t.Errorf("bad test")
   321  		}
   322  		sample := make([]float64, len(test.mu))
   323  		for i := 0; i < totalSamp; i++ {
   324  			normal.Rand(sample)
   325  			isClose := true
   326  			for i, v := range test.observed {
   327  				if math.Abs(sample[v]-test.value[i]) > 1e-1 {
   328  					isClose = false
   329  					break
   330  				}
   331  			}
   332  			if isClose {
   333  				samples.SetRow(nSamp, sample)
   334  				nSamp++
   335  			}
   336  		}
   337  
   338  		if nSamp < 100 {
   339  			t.Errorf("bad test, not enough samples")
   340  			continue
   341  		}
   342  		samples = samples.Slice(0, nSamp, 0, len(test.mu)).(*mat.Dense)
   343  
   344  		// Compute mean and covariance matrix.
   345  		estMean := make([]float64, len(test.mu))
   346  		for i := range estMean {
   347  			estMean[i] = stat.Mean(mat.Col(nil, i, samples), nil)
   348  		}
   349  		var estCov mat.SymDense
   350  		stat.CovarianceMatrix(&estCov, samples, nil)
   351  
   352  		// Compute update rule.
   353  		newNormal, ok := normal.ConditionNormal(test.observed, test.value, nil)
   354  		if !ok {
   355  			t.Fatalf("Bad test, update failure")
   356  		}
   357  
   358  		var subEstMean []float64
   359  		for _, v := range test.unobserved {
   360  
   361  			subEstMean = append(subEstMean, estMean[v])
   362  		}
   363  		subEstCov := mat.NewSymDense(len(test.unobserved), nil)
   364  		for i := 0; i < len(test.unobserved); i++ {
   365  			for j := i; j < len(test.unobserved); j++ {
   366  				subEstCov.SetSym(i, j, estCov.At(test.unobserved[i], test.unobserved[j]))
   367  			}
   368  		}
   369  
   370  		for i, v := range subEstMean {
   371  			if math.Abs(newNormal.mu[i]-v) > 5e-2 {
   372  				t.Errorf("Mean mismatch. Want %v, got %v.", newNormal.mu[i], v)
   373  			}
   374  		}
   375  		var sigma mat.SymDense
   376  		newNormal.chol.ToSym(&sigma)
   377  		if !mat.EqualApprox(&sigma, subEstCov, 1e-1) {
   378  			t.Errorf("Covariance mismatch. Want:\n%0.8v\nGot:\n%0.8v\n", subEstCov, sigma)
   379  		}
   380  	}
   381  }
   382  
   383  func TestCovarianceMatrix(t *testing.T) {
   384  	for _, test := range []struct {
   385  		mu    []float64
   386  		sigma *mat.SymDense
   387  	}{
   388  		{
   389  			mu:    []float64{2, 3, 4},
   390  			sigma: mat.NewSymDense(3, []float64{1, 0.5, 3, 0.5, 8, -1, 3, -1, 15}),
   391  		},
   392  	} {
   393  		normal, ok := NewNormal(test.mu, test.sigma, nil)
   394  		if !ok {
   395  			t.Fatalf("Bad test, covariance matrix not positive definite")
   396  		}
   397  		var cov mat.SymDense
   398  		normal.CovarianceMatrix(&cov)
   399  		if !mat.EqualApprox(&cov, test.sigma, 1e-14) {
   400  			t.Errorf("Covariance mismatch with nil input")
   401  		}
   402  		dim := test.sigma.SymmetricDim()
   403  		cov = *mat.NewSymDense(dim, nil)
   404  		normal.CovarianceMatrix(&cov)
   405  		if !mat.EqualApprox(&cov, test.sigma, 1e-14) {
   406  			t.Errorf("Covariance mismatch with supplied input")
   407  		}
   408  	}
   409  }
   410  
   411  func TestMarginal(t *testing.T) {
   412  	for _, test := range []struct {
   413  		mu       []float64
   414  		sigma    *mat.SymDense
   415  		marginal []int
   416  	}{
   417  		{
