github.com/goproxy0/go@v0.0.0-20171111080102-49cc0c489d2c/src/cmd/compile/internal/gc/dcl.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package gc
     6  
     7  import (
     8  	"bytes"
     9  	"cmd/compile/internal/types"
    10  	"cmd/internal/obj"
    11  	"cmd/internal/src"
    12  	"fmt"
    13  	"strings"
    14  )
    15  
    16  // Declaration stack & operations
    17  
    18  var externdcl []*Node
    19  
    20  func testdclstack() {
    21  	if !types.IsDclstackValid() {
    22  		if nerrors != 0 {
    23  			errorexit()
    24  		}
    25  		Fatalf("mark left on the dclstack")
    26  	}
    27  }
    28  
    29  // redeclare emits a diagnostic about symbol s being redeclared somewhere.
    30  func redeclare(s *types.Sym, where string) {
    31  	if !s.Lastlineno.IsKnown() {
    32  		var tmp string
    33  		if s.Origpkg != nil {
    34  			tmp = s.Origpkg.Path
    35  		} else {
    36  			tmp = s.Pkg.Path
    37  		}
    38  		pkgstr := tmp
    39  		yyerror("%v redeclared %s\n"+
    40  			"\tprevious declaration during import %q", s, where, pkgstr)
    41  	} else {
    42  		line1 := lineno
    43  		line2 := s.Lastlineno
    44  
    45  		// When an import and a declaration collide in separate files,
    46  		// present the import as the "redeclared", because the declaration
    47  		// is visible where the import is, but not vice versa.
    48  		// See issue 4510.
    49  		if s.Def == nil {
    50  			line2 = line1
    51  			line1 = s.Lastlineno
    52  		}
    53  
    54  		yyerrorl(line1, "%v redeclared %s\n"+
    55  			"\tprevious declaration at %v", s, where, linestr(line2))
    56  	}
    57  }
    58  
    59  var vargen int
    60  
    61  // declare individual names - var, typ, const
    62  
    63  var declare_typegen int
    64  
    65  // declare records that Node n declares symbol n.Sym in the specified
    66  // declaration context.
    67  func declare(n *Node, ctxt Class) {
    68  	if ctxt == PDISCARD {
    69  		return
    70  	}
    71  
    72  	if isblank(n) {
    73  		return
    74  	}
    75  
    76  	if n.Name == nil {
    77  		// named OLITERAL needs Name; most OLITERALs don't.
    78  		n.Name = new(Name)
    79  	}
    80  	n.Pos = lineno
    81  	s := n.Sym
    82  
    83  	// kludgy: typecheckok means we're past parsing. Eg genwrapper may declare out of package names later.
    84  	if !inimport && !typecheckok && s.Pkg != localpkg {
    85  		yyerror("cannot declare name %v", s)
    86  	}
    87  
    88  	if ctxt == PEXTERN && s.Name == "init" {
    89  		yyerror("cannot declare init - must be func")
    90  	}
    91  
    92  	gen := 0
    93  	if ctxt == PEXTERN {
    94  		externdcl = append(externdcl, n)
    95  	} else {
    96  		if Curfn == nil && ctxt == PAUTO {
    97  			Fatalf("automatic outside function")
    98  		}
    99  		if Curfn != nil {
   100  			Curfn.Func.Dcl = append(Curfn.Func.Dcl, n)
   101  		}
   102  		if n.Op == OTYPE {
   103  			declare_typegen++
   104  			gen = declare_typegen
   105  		} else if n.Op == ONAME && ctxt == PAUTO && !strings.Contains(s.Name, "·") {
   106  			vargen++
   107  			gen = vargen
   108  		}
   109  		types.Pushdcl(s)
   110  		n.Name.Curfn = Curfn
   111  	}
   112  
   113  	if ctxt == PAUTO {
   114  		n.Xoffset = 0
   115  	}
   116  
   117  	if s.Block == types.Block {
   118  		// functype will print errors about duplicate function arguments.
   119  		// Don't repeat the error here.
   120  		if ctxt != PPARAM && ctxt != PPARAMOUT {
   121  			redeclare(s, "in this block")
   122  		}
   123  	}
   124  
   125  	s.Block = types.Block
   126  	s.Lastlineno = lineno
   127  	s.Def = asTypesNode(n)
   128  	n.Name.Vargen = int32(gen)
   129  	n.Name.Funcdepth = funcdepth
   130  	n.SetClass(ctxt)
   131  
   132  	autoexport(n, ctxt)
   133  }
   134  
   135  func addvar(n *Node, t *types.Type, ctxt Class) {
   136  	if n == nil || n.Sym == nil || (n.Op != ONAME && n.Op != ONONAME) || t == nil {
   137  		Fatalf("addvar: n=%v t=%v nil", n, t)
   138  	}
   139  
   140  	n.Op = ONAME
   141  	declare(n, ctxt)
   142  	n.Type = t
   143  }
   144  
   145  // declare variables from grammar
   146  // new_name_list (type | [type] = expr_list)
   147  func variter(vl []*Node, t *Node, el []*Node) []*Node {
   148  	var init []*Node
   149  	doexpr := len(el) > 0
   150  
   151  	if len(el) == 1 && len(vl) > 1 {
   152  		e := el[0]
   153  		as2 := nod(OAS2, nil, nil)
   154  		as2.List.Set(vl)
   155  		as2.Rlist.Set1(e)
   156  		for _, v := range vl {
   157  			v.Op = ONAME
   158  			declare(v, dclcontext)
   159  			v.Name.Param.Ntype = t
   160  			v.Name.Defn = as2
   161  			if funcdepth > 0 {
   162  				init = append(init, nod(ODCL, v, nil))
   163  			}
   164  		}
   165  
   166  		return append(init, as2)
   167  	}
   168  
   169  	for _, v := range vl {
   170  		var e *Node
   171  		if doexpr {
   172  			if len(el) == 0 {
   173  				yyerror("missing expression in var declaration")
   174  				break
   175  			}
   176  			e = el[0]
   177  			el = el[1:]
   178  		}
   179  
   180  		v.Op = ONAME
   181  		declare(v, dclcontext)
   182  		v.Name.Param.Ntype = t
   183  
   184  		if e != nil || funcdepth > 0 || isblank(v) {
   185  			if funcdepth > 0 {
   186  				init = append(init, nod(ODCL, v, nil))
   187  			}
   188  			e = nod(OAS, v, e)
   189  			init = append(init, e)
   190  			if e.Right != nil {
   191  				v.Name.Defn = e
   192  			}
   193  		}
   194  	}
   195  
   196  	if len(el) != 0 {
   197  		yyerror("extra expression in var declaration")
   198  	}
   199  	return init
   200  }
   201  
   202  // newnoname returns a new ONONAME Node associated with symbol s.
