github.com/gopherd/gonum@v0.0.4/stat/distuv/uniform.go (about)

     1  // Copyright ©2014 The Gonum Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package distuv
     6  
     7  import (
     8  	"math"
     9  
    10  	"math/rand"
    11  )
    12  
    13  // UnitUniform is an instantiation of the uniform distribution with Min = 0
    14  // and Max = 1.
    15  var UnitUniform = Uniform{Min: 0, Max: 1}
    16  
    17  // Uniform represents a continuous uniform distribution (https://en.wikipedia.org/wiki/Uniform_distribution_%28continuous%29).
    18  type Uniform struct {
    19  	Min float64
    20  	Max float64
    21  	Src rand.Source
    22  }
    23  
    24  // CDF computes the value of the cumulative density function at x.
    25  func (u Uniform) CDF(x float64) float64 {
    26  	if x < u.Min {
    27  		return 0
    28  	}
    29  	if x > u.Max {
    30  		return 1
    31  	}
    32  	return (x - u.Min) / (u.Max - u.Min)
    33  }
    34  
    35  // Uniform doesn't have any of the DLogProbD? because the derivative is 0 everywhere
    36  // except where it's undefined
    37  
    38  // Entropy returns the entropy of the distribution.
    39  func (u Uniform) Entropy() float64 {
    40  	return math.Log(u.Max - u.Min)
    41  }
    42  
    43  // ExKurtosis returns the excess kurtosis of the distribution.
    44  func (Uniform) ExKurtosis() float64 {
    45  	return -6.0 / 5.0
    46  }
    47  
    48  // Uniform doesn't have Fit because it's a bad idea to fit a uniform from data.
    49  
    50  // LogProb computes the natural logarithm of the value of the probability density function at x.
    51  func (u Uniform) LogProb(x float64) float64 {
    52  	if x < u.Min {
    53  		return math.Inf(-1)
    54  	}
    55  	if x > u.Max {
    56  		return math.Inf(-1)
    57  	}
    58  	return -math.Log(u.Max - u.Min)
    59  }
    60  
    61  // parameters returns the parameters of the distribution.
    62  func (u Uniform) parameters(p []Parameter) []Parameter {
    63  	nParam := u.NumParameters()
    64  	if p == nil {
    65  		p = make([]Parameter, nParam)
    66  	} else if len(p) != nParam {
    67  		panic("uniform: improper parameter length")
    68  	}
    69  	p[0].Name = "Min"
    70  	p[0].Value = u.Min
    71  	p[1].Name = "Max"
    72  	p[1].Value = u.Max
    73  	return p
    74  }
    75  
    76  // Mean returns the mean of the probability distribution.
    77  func (u Uniform) Mean() float64 {
    78  	return (u.Max + u.Min) / 2
    79  }
    80  
    81  // Median returns the median of the probability distribution.
    82  func (u Uniform) Median() float64 {
    83  	return (u.Max + u.Min) / 2
    84  }
    85  
    86  // Uniform doesn't have a mode because it's any value in the distribution
    87  
    88  // NumParameters returns the number of parameters in the distribution.
    89  func (Uniform) NumParameters() int {
    90  	return 2
    91  }
    92  
    93  // Prob computes the value of the probability density function at x.
    94  func (u Uniform) Prob(x float64) float64 {
    95  	if x < u.Min {
    96  		return 0
    97  	}
    98  	if x > u.Max {
    99  		return 0
   100  	}
   101  	return 1 / (u.Max - u.Min)
   102  }
   103  
   104  // Quantile returns the inverse of the cumulative probability distribution.
   105  func (u Uniform) Quantile(p float64) float64 {
   106  	if p < 0 || p > 1 {
   107  		panic(badPercentile)
   108  	}
   109  	return p*(u.Max-u.Min) + u.Min
   110  }
   111  
   112  // Rand returns a random sample drawn from the distribution.
   113  func (u Uniform) Rand() float64 {
   114  	var rnd float64
   115  	if u.Src == nil {
   116  		rnd = rand.Float64()
   117  	} else {
   118  		rnd = rand.New(u.Src).Float64()
   119  	}
   120  	return rnd*(u.Max-u.Min) + u.Min
   121  }
   122  
   123  // Score returns the score function with respect to the parameters of the
   124  // distribution at the input location x. The score function is the derivative
   125  // of the log-likelihood at x with respect to the parameters
   126  //  (∂/∂θ) log(p(x;θ))
   127  // If deriv is non-nil, len(deriv) must equal the number of parameters otherwise
   128  // Score will panic, and the derivative is stored in-place into deriv. If deriv
   129  // is nil a new slice will be allocated and returned.
   130  //
   131  // The order is [∂LogProb / ∂Mu, ∂LogProb / ∂Sigma].
   132  //
   133  // For more information, see https://en.wikipedia.org/wiki/Score_%28statistics%29.
   134  func (u Uniform) Score(deriv []float64, x float64) []float64 {
   135  	if deriv == nil {
   136  		deriv = make([]float64, u.NumParameters())
   137  	}
   138  	if len(deriv) != u.NumParameters() {
   139  		panic(badLength)
   140  	}
   141  	if (x < u.Min) || (x > u.Max) {
   142  		deriv[0] = math.NaN()
   143  		deriv[1] = math.NaN()
   144  	} else {
   145  		deriv[0] = 1 / (u.Max - u.Min)
   146  		deriv[1] = -deriv[0]
   147  		if x == u.Min {
   148  			deriv[0] = math.NaN()
   149  		}
   150  		if x == u.Max {
   151  			deriv[1] = math.NaN()
   152  		}
   153  	}
   154  	return deriv
   155  }
   156  
   157  // ScoreInput returns the score function with respect to the input of the
   158  // distribution at the input location specified by x. The score function is the
   159  // derivative of the log-likelihood
   160  //  (d/dx) log(p(x)) .
   161  func (u Uniform) ScoreInput(x float64) float64 {
   162  	if (x <= u.Min) || (x >= u.Max) {
   163  		return math.NaN()
   164  	}
   165  	return 0
   166  }
   167  
   168  // Skewness returns the skewness of the distribution.
   169  func (Uniform) Skewness() float64 {
   170  	return 0
   171  }
   172  
   173  // StdDev returns the standard deviation of the probability distribution.
   174  func (u Uniform) StdDev() float64 {
   175  	return math.Sqrt(u.Variance())
   176  }
   177  
   178  // Survival returns the survival function (complementary CDF) at x.
   179  func (u Uniform) Survival(x float64) float64 {
   180  	if x < u.Min {
   181  		return 1
   182  	}
   183  	if x > u.Max {
   184  		return 0
   185  	}
   186  	return (u.Max - x) / (u.Max - u.Min)
   187  }
   188  
   189  // setParameters modifies the parameters of the distribution.
   190  func (u *Uniform) setParameters(p []Parameter) {
   191  	if len(p) != u.NumParameters() {
   192  		panic("uniform: incorrect number of parameters to set")
   193  	}
   194  	if p[0].Name != "Min" {
   195  		panic("uniform: " + panicNameMismatch)
   196  	}
   197  	if p[1].Name != "Max" {
   198  		panic("uniform: " + panicNameMismatch)
   199  	}
   200  
   201  	u.Min = p[0].Value
   202  	u.Max = p[1].Value
   203  }
   204  
   205  // Variance returns the variance of the probability distribution.
   206  func (u Uniform) Variance() float64 {
   207  	return 1.0 / 12.0 * (u.Max - u.Min) * (u.Max - u.Min)
   208  }