github.com/goproxy0/go@v0.0.0-20171111080102-49cc0c489d2c/src/cmd/compile/internal/gc/ssa.go (about)

     1  // Copyright 2015 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package gc
     6  
     7  import (
     8  	"bytes"
     9  	"encoding/binary"
    10  	"fmt"
    11  	"html"
    12  	"os"
    13  	"sort"
    14  
    15  	"cmd/compile/internal/ssa"
    16  	"cmd/compile/internal/types"
    17  	"cmd/internal/obj"
    18  	"cmd/internal/objabi"
    19  	"cmd/internal/src"
    20  	"cmd/internal/sys"
    21  )
    22  
    23  var ssaConfig *ssa.Config
    24  var ssaCaches []ssa.Cache
    25  
    26  func initssaconfig() {
    27  	types_ := ssa.Types{
    28  		Bool:       types.Types[TBOOL],
    29  		Int8:       types.Types[TINT8],
    30  		Int16:      types.Types[TINT16],
    31  		Int32:      types.Types[TINT32],
    32  		Int64:      types.Types[TINT64],
    33  		UInt8:      types.Types[TUINT8],
    34  		UInt16:     types.Types[TUINT16],
    35  		UInt32:     types.Types[TUINT32],
    36  		UInt64:     types.Types[TUINT64],
    37  		Float32:    types.Types[TFLOAT32],
    38  		Float64:    types.Types[TFLOAT64],
    39  		Int:        types.Types[TINT],
    40  		UInt:       types.Types[TUINT],
    41  		Uintptr:    types.Types[TUINTPTR],
    42  		String:     types.Types[TSTRING],
    43  		BytePtr:    types.NewPtr(types.Types[TUINT8]),
    44  		Int32Ptr:   types.NewPtr(types.Types[TINT32]),
    45  		UInt32Ptr:  types.NewPtr(types.Types[TUINT32]),
    46  		IntPtr:     types.NewPtr(types.Types[TINT]),
    47  		UintptrPtr: types.NewPtr(types.Types[TUINTPTR]),
    48  		Float32Ptr: types.NewPtr(types.Types[TFLOAT32]),
    49  		Float64Ptr: types.NewPtr(types.Types[TFLOAT64]),
    50  		BytePtrPtr: types.NewPtr(types.NewPtr(types.Types[TUINT8])),
    51  	}
    52  	// Generate a few pointer types that are uncommon in the frontend but common in the backend.
    53  	// Caching is disabled in the backend, so generating these here avoids allocations.
    54  	_ = types.NewPtr(types.Types[TINTER])                             // *interface{}
    55  	_ = types.NewPtr(types.NewPtr(types.Types[TSTRING]))              // **string
    56  	_ = types.NewPtr(types.NewPtr(types.Idealstring))                 // **string
    57  	_ = types.NewPtr(types.NewSlice(types.Types[TINTER]))             // *[]interface{}
    58  	_ = types.NewPtr(types.NewPtr(types.Bytetype))                    // **byte
    59  	_ = types.NewPtr(types.NewSlice(types.Bytetype))                  // *[]byte
    60  	_ = types.NewPtr(types.NewSlice(types.Types[TSTRING]))            // *[]string
    61  	_ = types.NewPtr(types.NewSlice(types.Idealstring))               // *[]string
    62  	_ = types.NewPtr(types.NewPtr(types.NewPtr(types.Types[TUINT8]))) // ***uint8
    63  	_ = types.NewPtr(types.Types[TINT16])                             // *int16
    64  	_ = types.NewPtr(types.Types[TINT64])                             // *int64
    65  	_ = types.NewPtr(types.Errortype)                                 // *error
    66  	types.NewPtrCacheEnabled = false
    67  	ssaConfig = ssa.NewConfig(thearch.LinkArch.Name, types_, Ctxt, Debug['N'] == 0)
    68  	if thearch.LinkArch.Name == "386" {
    69  		ssaConfig.Set387(thearch.Use387)
    70  	}
    71  	ssaCaches = make([]ssa.Cache, nBackendWorkers)
    72  
    73  	// Set up some runtime functions we'll need to call.