   203  func newnoname(s *types.Sym) *Node {
   204  	if s == nil {
   205  		Fatalf("newnoname nil")
   206  	}
   207  	n := nod(ONONAME, nil, nil)
   208  	n.Sym = s
   209  	n.SetAddable(true)
   210  	n.Xoffset = 0
   211  	return n
   212  }
   213  
   214  // newfuncname generates a new name node for a function or method.
   215  // TODO(rsc): Use an ODCLFUNC node instead. See comment in CL 7360.
   216  func newfuncname(s *types.Sym) *Node {
   217  	return newfuncnamel(lineno, s)
   218  }
   219  
   220  // newfuncnamel generates a new name node for a function or method.
   221  // TODO(rsc): Use an ODCLFUNC node instead. See comment in CL 7360.
   222  func newfuncnamel(pos src.XPos, s *types.Sym) *Node {
   223  	n := newnamel(pos, s)
   224  	n.Func = new(Func)
   225  	n.Func.SetIsHiddenClosure(Curfn != nil)
   226  	return n
   227  }
   228  
   229  // this generates a new name node for a name
   230  // being declared.
   231  func dclname(s *types.Sym) *Node {
   232  	n := newname(s)
   233  	n.Op = ONONAME // caller will correct it
   234  	return n
   235  }
   236  
   237  func typenod(t *types.Type) *Node {
   238  	return typenodl(lineno, t)
   239  }
   240  
   241  func typenodl(pos src.XPos, t *types.Type) *Node {
   242  	// if we copied another type with *t = *u
   243  	// then t->nod might be out of date, so
   244  	// check t->nod->type too
   245  	if asNode(t.Nod) == nil || asNode(t.Nod).Type != t {
   246  		t.Nod = asTypesNode(nodl(pos, OTYPE, nil, nil))
   247  		asNode(t.Nod).Type = t
   248  		asNode(t.Nod).Sym = t.Sym
   249  	}
   250  
   251  	return asNode(t.Nod)
   252  }
   253  
   254  func anonfield(typ *types.Type) *Node {
   255  	return nod(ODCLFIELD, nil, typenod(typ))
   256  }
   257  
   258  func namedfield(s string, typ *types.Type) *Node {
   259  	return symfield(lookup(s), typ)
   260  }
   261  
   262  func symfield(s *types.Sym, typ *types.Type) *Node {
   263  	return nod(ODCLFIELD, newname(s), typenod(typ))
   264  }
   265  
   266  // oldname returns the Node that declares symbol s in the current scope.
   267  // If no such Node currently exists, an ONONAME Node is returned instead.
   268  func oldname(s *types.Sym) *Node {
   269  	n := asNode(s.Def)
   270  	if n == nil {
   271  		// Maybe a top-level declaration will come along later to
   272  		// define s. resolve will check s.Def again once all input
   273  		// source has been processed.
   274  		return newnoname(s)
   275  	}
   276  
   277  	if Curfn != nil && n.Op == ONAME && n.Name.Funcdepth > 0 && n.Name.Funcdepth != funcdepth {
   278  		// Inner func is referring to var in outer func.
   279  		//
   280  		// TODO(rsc): If there is an outer variable x and we
   281  		// are parsing x := 5 inside the closure, until we get to
   282  		// the := it looks like a reference to the outer x so we'll
   283  		// make x a closure variable unnecessarily.
   284  		c := n.Name.Param.Innermost
   285  		if c == nil || c.Name.Funcdepth != funcdepth {
   286  			// Do not have a closure var for the active closure yet; make one.
   287  			c = newname(s)
   288  			c.SetClass(PAUTOHEAP)
   289  			c.SetIsClosureVar(true)
   290  			c.SetIsddd(n.Isddd())
   291  			c.Name.Defn = n
   292  			c.SetAddable(false)
   293  			c.Name.Funcdepth = funcdepth
   294  
   295  			// Link into list of active closure variables.
   296  			// Popped from list in func closurebody.
   297  			c.Name.Param.Outer = n.Name.Param.Innermost
   298  			n.Name.Param.Innermost = c
   299  
   300  			Curfn.Func.Cvars.Append(c)
   301  		}
   302  
   303  		// return ref to closure var, not original
   304  		return c
   305  	}
   306  
   307  	return n
   308  }
   309  
   310  // := declarations
   311  func colasname(n *Node) bool {
   312  	switch n.Op {
   313  	case ONAME,
   314  		ONONAME,
   315  		OPACK,
   316  		OTYPE,
   317  		OLITERAL:
   318  		return n.Sym != nil
   319  	}
   320  
   321  	return false
   322  }
   323  
   324  func colasdefn(left []*Node, defn *Node) {
   325  	for _, n := range left {
   326  		if n.Sym != nil {
   327  			n.Sym.SetUniq(true)
   328  		}
   329  	}
   330  
   331  	var nnew, nerr int
   332  	for i, n := range left {
   333  		if isblank(n) {
   334  			continue
   335  		}
   336  		if !colasname(n) {
   337  			yyerrorl(defn.Pos, "non-name %v on left side of :=", n)
   338  			nerr++
   339  			continue
   340  		}
   341  
   342  		if !n.Sym.Uniq() {
   343  			yyerrorl(defn.Pos, "%v repeated on left side of :=", n.Sym)
   344  			n.SetDiag(true)
   345  			nerr++
   346  			continue
   347  		}
   348  
   349  		n.Sym.SetUniq(false)
   350  		if n.Sym.Block == types.Block {
   351  			continue
   352  		}
   353  
   354  		nnew++
   355  		n = newname(n.Sym)
   356  		declare(n, dclcontext)
   357  		n.Name.Defn = defn
   358  		defn.Ninit.Append(nod(ODCL, n, nil))
   359  		left[i] = n
   360  	}
   361  
   362  	if nnew == 0 && nerr == 0 {
   363  		yyerrorl(defn.Pos, "no new variables on left side of :=")
   364  	}
   365  }
   366  
   367  // declare the arguments in an
   368  // interface field declaration.
