github.com/gopherd/gonum@v0.0.4/stat/distuv/pareto_test.go (about) 1 // Copyright ©2017 The Gonum Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package distuv 6 7 import ( 8 "math" 9 "sort" 10 "testing" 11 12 "math/rand" 13 14 "github.com/gopherd/gonum/floats/scalar" 15 ) 16 17 func TestParetoProb(t *testing.T) { 18 t.Parallel() 19 for _, test := range []struct { 20 x, xm, alpha, want float64 21 }{ 22 {0, 1, 1, 0}, 23 {0.5, 1, 1, 0}, 24 {1, 1, 1, 1.0}, 25 {1.5, 1, 1, 0.444444444444444}, 26 {2, 1, 1, 0.25}, 27 {2.5, 1, 1, 0.16}, 28 {3, 1, 1, 0.1111111111111111}, 29 {3.5, 1, 1, 0.081632653061224}, 30 {4, 1, 1, 0.0625}, 31 {4.5, 1, 1, 0.049382716049383}, 32 {5, 1, 1, 0.04}, 33 34 {0, 1, 2, 0}, 35 {0.5, 1, 2, 0}, 36 {1, 1, 2, 2}, 37 {1.5, 1, 2, 0.592592592592593}, 38 {2, 1, 2, 0.25}, 39 {2.5, 1, 2, 0.128}, 40 {3, 1, 2, 0.074074074074074}, 41 {3.5, 1, 2, 0.046647230320700}, 42 {4, 1, 2, 0.03125}, 43 {4.5, 1, 2, 0.021947873799726}, 44 {5, 1, 2, 0.016}, 45 46 {0, 1, 3, 0}, 47 {0.5, 1, 3, 0}, 48 {1, 1, 3, 3.0}, 49 {1.5, 1, 3, 0.592592592592593}, 50 {2, 1, 3, 0.1875}, 51 {2.5, 1, 3, 0.0768}, 52 {3, 1, 3, 0.037037037037037}, 53 {3.5, 1, 3, 0.019991670137443}, 54 {4, 1, 3, 0.011718750000000}, 55 {4.5, 1, 3, 0.007315957933242}, 56 {5, 1, 3, 0.0048}, 57 } { 58 pdf := Pareto{test.xm, test.alpha, nil}.Prob(test.x) 59 if !scalar.EqualWithinAbsOrRel(pdf, test.want, 1e-10, 1e-10) { 60 t.Errorf("Pdf mismatch, x = %v, xm = %v, alpha = %v. Got %v, want %v", test.x, test.xm, test.alpha, pdf, test.want) 61 } 62 } 63 } 64 65 func TestParetoCDF(t *testing.T) { 66 t.Parallel() 67 for _, test := range []struct { 68 x, xm, alpha, want float64 69 }{ 70 {0, 1, 1, 0}, 71 {0.5, 1, 1, 0}, 72 {1, 1, 1, 0}, 73 {1.5, 1, 1, 0.333333333333333}, 74 {2, 1, 1, 0.5}, 75 {2.5, 1, 1, 0.6}, 76 {3, 1, 1, 0.666666666666667}, 77 {3.5, 1, 1, 0.714285714285714}, 78 {4, 1, 1, 0.75}, 79 {4.5, 1, 1, 0.777777777777778}, 80 {5, 1, 1, 0.80}, 81 {5.5, 1, 1, 0.818181818181818}, 82 {6, 1, 1, 0.833333333333333}, 83 {6.5, 1, 1, 0.846153846153846}, 84 {7, 1, 1, 0.857142857142857}, 85 {7.5, 1, 1, 0.866666666666667}, 86 {8, 1, 1, 0.875}, 87 {8.5, 1, 1, 0.882352941176471}, 88 {9, 1, 1, 0.888888888888889}, 89 {9.5, 1, 1, 0.894736842105263}, 90 {10, 1, 1, 0.90}, 91 92 {0, 1, 2, 0}, 93 {0.5, 1, 2, 0}, 94 {1, 1, 2, 0}, 95 {1.5, 1, 2, 0.555555555555556}, 96 {2, 1, 2, 0.75}, 97 {2.5, 1, 2, 0.84}, 98 {3, 1, 2, 0.888888888888889}, 99 {3.5, 1, 2, 0.918367346938776}, 100 {4, 1, 2, 0.9375}, 101 {4.5, 1, 2, 0.950617283950617}, 102 {5, 1, 2, 0.96}, 103 {5.5, 1, 2, 0.966942148760331}, 104 {6, 1, 2, 0.972222222222222}, 105 {6.5, 1, 2, 0.976331360946746}, 106 {7, 1, 2, 0.979591836734694}, 107 {7.5, 1, 2, 0.982222222222222}, 108 {8, 1, 2, 0.984375000000000}, 109 {8.5, 1, 2, 0.986159169550173}, 110 {9, 1, 2, 0.987654320987654}, 111 {9.5, 1, 2, 0.988919667590028}, 112 {10, 1, 2, 0.99}, 113 114 {0, 1, 