github.com/gopherd/gonum@v0.0.4/stat/statmat_test.go (about)

     1  // Copyright ©2014 The Gonum Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package stat
     6  
     7  import (
     8  	"math"
     9  	"testing"
    10  
    11  	"math/rand"
    12  
    13  	"github.com/gopherd/gonum/floats"
    14  	"github.com/gopherd/gonum/mat"
    15  )
    16  
    17  func TestCovarianceMatrix(t *testing.T) {
    18  	const tol = 1e-15
    19  
    20  	// An alternative way to test this is to call the Variance and
    21  	// Covariance functions and ensure that the results are identical.
    22  	for i, test := range []struct {
    23  		data    *mat.Dense
    24  		weights []float64
    25  		ans     *mat.Dense
    26  	}{
    27  		{
    28  			data: mat.NewDense(5, 2, []float64{
    29  				-2, -4,
    30  				-1, 2,
    31  				0, 0,
    32  				1, -2,
    33  				2, 4,
    34  			}),
    35  			weights: nil,
    36  			ans: mat.NewDense(2, 2, []float64{
    37  				2.5, 3,
    38  				3, 10,
    39  			}),
    40  		}, {
    41  			data: mat.NewDense(3, 2, []float64{
    42  				1, 1,
    43  				2, 4,
    44  				3, 9,
    45  			}),
    46  			weights: []float64{
    47  				1,
    48  				1.5,
    49  				1,
    50  			},
    51  			ans: mat.NewDense(2, 2, []float64{
    52  				0.8, 3.2,
    53  				3.2, 13.142857142857146,
    54  			}),
    55  		},
    56  	} {
    57  		// Make a copy of the data to check that it isn't changing.
    58  		r := test.data.RawMatrix()
    59  		d := make([]float64, len(r.Data))
    60  		copy(d, r.Data)
    61  
    62  		w := make([]float64, len(test.weights))
    63  		if test.weights != nil {
    64  			copy(w, test.weights)
    65  		}
    66  
    67  		var cov mat.SymDense
    68  		CovarianceMatrix(&cov, test.data, test.weights)
    69  		if !mat.EqualApprox(&cov, test.ans, tol) {
    70  			t.Errorf("%d: expected cov %v, found %v", i, test.ans, &cov)
    71  		}
    72  		if !floats.Equal(d, r.Data) {
    73  			t.Errorf("%d: data was modified during execution", i)
    74  		}
    75  		if !floats.Equal(w, test.weights) {
    76  			t.Errorf("%d: weights was modified during execution", i)
    77  		}
    78  
    79  		// compare with call to Covariance
    80  		_, cols := cov.Dims()
    81  		for ci := 0; ci < cols; ci++ {
    82  			for cj := 0; cj < cols; cj++ {
    83  				x := mat.Col(nil, ci, test.data)
    84  				y := mat.Col(nil, cj, test.data)
    85  				wc := Covariance(x, y, test.weights)
    86  				if math.Abs(wc-cov.At(ci, cj)) > 1e-14 {
    87  					t.Errorf("CovMat does not match at (%v, %v). Want %v, got %v.", ci, cj, wc, cov.At(ci, cj))
    88  				}
    89  			}
    90  		}
    91  	}
    92  
    93  	if !panics(func() { CovarianceMatrix(nil, mat.NewDense(5, 2, nil), []float64{}) }) {
    94  		t.Errorf("CovarianceMatrix did not panic with weight size mismatch")
    95  	}
    96  	if !panics(func() { CovarianceMatrix(mat.NewSymDense(1, nil), mat.NewDense(5, 2, nil), nil) }) {