   369  func ifacedcl(n *Node) {
   370  	if n.Op != ODCLFIELD || n.Right == nil {
   371  		Fatalf("ifacedcl")
   372  	}
   373  
   374  	if isblank(n.Left) {
   375  		yyerror("methods must have a unique non-blank name")
   376  	}
   377  }
   378  
   379  // declare the function proper
   380  // and declare the arguments.
   381  // called in extern-declaration context
   382  // returns in auto-declaration context.
   383  func funchdr(n *Node) {
   384  	// change the declaration context from extern to auto
   385  	if funcdepth == 0 && dclcontext != PEXTERN {
   386  		Fatalf("funchdr: dclcontext = %d", dclcontext)
   387  	}
   388  
   389  	dclcontext = PAUTO
   390  	funcstart(n)
   391  
   392  	if n.Func.Nname != nil {
   393  		funcargs(n.Func.Nname.Name.Param.Ntype)
   394  	} else if n.Func.Ntype != nil {
   395  		funcargs(n.Func.Ntype)
   396  	} else {
   397  		funcargs2(n.Type)
   398  	}
   399  }
   400  
   401  func funcargs(nt *Node) {
   402  	if nt.Op != OTFUNC {
   403  		Fatalf("funcargs %v", nt.Op)
   404  	}
   405  
   406  	// re-start the variable generation number
   407  	// we want to use small numbers for the return variables,
   408  	// so let them have the chunk starting at 1.
   409  	vargen = nt.Rlist.Len()
   410  
   411  	// declare the receiver and in arguments.
   412  	// no n->defn because type checking of func header
   413  	// will not fill in the types until later
   414  	if nt.Left != nil {
   415  		n := nt.Left
   416  		if n.Op != ODCLFIELD {
   417  			Fatalf("funcargs receiver %v", n.Op)
   418  		}
   419  		if n.Left != nil {
   420  			n.Left.Op = ONAME
   421  			n.Left.Name.Param.Ntype = n.Right
   422  			declare(n.Left, PPARAM)
   423  			if dclcontext == PAUTO {
   424  				vargen++
   425  				n.Left.Name.Vargen = int32(vargen)
   426  			}
   427  		}
   428  	}
   429  
   430  	for _, n := range nt.List.Slice() {
   431  		if n.Op != ODCLFIELD {
   432  			Fatalf("funcargs in %v", n.Op)
   433  		}
   434  		if n.Left != nil {
   435  			n.Left.Op = ONAME
   436  			n.Left.Name.Param.Ntype = n.Right
   437  			declare(n.Left, PPARAM)
   438  			if dclcontext == PAUTO {
   439  				vargen++
   440  				n.Left.Name.Vargen = int32(vargen)
   441  			}
   442  		}
   443  	}
   444  
   445  	// declare the out arguments.
   446  	gen := nt.List.Len()
   447  	var i int = 0
   448  	for _, n := range nt.Rlist.Slice() {
   449  		if n.Op != ODCLFIELD {
   450  			Fatalf("funcargs out %v", n.Op)
   451  		}
   452  
   453  		if n.Left == nil {
   454  			// Name so that escape analysis can track it. ~r stands for 'result'.
   455  			n.Left = newname(lookupN("~r", gen))
   456  			gen++
   457  		}
   458  
   459  		// TODO: n->left->missing = 1;
   460  		n.Left.Op = ONAME
   461  
   462  		if isblank(n.Left) {
   463  			// Give it a name so we can assign to it during return. ~b stands for 'blank'.
   464  			// The name must be different from ~r above because if you have
   465  			//	func f() (_ int)
   466  			//	func g() int
   467  			// f is allowed to use a plain 'return' with no arguments, while g is not.
   468  			// So the two cases must be distinguished.
   469  			// We do not record a pointer to the original node (n->orig).
   470  			// Having multiple names causes too much confusion in later passes.
   471  			nn := *n.Left
   472  			nn.Orig = &nn
   473  			nn.Sym = lookupN("~b", gen)
   474  			gen++
   475  			n.Left = &nn
   476  		}
   477  
   478  		n.Left.Name.Param.Ntype = n.Right
   479  		declare(n.Left, PPARAMOUT)
   480  		if dclcontext == PAUTO {
   481  			i++
   482  			n.Left.Name.Vargen = int32(i)
   483  		}
   484  	}
   485  }
   486  
   487  // Same as funcargs, except run over an already constructed TFUNC.
   488  // This happens during import, where the hidden_fndcl rule has
   489  // used functype directly to parse the function's type.
   490  func funcargs2(t *types.Type) {
   491  	if t.Etype != TFUNC {
   492  		Fatalf("funcargs2 %v", t)
   493  	}
   494  
   495  	for _, ft := range t.Recvs().Fields().Slice() {
   496  		if asNode(ft.Nname) == nil || asNode(ft.Nname).Sym == nil {
   497  			continue
   498  		}
   499  		n := asNode(ft.Nname) // no need for newname(ft->nname->sym)
   500  		n.Type = ft.Type
   501  		declare(n, PPARAM)
   502  	}
   503  
   504  	for _, ft := range t.Params().Fields().Slice() {
   505  		if asNode(ft.Nname) == nil || asNode(ft.Nname).Sym == nil {
   506  			continue
   507  		}
   508  		n := asNode(ft.Nname)
   509  		n.Type = ft.Type
   510  		declare(n, PPARAM)
   511  	}
   512  
   513  	for _, ft := range t.Results().Fields().Slice() {
   514  		if asNode(ft.Nname) == nil || asNode(ft.Nname).Sym == nil {
   515  			continue
   516  		}
   517  		n := asNode(ft.Nname)
   518  		n.Type = ft.Type
   519  		declare(n, PPARAMOUT)
   520  	}
   521  }
   522  
   523  var funcstack []*Node // stack of previous values of Curfn
   524  var funcdepth int32   // len(funcstack) during parsing, but then forced to be the same later during compilation
   525  
   526  // start the function.