   418  			mu:       []float64{2, 3, 4},
   419  			sigma:    mat.NewSymDense(3, []float64{2, 0.5, 3, 0.5, 1, 0.6, 3, 0.6, 10}),
   420  			marginal: []int{0},
   421  		},
   422  		{
   423  			mu:       []float64{2, 3, 4},
   424  			sigma:    mat.NewSymDense(3, []float64{2, 0.5, 3, 0.5, 1, 0.6, 3, 0.6, 10}),
   425  			marginal: []int{0, 2},
   426  		},
   427  		{
   428  			mu:    []float64{2, 3, 4, 5},
   429  			sigma: mat.NewSymDense(4, []float64{2, 0.5, 3, 0.1, 0.5, 1, 0.6, 0.2, 3, 0.6, 10, 0.3, 0.1, 0.2, 0.3, 3}),
   430  
   431  			marginal: []int{0, 3},
   432  		},
   433  	} {
   434  		normal, ok := NewNormal(test.mu, test.sigma, nil)
   435  		if !ok {
   436  			t.Fatalf("Bad test, covariance matrix not positive definite")
   437  		}
   438  		marginal, ok := normal.MarginalNormal(test.marginal, nil)
   439  		if !ok {
   440  			t.Fatalf("Bad test, marginal matrix not positive definite")
   441  		}
   442  		dim := normal.Dim()
   443  		nSamples := 1000000
   444  		samps := mat.NewDense(nSamples, dim, nil)
   445  		for i := 0; i < nSamples; i++ {
   446  			normal.Rand(samps.RawRowView(i))
   447  		}
   448  		estMean := make([]float64, dim)
   449  		for i := range estMean {
   450  			estMean[i] = stat.Mean(mat.Col(nil, i, samps), nil)
   451  		}
   452  		for i, v := range test.marginal {
   453  			if math.Abs(marginal.mu[i]-estMean[v]) > 1e-2 {
   454  				t.Errorf("Mean mismatch: want: %v, got %v", estMean[v], marginal.mu[i])
   455  			}
   456  		}
   457  
   458  		var marginalCov mat.SymDense
   459  		marginal.CovarianceMatrix(&marginalCov)
   460  		var estCov mat.SymDense
   461  		stat.CovarianceMatrix(&estCov, samps, nil)
   462  		for i, v1 := range test.marginal {
   463  			for j, v2 := range test.marginal {
   464  				c := marginalCov.At(i, j)
   465  				ec := estCov.At(v1, v2)
   466  				if math.Abs(c-ec) > 5e-2 {
   467  					t.Errorf("Cov mismatch element i = %d, j = %d: want: %v, got %v", i, j, c, ec)
   468  				}
   469  			}
   470  		}
   471  	}
   472  }
   473  
   474  func TestMarginalSingle(t *testing.T) {
   475  	for _, test := range []struct {
   476  		mu    []float64
   477  		sigma *mat.SymDense
   478  	}{
   479  		{
   480  			mu:    []float64{2, 3, 4},
   481  			sigma: mat.NewSymDense(3, []float64{2, 0.5, 3, 0.5, 1, 0.6, 3, 0.6, 10}),
   482  		},
   483  		{
   484  			mu:    []float64{2, 3, 4, 5},
   485  			sigma: mat.NewSymDense(4, []float64{2, 0.5, 3, 0.1, 0.5, 1, 0.6, 0.2, 3, 0.6, 10, 0.3, 0.1, 0.2, 0.3, 3}),
   486  		},
   487  	} {
   488  		normal, ok := NewNormal(test.mu, test.sigma, nil)
   489  		if !ok {
   490  			t.Fatalf("Bad test, covariance matrix not positive definite")
   491  		}
   492  		for i, mean := range test.mu {
   493  			norm := normal.MarginalNormalSingle(i, nil)
   494  			if norm.Mean() != mean {
   495  				t.Errorf("Mean mismatch nil Sigma, idx %v: want %v, got %v.", i, mean, norm.Mean())
   496  			}
   497  			std := math.Sqrt(test.sigma.At(i, i))
   498  			if math.Abs(norm.StdDev()-std) > 1e-14 {
   499  				t.Errorf("StdDev mismatch nil Sigma, idx %v: want %v, got %v.", i, std, norm.StdDev())
   500  			}
   501  		}
   502  	}
   503  
   504  	// Test matching with TestMarginal.