    74  	Newproc = sysfunc("newproc")
    75  	Deferproc = sysfunc("deferproc")
    76  	Deferreturn = sysfunc("deferreturn")
    77  	Duffcopy = sysfunc("duffcopy")
    78  	Duffzero = sysfunc("duffzero")
    79  	panicindex = sysfunc("panicindex")
    80  	panicslice = sysfunc("panicslice")
    81  	panicdivide = sysfunc("panicdivide")
    82  	growslice = sysfunc("growslice")
    83  	panicdottypeE = sysfunc("panicdottypeE")
    84  	panicdottypeI = sysfunc("panicdottypeI")
    85  	panicnildottype = sysfunc("panicnildottype")
    86  	assertE2I = sysfunc("assertE2I")
    87  	assertE2I2 = sysfunc("assertE2I2")
    88  	assertI2I = sysfunc("assertI2I")
    89  	assertI2I2 = sysfunc("assertI2I2")
    90  	goschedguarded = sysfunc("goschedguarded")
    91  	writeBarrier = sysfunc("writeBarrier")
    92  	writebarrierptr = sysfunc("writebarrierptr")
    93  	gcWriteBarrier = sysfunc("gcWriteBarrier")
    94  	typedmemmove = sysfunc("typedmemmove")
    95  	typedmemclr = sysfunc("typedmemclr")
    96  	Udiv = sysfunc("udiv")
    97  
    98  	// GO386=387 runtime functions
    99  	ControlWord64trunc = sysfunc("controlWord64trunc")
   100  	ControlWord32 = sysfunc("controlWord32")
   101  }
   102  
   103  // buildssa builds an SSA function for fn.
   104  // worker indicates which of the backend workers is doing the processing.
   105  func buildssa(fn *Node, worker int) *ssa.Func {
   106  	name := fn.funcname()
   107  	printssa := name == os.Getenv("GOSSAFUNC")
   108  	if printssa {
   109  		fmt.Println("generating SSA for", name)
   110  		dumplist("buildssa-enter", fn.Func.Enter)
   111  		dumplist("buildssa-body", fn.Nbody)
   112  		dumplist("buildssa-exit", fn.Func.Exit)
   113  	}
   114  
   115  	var s state
   116  	s.pushLine(fn.Pos)
   117  	defer s.popLine()
   118  
   119  	s.hasdefer = fn.Func.HasDefer()
   120  	if fn.Func.Pragma&CgoUnsafeArgs != 0 {
   121  		s.cgoUnsafeArgs = true
   122  	}
   123  
   124  	fe := ssafn{
   125  		curfn: fn,
   126  		log:   printssa,
   127  	}
   128  	s.curfn = fn
   129  
   130  	s.f = ssa.NewFunc(&fe)
   131  	s.config = ssaConfig
   132  	s.f.Config = ssaConfig
   133  	s.f.Cache = &ssaCaches[worker]
   134  	s.f.Cache.Reset()
   135  	s.f.DebugTest = s.f.DebugHashMatch("GOSSAHASH", name)
   136  	s.f.Name = name
   137  	if fn.Func.Pragma&Nosplit != 0 {
   138  		s.f.NoSplit = true
   139  	}
   140  	s.exitCode = fn.Func.Exit
   141  	s.panics = map[funcLine]*ssa.Block{}
   142  
   143  	if name == os.Getenv("GOSSAFUNC") {
   144  		s.f.HTMLWriter = ssa.NewHTMLWriter("ssa.html", s.f.Frontend(), name)
   145  		// TODO: generate and print a mapping from nodes to values and blocks
   146  	}
   147  
   148  	// Allocate starting block
   149  	s.f.Entry = s.f.NewBlock(ssa.BlockPlain)
   150  
   151  	// Allocate starting values
   152  	s.labels = map[string]*ssaLabel{}
   153  	s.labeledNodes = map[*Node]*ssaLabel{}
   154  	s.fwdVars = map[*Node]*ssa.Value{}
   155  	s.startmem = s.entryNewValue0(ssa.OpInitMem, types.TypeMem)
   156  	s.sp = s.entryNewValue0(ssa.OpSP, types.Types[TUINTPTR]) // TODO: use generic pointer type (unsafe.Pointer?) instead
   157  	s.sb = s.entryNewValue0(ssa.OpSB, types.Types[TUINTPTR])
   158  
   159  	s.startBlock(s.f.Entry)
   160  	s.vars[&memVar] = s.startmem
   161  
   162  	// Generate addresses of local declarations
   163  	s.decladdrs = map[*Node]*ssa.Value{}
   164  	for _, n := range fn.Func.Dcl {
   165  		switch n.Class() {
   166  		case PPARAM, PPARAMOUT:
   167  			s.decladdrs[n] = s.entryNewValue1A(ssa.OpAddr, types.NewPtr(n.Type), n, s.sp)
   168  			if n.Class() == PPARAMOUT && s.canSSA(n) {
   169  				// Save ssa-able PPARAMOUT variables so we can
   170  				// store them back to the stack at the end of
   171  				// the function.