   527  // called before funcargs; undone at end of funcbody.
   528  func funcstart(n *Node) {
   529  	types.Markdcl()
   530  	funcstack = append(funcstack, Curfn)
   531  	funcdepth++
   532  	Curfn = n
   533  }
   534  
   535  // finish the body.
   536  // called in auto-declaration context.
   537  // returns in extern-declaration context.
   538  func funcbody() {
   539  	// change the declaration context from auto to extern
   540  	if dclcontext != PAUTO {
   541  		Fatalf("funcbody: unexpected dclcontext %d", dclcontext)
   542  	}
   543  	types.Popdcl()
   544  	funcstack, Curfn = funcstack[:len(funcstack)-1], funcstack[len(funcstack)-1]
   545  	funcdepth--
   546  	if funcdepth == 0 {
   547  		dclcontext = PEXTERN
   548  	}
   549  }
   550  
   551  // structs, functions, and methods.
   552  // they don't belong here, but where do they belong?
   553  func checkembeddedtype(t *types.Type) {
   554  	if t == nil {
   555  		return
   556  	}
   557  
   558  	if t.Sym == nil && t.IsPtr() {
   559  		t = t.Elem()
   560  		if t.IsInterface() {
   561  			yyerror("embedded type cannot be a pointer to interface")
   562  		}
   563  	}
   564  
   565  	if t.IsPtr() || t.IsUnsafePtr() {
   566  		yyerror("embedded type cannot be a pointer")
   567  	} else if t.Etype == TFORW && !t.ForwardType().Embedlineno.IsKnown() {
   568  		t.ForwardType().Embedlineno = lineno
   569  	}
   570  }
   571  
   572  func structfield(n *Node) *types.Field {
   573  	lno := lineno
   574  	lineno = n.Pos
   575  
   576  	if n.Op != ODCLFIELD {
   577  		Fatalf("structfield: oops %v\n", n)
   578  	}
   579  
   580  	f := types.NewField()
   581  	f.SetIsddd(n.Isddd())
   582  
   583  	if n.Right != nil {
   584  		n.Right = typecheck(n.Right, Etype)
   585  		n.Type = n.Right.Type
   586  		if n.Left != nil {
   587  			n.Left.Type = n.Type
   588  		}
   589  		if n.Embedded() {
   590  			checkembeddedtype(n.Type)
   591  		}
   592  	}
   593  
   594  	n.Right = nil
   595  
   596  	f.Type = n.Type
   597  	if f.Type == nil {
   598  		f.SetBroke(true)
   599  	}
   600  
   601  	switch u := n.Val().U.(type) {
   602  	case string:
   603  		f.Note = u
   604  	default:
   605  		yyerror("field tag must be a string")
   606  	case nil:
   607  		// no-op
   608  	}
   609  
   610  	if n.Left != nil && n.Left.Op == ONAME {
   611  		f.Nname = asTypesNode(n.Left)
   612  		if n.Embedded() {
   613  			f.Embedded = 1
   614  		} else {
   615  			f.Embedded = 0
   616  		}
   617  		f.Sym = asNode(f.Nname).Sym
   618  	}
   619  
   620  	lineno = lno
   621  	return f
   622  }
   623  
   624  // checkdupfields emits errors for duplicately named fields or methods in
   625  // a list of struct or interface types.
   626  func checkdupfields(what string, ts ...*types.Type) {
   627  	seen := make(map[*types.Sym]bool)
   628  	for _, t := range ts {
   629  		for _, f := range t.Fields().Slice() {
   630  			if f.Sym == nil || f.Sym.IsBlank() || asNode(f.Nname) == nil {
   631  				continue
   632  			}
   633  			if seen[f.Sym] {
   634  				yyerrorl(asNode(f.Nname).Pos, "duplicate %s %s", what, f.Sym.Name)
   635  				continue
   636  			}
   637  			seen[f.Sym] = true
   638  		}
   639  	}
   640  }
   641  
   642  // convert a parsed id/type list into
   643  // a type for struct/interface/arglist
   644  func tostruct(l []*Node) *types.Type {
   645  	t := types.New(TSTRUCT)
   646  	tostruct0(t, l)
   647  	return t
   648  }
   649  
   650  func tostruct0(t *types.Type, l []*Node) {
   651  	if t == nil || !t.IsStruct() {
   652  		Fatalf("struct expected")
   653  	}
   654  
   655  	fields := make([]*types.Field, len(l))
   656  	for i, n := range l {
   657  		f := structfield(n)
   658  		if f.Broke() {
   659  			t.SetBroke(true)
   660  		}
   661  		fields[i] = f
   662  	}
   663  	t.SetFields(fields)
   664  
   665  	checkdupfields("field", t)
   666  
   667  	if !t.Broke() {
   668  		checkwidth(t)
   669  	}
   670  }
   671  
   672  func tofunargs(l []*Node, funarg types.Funarg) *types.Type {
   673  	t := types.New(TSTRUCT)
   674  	t.StructType().Funarg = funarg
   675  
   676  	fields := make([]*types.Field, len(l))
   677  	for i, n := range l {
   678  		f := structfield(n)
   679  		f.Funarg = funarg
   680  
   681  		// esc.go needs to find f given a PPARAM to add the tag.