    97  		t.Errorf("CovarianceMatrix did not panic with preallocation size mismatch")
    98  	}
    99  	if !panics(func() { CovarianceMatrix(nil, mat.NewDense(2, 2, []float64{1, 2, 3, 4}), []float64{1, -1}) }) {
   100  		t.Errorf("CovarianceMatrix did not panic with negative weights")
   101  	}
   102  	if panics(func() {
   103  		dst := mat.NewSymDense(4, nil)
   104  		dst.Reset()
   105  		CovarianceMatrix(dst, mat.NewDense(2, 2, []float64{1, 2, 3, 4}), nil)
   106  	}) {
   107  		t.Errorf("CovarianceMatrix panics with reset destination")
   108  	}
   109  }
   110  
   111  func TestCorrelationMatrix(t *testing.T) {
   112  	for i, test := range []struct {
   113  		data    *mat.Dense
   114  		weights []float64
   115  		ans     *mat.Dense
   116  	}{
   117  		{
   118  			data: mat.NewDense(3, 3, []float64{
   119  				1, 2, 3,
   120  				3, 4, 5,
   121  				5, 6, 7,
   122  			}),
   123  			weights: nil,
   124  			ans: mat.NewDense(3, 3, []float64{
   125  				1, 1, 1,
   126  				1, 1, 1,
   127  				1, 1, 1,
   128  			}),
   129  		},
   130  		{
   131  			data: mat.NewDense(5, 2, []float64{
   132  				-2, -4,
   133  				-1, 2,
   134  				0, 0,
   135  				1, -2,
   136  				2, 4,
   137  			}),
   138  			weights: nil,
   139  			ans: mat.NewDense(2, 2, []float64{
   140  				1, 0.6,
   141  				0.6, 1,
   142  			}),
   143  		}, {
   144  			data: mat.NewDense(3, 2, []float64{
   145  				1, 1,
   146  				2, 4,
   147  				3, 9,
   148  			}),
   149  			weights: []float64{
   150  				1,
   151  				1.5,
   152  				1,
   153  			},
   154  			ans: mat.NewDense(2, 2, []float64{
   155  				1, 0.9868703275903379,
   156  				0.9868703275903379, 1,
   157  			}),
   158  		},
   159  	} {
   160  		// Make a copy of the data to check that it isn't changing.
   161  		r := test.data.RawMatrix()
   162  		d := make([]float64, len(r.Data))
   163  		copy(d, r.Data)
   164  
   165  		w := make([]float64, len(test.weights))
   166  		if test.weights != nil {
   167  			copy(w, test.weights)
   168  		}
   169  
   170  		var corr mat.SymDense
   171  		CorrelationMatrix(&corr, test.data, test.weights)
   172  		if !mat.Equal(&corr, test.ans) {
   173  			t.Errorf("%d: expected corr %v, found %v", i, test.ans, &corr)
   174  		}
   175  		if !floats.Equal(d, r.Data) {
   176  			t.Errorf("%d: data was modified during execution", i)
   177  		}
   178  		if !floats.Equal(w, test.weights) {
   179  			t.Errorf("%d: weights was modified during execution", i)
   180  		}
   181  
   182  		// compare with call to Covariance
   183  		_, cols := corr.Dims()
   184  		for ci := 0; ci < cols; ci++ {
   185  			for cj := 0; cj < cols; cj++ {
   186  				x := mat.Col(nil, ci, test.data)
   187  				y := mat.Col(nil, cj, test.data)
   188  				wc := Correlation(x, y, test.weights)
   189  				if math.Abs(wc-corr.At(ci, cj)) > 1e-14 {