   172  				s.returns = append(s.returns, n)
   173  			}
   174  		case PAUTO:
   175  			// processed at each use, to prevent Addr coming
   176  			// before the decl.
   177  		case PAUTOHEAP:
   178  			// moved to heap - already handled by frontend
   179  		case PFUNC:
   180  			// local function - already handled by frontend
   181  		default:
   182  			s.Fatalf("local variable with class %s unimplemented", classnames[n.Class()])
   183  		}
   184  	}
   185  
   186  	// Populate SSAable arguments.
   187  	for _, n := range fn.Func.Dcl {
   188  		if n.Class() == PPARAM && s.canSSA(n) {
   189  			s.vars[n] = s.newValue0A(ssa.OpArg, n.Type, n)
   190  		}
   191  	}
   192  
   193  	// Convert the AST-based IR to the SSA-based IR
   194  	s.stmtList(fn.Func.Enter)
   195  	s.stmtList(fn.Nbody)
   196  
   197  	// fallthrough to exit
   198  	if s.curBlock != nil {
   199  		s.pushLine(fn.Func.Endlineno)
   200  		s.exit()
   201  		s.popLine()
   202  	}
   203  
   204  	for _, b := range s.f.Blocks {
   205  		if b.Pos != src.NoXPos {
   206  			s.updateUnsetPredPos(b)
   207  		}
   208  	}
   209  
   210  	s.insertPhis()
   211  
   212  	// Don't carry reference this around longer than necessary
   213  	s.exitCode = Nodes{}
   214  
   215  	// Main call to ssa package to compile function
   216  	ssa.Compile(s.f)
   217  	return s.f
   218  }
   219  
   220  // updateUnsetPredPos propagates the earliest-value position information for b
   221  // towards all of b's predecessors that need a position, and recurs on that
   222  // predecessor if its position is updated. B should have a non-empty position.
   223  func (s *state) updateUnsetPredPos(b *ssa.Block) {
   224  	if b.Pos == src.NoXPos {
   225  		s.Fatalf("Block %s should have a position", b)
   226  	}
   227  	bestPos := src.NoXPos
   228  	for _, e := range b.Preds {
   229  		p := e.Block()
   230  		if !p.LackingPos() {
   231  			continue
   232  		}
   233  		if bestPos == src.NoXPos {
   234  			bestPos = b.Pos
   235  			for _, v := range b.Values {
   236  				if v.LackingPos() {
   237  					continue
   238  				}
   239  				if v.Pos != src.NoXPos {
   240  					// Assume values are still in roughly textual order;
   241  					// TODO: could also seek minimum position?
   242  					bestPos = v.Pos
   243  					break
   244  				}
   245  			}
   246  		}
   247  		p.Pos = bestPos
   248  		s.updateUnsetPredPos(p) // We do not expect long chains of these, thus recursion is okay.