   682  		if n.Left != nil && n.Left.Class() == PPARAM {
   683  			n.Left.Name.Param.Field = f
   684  		}
   685  		if f.Broke() {
   686  			t.SetBroke(true)
   687  		}
   688  		fields[i] = f
   689  	}
   690  	t.SetFields(fields)
   691  	return t
   692  }
   693  
   694  func tofunargsfield(fields []*types.Field, funarg types.Funarg) *types.Type {
   695  	t := types.New(TSTRUCT)
   696  	t.StructType().Funarg = funarg
   697  
   698  	for _, f := range fields {
   699  		f.Funarg = funarg
   700  
   701  		// esc.go needs to find f given a PPARAM to add the tag.
   702  		if asNode(f.Nname) != nil && asNode(f.Nname).Class() == PPARAM {
   703  			asNode(f.Nname).Name.Param.Field = f
   704  		}
   705  	}
   706  	t.SetFields(fields)
   707  	return t
   708  }
   709  
   710  func interfacefield(n *Node) *types.Field {
   711  	lno := lineno
   712  	lineno = n.Pos
   713  
   714  	if n.Op != ODCLFIELD {
   715  		Fatalf("interfacefield: oops %v\n", n)
   716  	}
   717  
   718  	if n.Val().Ctype() != CTxxx {
   719  		yyerror("interface method cannot have annotation")
   720  	}
   721  
   722  	// MethodSpec = MethodName Signature | InterfaceTypeName .
   723  	//
   724  	// If Left != nil, then Left is MethodName and Right is Signature.
   725  	// Otherwise, Right is InterfaceTypeName.
   726  
   727  	if n.Right != nil {
   728  		n.Right = typecheck(n.Right, Etype)
   729  		n.Type = n.Right.Type
   730  		n.Right = nil
   731  	}
   732  
   733  	f := types.NewField()
   734  	if n.Left != nil {
   735  		f.Nname = asTypesNode(n.Left)
   736  		f.Sym = asNode(f.Nname).Sym
   737  	} else {
   738  		// Placeholder ONAME just to hold Pos.
   739  		// TODO(mdempsky): Add Pos directly to Field instead.
   740  		f.Nname = asTypesNode(newname(nblank.Sym))
   741  	}
   742  
   743  	f.Type = n.Type
   744  	if f.Type == nil {
   745  		f.SetBroke(true)
   746  	}
   747  
   748  	lineno = lno
   749  	return f
   750  }
   751  
   752  func tointerface(l []*Node) *types.Type {
   753  	if len(l) == 0 {
   754  		return types.Types[TINTER]
   755  	}
   756  	t := types.New(TINTER)
   757  	tointerface0(t, l)
   758  	return t
   759  }
   760  
   761  func tointerface0(t *types.Type, l []*Node) {
   762  	if t == nil || !t.IsInterface() {
   763  		Fatalf("interface expected")
   764  	}
   765  
   766  	var fields []*types.Field
   767  	for _, n := range l {
   768  		f := interfacefield(n)
   769  		if f.Broke() {
   770  			t.SetBroke(true)
   771  		}
   772  		fields = append(fields, f)
   773  	}
   774  	t.SetInterface(fields)
   775  }
   776  
   777  func fakeRecv() *Node {
   778  	return anonfield(types.FakeRecvType())
   779  }
   780  
   781  func fakeRecvField() *types.Field {
   782  	f := types.NewField()
   783  	f.Type = types.FakeRecvType()
   784  	return f
   785  }
   786  
   787  // isifacemethod reports whether (field) m is
   788  // an interface method. Such methods have the
   789  // special receiver type types.FakeRecvType().
   790  func isifacemethod(f *types.Type) bool {
   791  	return f.Recv().Type == types.FakeRecvType()
   792  }
   793  
   794  // turn a parsed function declaration into a type
   795  func functype(this *Node, in, out []*Node) *types.Type {
   796  	t := types.New(TFUNC)
   797  	functype0(t, this, in, out)
   798  	return t
   799  }
   800  
   801  func functype0(t *types.Type, this *Node, in, out []*Node) {
   802  	if t == nil || t.Etype != TFUNC {
   803  		Fatalf("function type expected")
   804  	}
   805  
   806  	var rcvr []*Node
   807  	if this != nil {
   808  		rcvr = []*Node{this}
   809  	}
   810  	t.FuncType().Receiver = tofunargs(rcvr, types.FunargRcvr)
   811  	t.FuncType().Results = tofunargs(out, types.FunargResults)
   812  	t.FuncType().Params = tofunargs(in, types.FunargParams)
   813  
   814  	checkdupfields("argument", t.Recvs(), t.Results(), t.Params())
   815  
   816  	if t.Recvs().Broke() || t.Results().Broke() || t.Params().Broke() {
   817  		t.SetBroke(true)
   818  	}
   819  
   820  	t.FuncType().Outnamed = false
   821  	if len(out) > 0 && out[0].Left != nil && out[0].Left.Orig != nil {
   822  		s := out[0].Left.Orig.Sym
   823  		if s != nil && (s.Name[0] != '~' || s.Name[1] != 'r') { // ~r%d is the name invented for an unnamed result
   824  			t.FuncType().Outnamed = true
   825  		}
   826  	}
   827  }
   828  
   829  func functypefield(this *types.Field, in, out []*types.Field) *types.Type {
   830  	t := types.New(TFUNC)
   831  	functypefield0(t, this, in, out)
   832  	return t
   833  }
   834  
   835  func functypefield0(t *types.Type, this *types.Field, in, out []*types.Field) {
   836  	var rcvr []*types.Field
   837  	if this != nil {
   838  		rcvr = []*types.Field{this}
   839  	}
   840  	t.FuncType().Receiver = tofunargsfield(rcvr, types.FunargRcvr)
   841  	t.FuncType().Results = tofunargsfield(out, types.FunargRcvr)
   842  	t.FuncType().Params = tofunargsfield(in, types.FunargRcvr)
   843  
   844  	t.FuncType().Outnamed = false
   845  	if len(out) > 0 && asNode(out[0].Nname) != nil && asNode(out[0].Nname).Orig != nil {
   846  		s := asNode(out[0].Nname).Orig.Sym
   847  		if s != nil && (s.Name[0] != '~' || s.Name[1] != 'r') { // ~r%d is the name invented for an unnamed result
   848  			t.FuncType().Outnamed = true
   849  		}
   850  	}
   851  }
   852  
   853  var methodsym_toppkg *types.Pkg
   854  
   855  func methodsym(nsym *types.Sym, t0 *types.Type, iface bool) *types.Sym {
   856  	if t0 == nil {
   857  		Fatalf("methodsym: nil receiver type")
   858  	}
   859  
   860  	t := t0
   861  	s := t.Sym
   862  	if s == nil && t.IsPtr() {
   863  		t = t.Elem()
   864  		if t == nil {
   865  			Fatalf("methodsym: ptrto nil")
   866  		}
   867  		s = t.Sym
   868  	}
   869  
   870  	// if t0 == *t and t0 has a sym,
   871  	// we want to see *t, not t0, in the method name.