   190  					t.Errorf("CorrMat does not match at (%v, %v). Want %v, got %v.", ci, cj, wc, corr.At(ci, cj))
   191  				}
   192  			}
   193  		}
   194  
   195  	}
   196  	if !panics(func() { CorrelationMatrix(nil, mat.NewDense(5, 2, nil), []float64{}) }) {
   197  		t.Errorf("CorrelationMatrix did not panic with weight size mismatch")
   198  	}
   199  	if !panics(func() { CorrelationMatrix(mat.NewSymDense(1, nil), mat.NewDense(5, 2, nil), nil) }) {
   200  		t.Errorf("CorrelationMatrix did not panic with preallocation size mismatch")
   201  	}
   202  	if !panics(func() { CorrelationMatrix(nil, mat.NewDense(2, 2, []float64{1, 2, 3, 4}), []float64{1, -1}) }) {
   203  		t.Errorf("CorrelationMatrix did not panic with negative weights")
   204  	}
   205  }
   206  
   207  func TestCorrCov(t *testing.T) {
   208  	// test both Cov2Corr and Cov2Corr
   209  	for i, test := range []struct {
   210  		data    *mat.Dense
   211  		weights []float64
   212  	}{
   213  		{
   214  			data: mat.NewDense(3, 3, []float64{
   215  				1, 2, 3,
   216  				3, 4, 5,
   217  				5, 6, 7,
   218  			}),
   219  			weights: nil,
   220  		},
   221  		{
   222  			data: mat.NewDense(5, 2, []float64{
   223  				-2, -4,
   224  				-1, 2,
   225  				0, 0,
   226  				1, -2,
   227  				2, 4,
   228  			}),
   229  			weights: nil,
   230  		}, {
   231  			data: mat.NewDense(3, 2, []float64{
   232  				1, 1,
   233  				2, 4,
   234  				3, 9,
   235  			}),
   236  			weights: []float64{
   237  				1,
   238  				1.5,
   239  				1,
   240  			},
   241  		},
   242  	} {
   243  		var corr, cov mat.SymDense
   244  		CorrelationMatrix(&corr, test.data, test.weights)
   245  		CovarianceMatrix(&cov, test.data, test.weights)
   246  
   247  		r := cov.SymmetricDim()
   248  
   249  		// Get the diagonal elements from cov to determine the sigmas.
   250  		sigmas := make([]float64, r)
   251  		for i := range sigmas {
   252  			sigmas[i] = math.Sqrt(cov.At(i, i))
   253  		}
   254  
   255  		covFromCorr := mat.NewSymDense(corr.SymmetricDim(), nil)
   256  		covFromCorr.CopySym(&corr)
   257  		corrToCov(covFromCorr, sigmas)
   258  
   259  		corrFromCov := mat.NewSymDense(cov.SymmetricDim(), nil)
   260  		corrFromCov.CopySym(&cov)
   261  		covToCorr(corrFromCov)
   262  
   263  		if !mat.EqualApprox(&corr, corrFromCov, 1e-14) {
   264  			t.Errorf("%d: corrToCov did not match direct Correlation calculation.  Want: %v, got: %v. ", i, corr, corrFromCov)
   265  		}
   266  		if !mat.EqualApprox(&cov, covFromCorr, 1e-14) {
   267  			t.Errorf("%d: covToCorr did not match direct Covariance calculation.  Want: %v, got: %v. ", i, cov, covFromCorr)
   268  		}
   269  
   270  		if !panics(func() { corrToCov(mat.NewSymDense(2, nil), []float64{}) }) {
   271  			t.Errorf("CorrelationMatrix did not panic with sigma size mismatch")
   272  		}
   273  	}
   274  }
   275  
   276  func TestMahalanobis(t *testing.T) {
   277  	// Comparison with scipy.