   249  	}
   250  	return
   251  }
   252  
   253  type state struct {
   254  	// configuration (arch) information
   255  	config *ssa.Config
   256  
   257  	// function we're building
   258  	f *ssa.Func
   259  
   260  	// Node for function
   261  	curfn *Node
   262  
   263  	// labels and labeled control flow nodes (OFOR, OFORUNTIL, OSWITCH, OSELECT) in f
   264  	labels       map[string]*ssaLabel
   265  	labeledNodes map[*Node]*ssaLabel
   266  
   267  	// Code that must precede any return
   268  	// (e.g., copying value of heap-escaped paramout back to true paramout)
   269  	exitCode Nodes
   270  
   271  	// unlabeled break and continue statement tracking
   272  	breakTo    *ssa.Block // current target for plain break statement
   273  	continueTo *ssa.Block // current target for plain continue statement
   274  
   275  	// current location where we're interpreting the AST
   276  	curBlock *ssa.Block
   277  
   278  	// variable assignments in the current block (map from variable symbol to ssa value)
   279  	// *Node is the unique identifier (an ONAME Node) for the variable.
   280  	// TODO: keep a single varnum map, then make all of these maps slices instead?
   281  	vars map[*Node]*ssa.Value
   282  
   283  	// fwdVars are variables that are used before they are defined in the current block.
   284  	// This map exists just to coalesce multiple references into a single FwdRef op.
   285  	// *Node is the unique identifier (an ONAME Node) for the variable.
   286  	fwdVars map[*Node]*ssa.Value
   287  
   288  	// all defined variables at the end of each block. Indexed by block ID.
   289  	defvars []map[*Node]*ssa.Value
   290  
   291  	// addresses of PPARAM and PPARAMOUT variables.
   292  	decladdrs map[*Node]*ssa.Value
   293  
   294  	// starting values. Memory, stack pointer, and globals pointer
   295  	startmem *ssa.Value
   296  	sp       *ssa.Value
   297  	sb       *ssa.Value
   298  
   299  	// line number stack. The current line number is top of stack
   300  	line []src.XPos
   301  	// the last line number processed; it may have been popped
   302  	lastPos src.XPos
   303  
   304  	// list of panic calls by function name and line number.
   305  	// Used to deduplicate panic calls.
   306  	panics map[funcLine]*ssa.Block
   307  
   308  	// list of PPARAMOUT (return) variables.
   309  	returns []*Node
   310  
   311  	cgoUnsafeArgs bool
   312  	hasdefer      bool // whether the function contains a defer statement
   313  }
   314  
   315  type funcLine struct {
   316  	f    *obj.LSym
   317  	base *src.PosBase
   318  	line uint
   319  }
   320  
   321  type ssaLabel struct {
   322  	target         *ssa.Block // block identified by this label
   323  	breakTarget    *ssa.Block // block to break to in control flow node identified by this label
   324  	continueTarget *ssa.Block // block to continue to in control flow node identified by this label
   325  }
   326  
   327  // label returns the label associated with sym, creating it if necessary.
   328  func (s *state) label(sym *types.Sym) *ssaLabel {
   329  	lab := s.labels[sym.Name]
   330  	if lab == nil {
   331  		lab = new(ssaLabel)
   332  		s.labels[sym.Name] = lab
   333  	}
   334  	return lab
   335  }
   336  
   337  func (s *state) Logf(msg string, args ...interface{}) { s.f.Logf(msg, args...) }
   338  func (s *state) Log() bool                            { return s.f.Log() }
   339  func (s *state) Fatalf(msg string, args ...interface{}) {
   340  	s.f.Frontend().Fatalf(s.peekPos(), msg, args...)
   341  }
   342  func (s *state) Warnl(pos src.XPos, msg string, args ...interface{}) { s.f.Warnl(pos, msg, args...) }
   343  func (s *state) Debug_checknil() bool                                { return s.f.Frontend().Debug_checknil() }
   344  
   345  var (
   346  	// dummy node for the memory variable
   347  	memVar = Node{Op: ONAME, Sym: &types.Sym{Name: "mem"}}
   348  
   349  	// dummy nodes for temporary variables
   350  	ptrVar    = Node{Op: ONAME, Sym: &types.Sym{Name: "ptr"}}
   351  	lenVar    = Node{Op: ONAME, Sym: &types.Sym{Name: "len"}}
   352  	newlenVar = Node{Op: ONAME, Sym: &types.Sym{Name: "newlen"}}
   353  	capVar    = Node{Op: ONAME, Sym: &types.Sym{Name: "cap"}}
   354  	typVar    = Node{Op: ONAME, Sym: &types.Sym{Name: "typ"}}
   355  	okVar     = Node{Op: ONAME, Sym: &types.Sym{Name: "ok"}}
   356  )
   357  
   358  // startBlock sets the current block we're generating code in to b.