   872  	if t != t0 && t0.Sym != nil {
   873  		t0 = types.NewPtr(t)
   874  	}
   875  
   876  	suffix := ""
   877  	if iface {
   878  		dowidth(t0)
   879  		if t0.Width < int64(Widthptr) {
   880  			suffix = "·i"
   881  		}
   882  	}
   883  
   884  	var spkg *types.Pkg
   885  	if s != nil {
   886  		spkg = s.Pkg
   887  	}
   888  	pkgprefix := ""
   889  	if (spkg == nil || nsym.Pkg != spkg) && !exportname(nsym.Name) && nsym.Pkg.Prefix != `""` {
   890  		pkgprefix = "." + nsym.Pkg.Prefix
   891  	}
   892  	var p string
   893  	if t0.Sym == nil && t0.IsPtr() {
   894  		p = fmt.Sprintf("(%-S)%s.%s%s", t0, pkgprefix, nsym.Name, suffix)
   895  	} else {
   896  		p = fmt.Sprintf("%-S%s.%s%s", t0, pkgprefix, nsym.Name, suffix)
   897  	}
   898  
   899  	if spkg == nil {
   900  		if methodsym_toppkg == nil {
   901  			methodsym_toppkg = types.NewPkg("go", "")
   902  		}
   903  		spkg = methodsym_toppkg
   904  	}
   905  
   906  	return spkg.Lookup(p)
   907  }
   908  
   909  // methodname is a misnomer because this now returns a Sym, rather
   910  // than an ONAME.
   911  // TODO(mdempsky): Reconcile with methodsym.
   912  func methodname(s *types.Sym, recv *types.Type) *types.Sym {
   913  	star := false
   914  	if recv.IsPtr() {
   915  		star = true
   916  		recv = recv.Elem()
   917  	}
   918  
   919  	tsym := recv.Sym
   920  	if tsym == nil || s.IsBlank() {
   921  		return s
   922  	}
   923  
   924  	var p string
   925  	if star {
   926  		p = fmt.Sprintf("(*%v).%v", tsym.Name, s)
   927  	} else {
   928  		p = fmt.Sprintf("%v.%v", tsym, s)
   929  	}
   930  
   931  	s = tsym.Pkg.Lookup(p)
   932  
   933  	return s
   934  }
   935  
   936  // Add a method, declared as a function.
   937  // - msym is the method symbol
   938  // - t is function type (with receiver)
   939  // Returns a pointer to the existing or added Field.
   940  func addmethod(msym *types.Sym, t *types.Type, local, nointerface bool) *types.Field {
   941  	if msym == nil {
   942  		Fatalf("no method symbol")
   943  	}
   944  
   945  	// get parent type sym
   946  	rf := t.Recv() // ptr to this structure
   947  	if rf == nil {
   948  		yyerror("missing receiver")
   949  		return nil
   950  	}
   951  
   952  	mt := methtype(rf.Type)
   953  	if mt == nil || mt.Sym == nil {
   954  		pa := rf.Type
   955  		t := pa
   956  		if t != nil && t.IsPtr() {
   957  			if t.Sym != nil {
   958  				yyerror("invalid receiver type %v (%v is a pointer type)", pa, t)
   959  				return nil
   960  			}
   961  			t = t.Elem()
   962  		}
   963  
   964  		switch {
   965  		case t == nil || t.Broke():
   966  			// rely on typecheck having complained before
   967  		case t.Sym == nil:
   968  			yyerror("invalid receiver type %v (%v is an unnamed type)", pa, t)
   969  		case t.IsPtr():
   970  			yyerror("invalid receiver type %v (%v is a pointer type)", pa, t)
   971  		case t.IsInterface():
   972  			yyerror("invalid receiver type %v (%v is an interface type)", pa, t)
   973  		default:
   974  			// Should have picked off all the reasons above,
   975  			// but just in case, fall back to generic error.
   976  			yyerror("invalid receiver type %v (%L / %L)", pa, pa, t)
   977  		}
   978  		return nil
   979  	}
   980  
   981  	if local && mt.Sym.Pkg != localpkg {
   982  		yyerror("cannot define new methods on non-local type %v", mt)
   983  		return nil
   984  	}
   985  
   986  	if msym.IsBlank() {
   987  		return nil
   988  	}
   989  
   990  	if mt.IsStruct() {
   991  		for _, f := range mt.Fields().Slice() {
   992  			if f.Sym == msym {
   993  				yyerror("type %v has both field and method named %v", mt, msym)
   994  				return nil
   995  			}
   996  		}
   997  	}
   998  
   999  	for _, f := range mt.Methods().Slice() {
  1000  		if msym.Name != f.Sym.Name {
  1001  			continue
  1002  		}
  1003  		// eqtype only checks that incoming and result parameters match,
  1004  		// so explicitly check that the receiver parameters match too.