   505  	rnd := rand.New(rand.NewSource(1))
   506  	for cas := 0; cas < 10; cas++ {
   507  		dim := rnd.Intn(10) + 1
   508  		mu := make([]float64, dim)
   509  		for i := range mu {
   510  			mu[i] = rnd.Float64()
   511  		}
   512  		x := make([]float64, dim*dim)
   513  		for i := range x {
   514  			x[i] = rnd.Float64()
   515  		}
   516  		matrix := mat.NewDense(dim, dim, x)
   517  		var sigma mat.SymDense
   518  		sigma.SymOuterK(1, matrix)
   519  
   520  		normal, ok := NewNormal(mu, &sigma, nil)
   521  		if !ok {
   522  			t.Fatal("bad test")
   523  		}
   524  		for i := 0; i < dim; i++ {
   525  			single := normal.MarginalNormalSingle(i, nil)
   526  			mult, ok := normal.MarginalNormal([]int{i}, nil)
   527  			if !ok {
   528  				t.Fatal("bad test")
   529  			}
   530  			if math.Abs(single.Mean()-mult.Mean(nil)[0]) > 1e-14 {
   531  				t.Errorf("Mean mismatch")
   532  			}
   533  			var cov mat.SymDense
   534  			mult.CovarianceMatrix(&cov)
   535  			if math.Abs(single.Variance()-cov.At(0, 0)) > 1e-14 {
   536  				t.Errorf("Variance mismatch")
   537  			}
   538  		}
   539  	}
   540  }
   541  
   542  func TestNormalScoreInput(t *testing.T) {
   543  	for cas, test := range []struct {
   544  		mu    []float64
   545  		sigma *mat.SymDense
   546  		x     []float64
   547  	}{
   548  		{
   549  			mu:    []float64{2, 3, 4},
   550  			sigma: mat.NewSymDense(3, []float64{2, 0.5, 3, 0.5, 1, 0.6, 3, 0.6, 10}),
   551  			x:     []float64{1, 3.1, -2},
   552  		},
   553  		{
   554  			mu:    []float64{2, 3, 4, 5},
   555  			sigma: mat.NewSymDense(4, []float64{2, 0.5, 3, 0.1, 0.5, 1, 0.6, 0.2, 3, 0.6, 10, 0.3, 0.1, 0.2, 0.3, 3}),
   556  			x:     []float64{1, 3.1, -2, 5},
   557  		},
   558  	} {
   559  		normal, ok := NewNormal(test.mu, test.sigma, nil)
   560  		if !ok {
   561  			t.Fatalf("Bad test, covariance matrix not positive definite")
   562  		}
   563  		x := make([]float64, len(test.x))
   564  		copy(x, test.x)
   565  		score := normal.ScoreInput(nil, x)
   566  		if !floats.Equal(x, test.x) {
   567  			t.Errorf("x modified during call to ScoreInput")
   568  		}
   569  		scoreFD := fd.Gradient(nil, normal.LogProb, x, nil)
   570  		if !floats.EqualApprox(score, scoreFD, 1e-4) {
   571  			t.Errorf("Case %d: derivative mismatch. Got %v, want %v", cas, score, scoreFD)
   572  		}
   573  	}
   574  }