   359  func (s *state) startBlock(b *ssa.Block) {
   360  	if s.curBlock != nil {
   361  		s.Fatalf("starting block %v when block %v has not ended", b, s.curBlock)
   362  	}
   363  	s.curBlock = b
   364  	s.vars = map[*Node]*ssa.Value{}
   365  	for n := range s.fwdVars {
   366  		delete(s.fwdVars, n)
   367  	}
   368  }
   369  
   370  // endBlock marks the end of generating code for the current block.
   371  // Returns the (former) current block. Returns nil if there is no current
   372  // block, i.e. if no code flows to the current execution point.
   373  func (s *state) endBlock() *ssa.Block {
   374  	b := s.curBlock
   375  	if b == nil {
   376  		return nil
   377  	}
   378  	for len(s.defvars) <= int(b.ID) {
   379  		s.defvars = append(s.defvars, nil)
   380  	}
   381  	s.defvars[b.ID] = s.vars
   382  	s.curBlock = nil
   383  	s.vars = nil
   384  	if b.LackingPos() {
   385  		// Empty plain blocks get the line of their successor (handled after all blocks created),
   386  		// except for increment blocks in For statements (handled in ssa conversion of OFOR),
   387  		// and for blocks ending in GOTO/BREAK/CONTINUE.
   388  		b.Pos = src.NoXPos
   389  	} else {
   390  		b.Pos = s.lastPos
   391  	}
   392  	return b
   393  }
   394  
   395  // pushLine pushes a line number on the line number stack.
   396  func (s *state) pushLine(line src.XPos) {
   397  	if !line.IsKnown() {
   398  		// the frontend may emit node with line number missing,
   399  		// use the parent line number in this case.
   400  		line = s.peekPos()
   401  		if Debug['K'] != 0 {
   402  			Warn("buildssa: unknown position (line 0)")
   403  		}
   404  	} else {
   405  		s.lastPos = line
   406  	}
   407  
   408  	s.line = append(s.line, line)
   409  }
   410  
   411  // popLine pops the top of the line number stack.
   412  func (s *state) popLine() {
   413  	s.line = s.line[:len(s.line)-1]
   414  }
   415  
   416  // peekPos peeks the top of the line number stack.
   417  func (s *state) peekPos() src.XPos {
   418  	return s.line[len(s.line)-1]
   419  }
   420  
   421  // newValue0 adds a new value with no arguments to the current block.
   422  func (s *state) newValue0(op ssa.Op, t *types.Type) *ssa.Value {
   423  	return s.curBlock.NewValue0(s.peekPos(), op, t)
   424  }
   425  
   426  // newValue0A adds a new value with no arguments and an aux value to the current block.
   427  func (s *state) newValue0A(op ssa.Op, t *types.Type, aux interface{}) *ssa.Value {
   428  	return s.curBlock.NewValue0A(s.peekPos(), op, t, aux)
   429  }
   430  
   431  // newValue0I adds a new value with no arguments and an auxint value to the current block.
   432  func (s *state) newValue0I(op ssa.Op, t *types.Type, auxint int64) *ssa.Value {
   433  	return s.curBlock.NewValue0I(s.peekPos(), op, t, auxint)
   434  }
   435  
   436  // newValue1 adds a new value with one argument to the current block.
   437  func (s *state) newValue1(op ssa.Op, t *types.Type, arg *ssa.Value) *ssa.Value {
   438  	return s.curBlock.NewValue1(s.peekPos(), op, t, arg)
   439  }
   440  
   441  // newValue1A adds a new value with one argument and an aux value to the current block.
   442  func (s *state) newValue1A(op ssa.Op, t *types.Type, aux interface{}, arg *ssa.Value) *ssa.Value {
   443  	return s.curBlock.NewValue1A(s.peekPos(), op, t, aux, arg)
   444  }
   445  
   446  // newValue1I adds a new value with one argument and an auxint value to the current block.