  1005  		if !eqtype(t, f.Type) || !eqtype(t.Recv().Type, f.Type.Recv().Type) {
  1006  			yyerror("method redeclared: %v.%v\n\t%v\n\t%v", mt, msym, f.Type, t)
  1007  		}
  1008  		return f
  1009  	}
  1010  
  1011  	f := types.NewField()
  1012  	f.Sym = msym
  1013  	f.Nname = asTypesNode(newname(msym))
  1014  	f.Type = t
  1015  	f.SetNointerface(nointerface)
  1016  
  1017  	mt.Methods().Append(f)
  1018  	return f
  1019  }
  1020  
  1021  func funccompile(n *Node) {
  1022  	if n.Type == nil {
  1023  		if nerrors == 0 {
  1024  			Fatalf("funccompile missing type")
  1025  		}
  1026  		return
  1027  	}
  1028  
  1029  	// assign parameter offsets
  1030  	checkwidth(n.Type)
  1031  
  1032  	if Curfn != nil {
  1033  		Fatalf("funccompile %v inside %v", n.Func.Nname.Sym, Curfn.Func.Nname.Sym)
  1034  	}
  1035  
  1036  	dclcontext = PAUTO
  1037  	funcdepth = n.Func.Depth + 1
  1038  	compile(n)
  1039  	Curfn = nil
  1040  	funcdepth = 0
  1041  	dclcontext = PEXTERN
  1042  }
  1043  
  1044  func funcsymname(s *types.Sym) string {
  1045  	return s.Name + "·f"
  1046  }
  1047  
  1048  // funcsym returns s·f.
  1049  func funcsym(s *types.Sym) *types.Sym {
  1050  	// funcsymsmu here serves to protect not just mutations of funcsyms (below),
  1051  	// but also the package lookup of the func sym name,
  1052  	// since this function gets called concurrently from the backend.
  1053  	// There are no other concurrent package lookups in the backend,
  1054  	// except for the types package, which is protected separately.
  1055  	// Reusing funcsymsmu to also cover this package lookup
  1056  	// avoids a general, broader, expensive package lookup mutex.
  1057  	// Note makefuncsym also does package look-up of func sym names,
  1058  	// but that it is only called serially, from the front end.
  1059  	funcsymsmu.Lock()
  1060  	sf, existed := s.Pkg.LookupOK(funcsymname(s))
  1061  	// Don't export s·f when compiling for dynamic linking.
  1062  	// When dynamically linking, the necessary function
  1063  	// symbols will be created explicitly with makefuncsym.
  1064  	// See the makefuncsym comment for details.
  1065  	if !Ctxt.Flag_dynlink && !existed {
  1066  		funcsyms = append(funcsyms, s)
  1067  	}
  1068  	funcsymsmu.Unlock()
  1069  	return sf
  1070  }
  1071  
  1072  // makefuncsym ensures that s·f is exported.
  1073  // It is only used with -dynlink.
  1074  // When not compiling for dynamic linking,
  1075  // the funcsyms are created as needed by
  1076  // the packages that use them.
  1077  // Normally we emit the s·f stubs as DUPOK syms,
  1078  // but DUPOK doesn't work across shared library boundaries.
  1079  // So instead, when dynamic linking, we only create
  1080  // the s·f stubs in s's package.
  1081  func makefuncsym(s *types.Sym) {
  1082  	if !Ctxt.Flag_dynlink {
  1083  		Fatalf("makefuncsym dynlink")
  1084  	}
  1085  	if s.IsBlank() {
  1086  		return
  1087  	}
  1088  	if compiling_runtime && (s.Name == "getg" || s.Name == "getclosureptr" || s.Name == "getcallerpc" || s.Name == "getcallersp") {
  1089  		// runtime.getg(), getclosureptr(), getcallerpc(), and
  1090  		// getcallersp() are not real functions and so do not
  1091  		// get funcsyms.
  1092  		return
  1093  	}
  1094  	if _, existed := s.Pkg.LookupOK(funcsymname(s)); !existed {
  1095  		funcsyms = append(funcsyms, s)
  1096  	}
  1097  }
  1098  
  1099  func dclfunc(sym *types.Sym, tfn *Node) *Node {
  1100  	if tfn.Op != OTFUNC {
  1101  		Fatalf("expected OTFUNC node, got %v", tfn)
  1102  	}
  1103  
  1104  	fn := nod(ODCLFUNC, nil, nil)
  1105  	fn.Func.Nname = newname(sym)
  1106  	fn.Func.Nname.Name.Defn = fn
  1107  	fn.Func.Nname.Name.Param.Ntype = tfn
  1108  	declare(fn.Func.Nname, PFUNC)
  1109  	funchdr(fn)
  1110  	fn.Func.Nname.Name.Param.Ntype = typecheck(fn.Func.Nname.Name.Param.Ntype, Etype)
  1111  	return fn
  1112  }
  1113  
  1114  type nowritebarrierrecChecker struct {
  1115  	// extraCalls contains extra function calls that may not be
  1116  	// visible during later analysis. It maps from the ODCLFUNC of
  1117  	// the caller to a list of callees.
  1118  	extraCalls map[*Node][]nowritebarrierrecCall
  1119  
  1120  	// curfn is the current function during AST walks.
  1121  	curfn *Node
  1122  }
  1123  
  1124  type nowritebarrierrecCall struct {
  1125  	target *Node    // ODCLFUNC of caller or callee
  1126  	lineno src.XPos // line of call
  1127  }
  1128  
  1129  type nowritebarrierrecCallSym struct {
  1130  	target *obj.LSym // LSym of callee
  1131  	lineno src.XPos  // line of call
  1132  }
  1133  
  1134  // newNowritebarrierrecChecker creates a nowritebarrierrecChecker. It
  1135  // must be called before transformclosure and walk.
  1136  func newNowritebarrierrecChecker() *nowritebarrierrecChecker {
  1137  	c := &nowritebarrierrecChecker{
  1138  		extraCalls: make(map[*Node][]nowritebarrierrecCall),
  1139  	}
  1140  
  1141  	// Find all systemstack calls and record their targets. In
  1142  	// general, flow analysis can't see into systemstack, but it's
  1143  	// important to handle it for this check, so we model it
  1144  	// directly. This has to happen before transformclosure since
  1145  	// it's a lot harder to work out the argument after.