   278  	for cas, test := range []struct {
   279  		x, y  *mat.VecDense
   280  		Sigma *mat.SymDense
   281  		ans   float64
   282  	}{
   283  		{
   284  			x: mat.NewVecDense(3, []float64{1, 2, 3}),
   285  			y: mat.NewVecDense(3, []float64{0.8, 1.1, -1}),
   286  			Sigma: mat.NewSymDense(3,
   287  				[]float64{
   288  					0.8, 0.3, 0.1,
   289  					0.3, 0.7, -0.1,
   290  					0.1, -0.1, 7}),
   291  			ans: 1.9251757377680914,
   292  		},
   293  	} {
   294  		var chol mat.Cholesky
   295  		ok := chol.Factorize(test.Sigma)
   296  		if !ok {
   297  			panic("bad test")
   298  		}
   299  		ans := Mahalanobis(test.x, test.y, &chol)
   300  		if math.Abs(ans-test.ans) > 1e-14 {
   301  			t.Errorf("Cas %d: got %v, want %v", cas, ans, test.ans)
   302  		}
   303  	}
   304  }
   305  
   306  // benchmarks
   307  
   308  func randMat(r, c int) mat.Matrix {
   309  	x := make([]float64, r*c)
   310  	for i := range x {
   311  		x[i] = rand.Float64()
   312  	}
   313  	return mat.NewDense(r, c, x)
   314  }
   315  
   316  func benchmarkCovarianceMatrix(b *testing.B, m mat.Matrix) {
   317  	var res mat.SymDense
   318  	b.ResetTimer()
   319  	for i := 0; i < b.N; i++ {
   320  		res.Reset()
   321  		CovarianceMatrix(&res, m, nil)
   322  	}
   323  }
   324  func benchmarkCovarianceMatrixWeighted(b *testing.B, m mat.Matrix) {
   325  	r, _ := m.Dims()
   326  	wts := make([]float64, r)
   327  	for i := range wts {
   328  		wts[i] = 0.5
   329  	}
   330  	var res mat.SymDense
   331  	b.ResetTimer()
   332  	for i := 0; i < b.N; i++ {
   333  		res.Reset()
   334  		CovarianceMatrix(&res, m, wts)
   335  	}
   336  }
   337  func benchmarkCovarianceMatrixInPlace(b *testing.B, m mat.Matrix) {
   338  	_, c := m.Dims()
   339  	res := mat.NewSymDense(c, nil)
   340  	b.ResetTimer()
   341  	for i := 0; i < b.N; i++ {
   342  		CovarianceMatrix(res, m, nil)
   343  	}
   344  }
   345  
   346  func BenchmarkCovarianceMatrixSmallxSmall(b *testing.B) {
   347  	// 10 * 10 elements
   348  	x := randMat(small, small)
   349  	benchmarkCovarianceMatrix(b, x)
   350  }
   351  func BenchmarkCovarianceMatrixSmallxMedium(b *testing.B) {
   352  	// 10 * 1000 elements
   353  	x := randMat(small, medium)
   354  	benchmarkCovarianceMatrix(b, x)
   355  }
   356  
   357  func BenchmarkCovarianceMatrixMediumxSmall(b *testing.B) {
   358  	// 1000 * 10 elements
   359  	x := randMat(medium, small)
   360  	benchmarkCovarianceMatrix(b, x)
   361  }
   362  func BenchmarkCovarianceMatrixMediumxMedium(b *testing.B) {
   363  	// 1000 * 1000 elements
   364  	x := randMat(medium, medium)
   365  	benchmarkCovarianceMatrix(b, x)
   366  }
   367  
   368  func BenchmarkCovarianceMatrixLargexSmall(b *testing.B) {
   369  	// 1e5 * 10 elements
   370  	x := randMat(large, small)
   371  	benchmarkCovarianceMatrix(b, x)
   372  }
   373  
   374  func BenchmarkCovarianceMatrixHugexSmall(b *testing.B) {
   375  	// 1e7 * 10 elements
   376  	x := randMat(huge, small)
   377  	benchmarkCovarianceMatrix(b, x)
   378  }
   379  
   380  func BenchmarkCovarianceMatrixSmallxSmallWeighted(b *testing.B) {
   381  	// 10 * 10 elements
   382  	x := randMat(small, small)
   383  	benchmarkCovarianceMatrixWeighted(b, x)