   447  func (s *state) newValue1I(op ssa.Op, t *types.Type, aux int64, arg *ssa.Value) *ssa.Value {
   448  	return s.curBlock.NewValue1I(s.peekPos(), op, t, aux, arg)
   449  }
   450  
   451  // newValue2 adds a new value with two arguments to the current block.
   452  func (s *state) newValue2(op ssa.Op, t *types.Type, arg0, arg1 *ssa.Value) *ssa.Value {
   453  	return s.curBlock.NewValue2(s.peekPos(), op, t, arg0, arg1)
   454  }
   455  
   456  // newValue2I adds a new value with two arguments and an auxint value to the current block.
   457  func (s *state) newValue2I(op ssa.Op, t *types.Type, aux int64, arg0, arg1 *ssa.Value) *ssa.Value {
   458  	return s.curBlock.NewValue2I(s.peekPos(), op, t, aux, arg0, arg1)
   459  }
   460  
   461  // newValue3 adds a new value with three arguments to the current block.
   462  func (s *state) newValue3(op ssa.Op, t *types.Type, arg0, arg1, arg2 *ssa.Value) *ssa.Value {
   463  	return s.curBlock.NewValue3(s.peekPos(), op, t, arg0, arg1, arg2)
   464  }
   465  
   466  // newValue3I adds a new value with three arguments and an auxint value to the current block.
   467  func (s *state) newValue3I(op ssa.Op, t *types.Type, aux int64, arg0, arg1, arg2 *ssa.Value) *ssa.Value {
   468  	return s.curBlock.NewValue3I(s.peekPos(), op, t, aux, arg0, arg1, arg2)
   469  }
   470  
   471  // newValue3A adds a new value with three arguments and an aux value to the current block.
   472  func (s *state) newValue3A(op ssa.Op, t *types.Type, aux interface{}, arg0, arg1, arg2 *ssa.Value) *ssa.Value {
   473  	return s.curBlock.NewValue3A(s.peekPos(), op, t, aux, arg0, arg1, arg2)
   474  }
   475  
   476  // newValue4 adds a new value with four arguments to the current block.
   477  func (s *state) newValue4(op ssa.Op, t *types.Type, arg0, arg1, arg2, arg3 *ssa.Value) *ssa.Value {
   478  	return s.curBlock.NewValue4(s.peekPos(), op, t, arg0, arg1, arg2, arg3)
   479  }
   480  
   481  // entryNewValue0 adds a new value with no arguments to the entry block.
   482  func (s *state) entryNewValue0(op ssa.Op, t *types.Type) *ssa.Value {
   483  	return s.f.Entry.NewValue0(src.NoXPos, op, t)
   484  }
   485  
   486  // entryNewValue0A adds a new value with no arguments and an aux value to the entry block.
   487  func (s *state) entryNewValue0A(op ssa.Op, t *types.Type, aux interface{}) *ssa.Value {
   488  	return s.f.Entry.NewValue0A(s.peekPos(), op, t, aux)
   489  }
   490  
   491  // entryNewValue1 adds a new value with one argument to the entry block.
   492  func (s *state) entryNewValue1(op ssa.Op, t *types.Type, arg *ssa.Value) *ssa.Value {
   493  	return s.f.Entry.NewValue1(s.peekPos(), op, t, arg)
   494  }
   495  
   496  // entryNewValue1 adds a new value with one argument and an auxint value to the entry block.
   497  func (s *state) entryNewValue1I(op ssa.Op, t *types.Type, auxint int64, arg *ssa.Value) *ssa.Value {
   498  	return s.f.Entry.NewValue1I(s.peekPos(), op, t, auxint, arg)
   499  }
   500  
   501  // entryNewValue1A adds a new value with one argument and an aux value to the entry block.
   502  func (s *state) entryNewValue1A(op ssa.Op, t *types.Type, aux interface{}, arg *ssa.Value) *ssa.Value {
   503  	return s.f.Entry.NewValue1A(s.peekPos(), op, t, aux, arg)
   504  }
   505  
   506  // entryNewValue2 adds a new value with two arguments to the entry block.