  1146  	for _, n := range xtop {
  1147  		if n.Op != ODCLFUNC {
  1148  			continue
  1149  		}
  1150  		c.curfn = n
  1151  		inspect(n, c.findExtraCalls)
  1152  	}
  1153  	c.curfn = nil
  1154  	return c
  1155  }
  1156  
  1157  func (c *nowritebarrierrecChecker) findExtraCalls(n *Node) bool {
  1158  	if n.Op != OCALLFUNC {
  1159  		return true
  1160  	}
  1161  	fn := n.Left
  1162  	if fn == nil || fn.Op != ONAME || fn.Class() != PFUNC || fn.Name.Defn == nil {
  1163  		return true
  1164  	}
  1165  	if !isRuntimePkg(fn.Sym.Pkg) || fn.Sym.Name != "systemstack" {
  1166  		return true
  1167  	}
  1168  
  1169  	var callee *Node
  1170  	arg := n.List.First()
  1171  	switch arg.Op {
  1172  	case ONAME:
  1173  		callee = arg.Name.Defn
  1174  	case OCLOSURE:
  1175  		callee = arg.Func.Closure
  1176  	default:
  1177  		Fatalf("expected ONAME or OCLOSURE node, got %+v", arg)
  1178  	}
  1179  	if callee.Op != ODCLFUNC {
  1180  		Fatalf("expected ODCLFUNC node, got %+v", callee)
  1181  	}
  1182  	c.extraCalls[c.curfn] = append(c.extraCalls[c.curfn], nowritebarrierrecCall{callee, n.Pos})
  1183  	return true
  1184  }
  1185  
  1186  // recordCall records a call from ODCLFUNC node "from", to function
  1187  // symbol "to" at position pos.
  1188  //
  1189  // This should be done as late as possible during compilation to
  1190  // capture precise call graphs. The target of the call is an LSym
  1191  // because that's all we know after we start SSA.
  1192  //
  1193  // This can be called concurrently for different from Nodes.
  1194  func (c *nowritebarrierrecChecker) recordCall(from *Node, to *obj.LSym, pos src.XPos) {
  1195  	if from.Op != ODCLFUNC {
  1196  		Fatalf("expected ODCLFUNC, got %v", from)
  1197  	}
  1198  	// We record this information on the *Func so this is
  1199  	// concurrent-safe.
  1200  	fn := from.Func
  1201  	if fn.nwbrCalls == nil {
  1202  		fn.nwbrCalls = new([]nowritebarrierrecCallSym)
  1203  	}
  1204  	*fn.nwbrCalls = append(*fn.nwbrCalls, nowritebarrierrecCallSym{to, pos})
  1205  }
  1206  
  1207  func (c *nowritebarrierrecChecker) check() {
  1208  	// We walk the call graph as late as possible so we can
  1209  	// capture all calls created by lowering, but this means we
  1210  	// only get to see the obj.LSyms of calls. symToFunc lets us
  1211  	// get back to the ODCLFUNCs.
  1212  	symToFunc := make(map[*obj.LSym]*Node)
  1213  	// funcs records the back-edges of the BFS call graph walk. It
  1214  	// maps from the ODCLFUNC of each function that must not have
  1215  	// write barriers to the call that inhibits them. Functions
  1216  	// that are directly marked go:nowritebarrierrec are in this
  1217  	// map with a zero-valued nowritebarrierrecCall. This also
  1218  	// acts as the set of marks for the BFS of the call graph.
  1219  	funcs := make(map[*Node]nowritebarrierrecCall)
  1220  	// q is the queue of ODCLFUNC Nodes to visit in BFS order.
  1221  	var q nodeQueue
  1222  
  1223  	for _, n := range xtop {
  1224  		if n.Op != ODCLFUNC {
  1225  			continue
  1226  		}
  1227  
  1228  		symToFunc[n.Func.lsym] = n
  1229  
  1230  		// Make nowritebarrierrec functions BFS roots.
  1231  		if n.Func.Pragma&Nowritebarrierrec != 0 {
  1232  			funcs[n] = nowritebarrierrecCall{}
  1233  			q.pushRight(n)
  1234  		}
  1235  		// Check go:nowritebarrier functions.
  1236  		if n.Func.Pragma&Nowritebarrier != 0 && n.Func.WBPos.IsKnown() {
  1237  			yyerrorl(n.Func.WBPos, "write barrier prohibited")
  1238  		}
  1239  	}
  1240  
  1241  	// Perform a BFS of the call graph from all
  1242  	// go:nowritebarrierrec functions.
  1243  	enqueue := func(src, target *Node, pos src.XPos) {
  1244  		if target.Func.Pragma&Yeswritebarrierrec != 0 {
  1245  			// Don't flow into this function.
  1246  			return
  1247  		}
  1248  		if _, ok := funcs[target]; ok {
  1249  			// Already found a path to target.
  1250  			return
  1251  		}
  1252  
  1253  		// Record the path.
  1254  		funcs[target] = nowritebarrierrecCall{target: src, lineno: pos}
  1255  		q.pushRight(target)
  1256  	}
  1257  	for !q.empty() {
  1258  		fn := q.popLeft()
  1259  
  1260  		// Check fn.
  1261  		if fn.Func.WBPos.IsKnown() {
  1262  			var err bytes.Buffer
  1263  			call := funcs[fn]
  1264  			for call.target != nil {
  1265  				fmt.Fprintf(&err, "\n\t%v: called by %v", linestr(call.lineno), call.target.Func.Nname)
  1266  				call = funcs[call.target]
  1267  			}
  1268  			yyerrorl(fn.Func.WBPos, "write barrier prohibited by caller; %v%s", fn.Func.Nname, err.String())
  1269  			continue
  1270  		}
  1271  
  1272  		// Enqueue fn's calls.
  1273  		for _, callee := range c.extraCalls[fn] {
  1274  			enqueue(fn, callee.target, callee.lineno)
  1275  		}
  1276  		if fn.Func.nwbrCalls == nil {
  1277  			continue
  1278  		}
  1279  		for _, callee := range *fn.Func.nwbrCalls {
  1280  			target := symToFunc[callee.target]
  1281  			if target != nil {
  1282  				enqueue(fn, target, callee.lineno)
  1283  			}
  1284  		}
  1285  	}
  1286  }