   384  }
   385  func BenchmarkCovarianceMatrixSmallxMediumWeighted(b *testing.B) {
   386  	// 10 * 1000 elements
   387  	x := randMat(small, medium)
   388  	benchmarkCovarianceMatrixWeighted(b, x)
   389  }
   390  
   391  func BenchmarkCovarianceMatrixMediumxSmallWeighted(b *testing.B) {
   392  	// 1000 * 10 elements
   393  	x := randMat(medium, small)
   394  	benchmarkCovarianceMatrixWeighted(b, x)
   395  }
   396  func BenchmarkCovarianceMatrixMediumxMediumWeighted(b *testing.B) {
   397  	// 1000 * 1000 elements
   398  	x := randMat(medium, medium)
   399  	benchmarkCovarianceMatrixWeighted(b, x)
   400  }
   401  
   402  func BenchmarkCovarianceMatrixLargexSmallWeighted(b *testing.B) {
   403  	// 1e5 * 10 elements
   404  	x := randMat(large, small)
   405  	benchmarkCovarianceMatrixWeighted(b, x)
   406  }
   407  
   408  func BenchmarkCovarianceMatrixHugexSmallWeighted(b *testing.B) {
   409  	// 1e7 * 10 elements
   410  	x := randMat(huge, small)
   411  	benchmarkCovarianceMatrixWeighted(b, x)
   412  }
   413  
   414  func BenchmarkCovarianceMatrixSmallxSmallInPlace(b *testing.B) {
   415  	// 10 * 10 elements
   416  	x := randMat(small, small)
   417  	benchmarkCovarianceMatrixInPlace(b, x)
   418  }
   419  func BenchmarkCovarianceMatrixSmallxMediumInPlace(b *testing.B) {
   420  	// 10 * 1000 elements
   421  	x := randMat(small, medium)
   422  	benchmarkCovarianceMatrixInPlace(b, x)
   423  }
   424  
   425  func BenchmarkCovarianceMatrixMediumxSmallInPlace(b *testing.B) {
   426  	// 1000 * 10 elements
   427  	x := randMat(medium, small)
   428  	benchmarkCovarianceMatrixInPlace(b, x)
   429  }
   430  func BenchmarkCovarianceMatrixMediumxMediumInPlace(b *testing.B) {
   431  	// 1000 * 1000 elements
   432  	x := randMat(medium, medium)
   433  	benchmarkCovarianceMatrixInPlace(b, x)
   434  }
   435  
   436  func BenchmarkCovarianceMatrixLargexSmallInPlace(b *testing.B) {
   437  	// 1e5 * 10 elements
   438  	x := randMat(large, small)
   439  	benchmarkCovarianceMatrixInPlace(b, x)
   440  }
   441  
   442  func BenchmarkCovarianceMatrixHugexSmallInPlace(b *testing.B) {
   443  	// 1e7 * 10 elements
   444  	x := randMat(huge, small)
   445  	benchmarkCovarianceMatrixInPlace(b, x)
   446  }
   447  
   448  func BenchmarkCovToCorr(b *testing.B) {
   449  	// generate a 10x10 covariance matrix
   450  	m := randMat(small, small)
   451  	var cov mat.SymDense
   452  	CovarianceMatrix(&cov, m, nil)
   453  	cc := mat.NewSymDense(cov.SymmetricDim(), nil)
   454  	b.ResetTimer()
   455  	for i := 0; i < b.N; i++ {
   456  		b.StopTimer()
   457  		cc.CopySym(&cov)
   458  		b.StartTimer()
   459  		covToCorr(cc)
   460  	}
   461  }
   462  
   463  func BenchmarkCorrToCov(b *testing.B) {
   464  	// generate a 10x10 correlation matrix
   465  	m := randMat(small, small)
   466  	var corr mat.SymDense
   467  	CorrelationMatrix(&corr, m, nil)
   468  	cc := mat.NewSymDense(corr.SymmetricDim(), nil)
   469  	sigma := make([]float64, small)
   470  	for i := range sigma {
   471  		sigma[i] = 2
   472  	}
   473  	b.ResetTimer()
   474  	for i := 0; i < b.N; i++ {
   475  		b.StopTimer()
   476  		cc.CopySym(&corr)
   477  		b.StartTimer()
   478  		corrToCov(cc, sigma)
   479  	}
   480  }