3, 0}, 115 {0.5, 1, 3, 0}, 116 {1, 1, 3, 0}, 117 {1.5, 1, 3, 0.703703703703704}, 118 {2, 1, 3, 0.875}, 119 {2.5, 1, 3, 0.936}, 120 {3, 1, 3, 0.962962962962963}, 121 {3.5, 1, 3, 0.976676384839650}, 122 {4, 1, 3, 0.984375000000000}, 123 {4.5, 1, 3, 0.989026063100137}, 124 {5, 1, 3, 0.992}, 125 {5.5, 1, 3, 0.993989481592787}, 126 {6, 1, 3, 0.995370370370370}, 127 {6.5, 1, 3, 0.996358670914884}, 128 {7, 1, 3, 0.997084548104956}, 129 {7.5, 1, 3, 0.997629629629630}, 130 {8, 1, 3, 0.998046875000000}, 131 {8.5, 1, 3, 0.998371667005903}, 132 {9, 1, 3, 0.998628257887517}, 133 {9.5, 1, 3, 0.998833649220003}, 134 {10, 1, 3, 0.999}, 135 } { 136 cdf := Pareto{test.xm, test.alpha, nil}.CDF(test.x) 137 if !scalar.EqualWithinAbsOrRel(cdf, test.want, 1e-10, 1e-10) { 138 t.Errorf("CDF mismatch, x = %v, xm = %v, alpha = %v. Got %v, want %v", test.x, test.xm, test.alpha, cdf, test.want) 139 } 140 } 141 } 142 143 func TestPareto(t *testing.T) { 144 t.Parallel() 145 src := rand.New(rand.NewSource(1)) 146 for i, p := range []Pareto{ 147 {1, 10, src}, 148 {1, 20, src}, 149 } { 150 testPareto(t, p, i) 151 } 152 } 153 154 func testPareto(t *testing.T, p Pareto, i int) { 155 const ( 156 tol = 1e-2 157 n = 1e6 158 bins = 50 159 ) 160 x := make([]float64, n) 161 generateSamples(x, p) 162 sort.Float64s(x) 163 164 checkQuantileCDFSurvival(t, i, x, p, 1e-3) 165 testRandLogProbContinuous(t, i, 0, x, p, tol, bins) 166 checkMean(t, i, x, p, tol) 167 checkVarAndStd(t, i, x, p, tol) 168 checkExKurtosis(t, i, x, p, 7e-2) 169 checkProbContinuous(t, i, x, p.Xm, math.Inf(1), p, 1e-10) 170 checkEntropy(t, i, x, p, 1e-2) 171 checkMedian(t, i, x, p, 1e-3) 172 173 if p.Xm != p.Mode() { 174 t.Errorf("Mismatch in mode value: got %v, want %g", p.Mode(), p.Xm) 175 } 176 if p.NumParameters() != 2 { 177 t.Errorf("Mismatch in NumParameters: got %v, want 2", p.NumParameters()) 178 } 179 surv := p.Survival(p.Xm - 0.0001) 180 if surv != 1 { 181 t.Errorf("Mismatch in Survival below Xm: got %v, want 1", surv) 182 } 183 } 184 185 func TestParetoNotExists(t *testing.T) { 186 t.Parallel() 187 p := Pareto{0, 4, nil} 188 exKurt := p.ExKurtosis() 189 if !math.IsNaN(exKurt) { 190 t.Errorf("Expected NaN excess kurtosis for Alpha == 4, got %v", exKurt) 191 } 192 p = Pareto{0, 1, nil} 193 mean := p.Mean() 194 if !math.IsInf(mean, 1) { 195 t.Errorf("Expected mean == +Inf for Alpha == 1, got %v", mean) 196 } 197 p = Pareto{0, 2, nil} 198 variance := p.Variance() 199 if !math.IsInf(variance, 1) { 200 t.Errorf("Expected variance == +Inf for Alpha == 1, got %v", variance) 201 } 202 stdDev := p.StdDev() 203 if !math.IsInf(stdDev, 1) { 204 t.Errorf("Expected standard deviation == +Inf for Alpha == 1, got %v", stdDev) 205 } 206 } 207 208 func BenchmarkParetoRand(b *testing.B) { 209 src := rand.New(rand.NewSource(1)) 210 p := Pareto{1, 1, src} 211 for i := 0; i < b.N; i++ { 212 p.Rand() 213 } 214 }