   507  func (s *state) entryNewValue2(op ssa.Op, t *types.Type, arg0, arg1 *ssa.Value) *ssa.Value {
   508  	return s.f.Entry.NewValue2(s.peekPos(), op, t, arg0, arg1)
   509  }
   510  
   511  // const* routines add a new const value to the entry block.
   512  func (s *state) constSlice(t *types.Type) *ssa.Value {
   513  	return s.f.ConstSlice(s.peekPos(), t)
   514  }
   515  func (s *state) constInterface(t *types.Type) *ssa.Value {
   516  	return s.f.ConstInterface(s.peekPos(), t)
   517  }
   518  func (s *state) constNil(t *types.Type) *ssa.Value { return s.f.ConstNil(s.peekPos(), t) }
   519  func (s *state) constEmptyString(t *types.Type) *ssa.Value {
   520  	return s.f.ConstEmptyString(s.peekPos(), t)
   521  }
   522  func (s *state) constBool(c bool) *ssa.Value {
   523  	return s.f.ConstBool(s.peekPos(), types.Types[TBOOL], c)
   524  }
   525  func (s *state) constInt8(t *types.Type, c int8) *ssa.Value {
   526  	return s.f.ConstInt8(s.peekPos(), t, c)
   527  }
   528  func (s *state) constInt16(t *types.Type, c int16) *ssa.Value {
   529  	return s.f.ConstInt16(s.peekPos(), t, c)
   530  }
   531  func (s *state) constInt32(t *types.Type, c int32) *ssa.Value {
   532  	return s.f.ConstInt32(s.peekPos(), t, c)
   533  }
   534  func (s *state) constInt64(t *types.Type, c int64) *ssa.Value {
   535  	return s.f.ConstInt64(s.peekPos(), t, c)
   536  }
   537  func (s *state) constFloat32(t *types.Type, c float64) *ssa.Value {
   538  	return s.f.ConstFloat32(s.peekPos(), t, c)
   539  }
   540  func (s *state) constFloat64(t *types.Type, c float64) *ssa.Value {
   541  	return s.f.ConstFloat64(s.peekPos(), t, c)
   542  }
   543  func (s *state) constInt(t *types.Type, c int64) *ssa.Value {
   544  	if s.config.PtrSize == 8 {
   545  		return s.constInt64(t, c)
   546  	}
   547  	if int64(int32(c)) != c {
   548  		s.Fatalf("integer constant too big %d", c)
   549  	}
   550  	return s.constInt32(t, int32(c))
   551  }
   552  func (s *state) constOffPtrSP(t *types.Type, c int64) *ssa.Value {
   553  	return s.f.ConstOffPtrSP(s.peekPos(), t, c, s.sp)
   554  }
   555  
   556  // stmtList converts the statement list n to SSA and adds it to s.
   557  func (s *state) stmtList(l Nodes) {
   558  	for _, n := range l.Slice() {
   559  		s.stmt(n)
   560  	}
   561  }
   562  
   563  // stmt converts the statement n to SSA and adds it to s.
   564  func (s *state) stmt(n *Node) {
   565  	if !(n.Op == OVARKILL || n.Op == OVARLIVE) {
   566  		// OVARKILL and OVARLIVE are invisible to the programmer, so we don't use their line numbers to avoid confusion in debugging.
   567  		s.pushLine(n.Pos)
   568  		defer s.popLine()
   569  	}
   570  
   571  	// If s.curBlock is nil, and n isn't a label (which might have an associated goto somewhere),
   572  	// then this code is dead. Stop here.
   573  	if s.curBlock == nil && n.Op != OLABEL {
   574  		return
   575  	}
   576  
   577  	s.stmtList(n.Ninit)
   578  	switch n.Op {
   579  
   580  	case OBLOCK:
   581  		s.stmtList(n.List)
   582  
   583  	// No-ops
   584  	case OEMPTY, ODCLCONST, ODCLTYPE, OFALL:
   585  
   586  	// Expression statements
   587  	case OCALLFUNC:
   588  		if isIntrinsicCall(n) {
   589  			s.intrinsicCall(n)
   590  			return
   591  		}
   592  		fallthrough
   593  
   594  	case OCALLMETH, OCALLINTER:
   595  		s.call(n, callNormal)
   596  		if n.Op == OCALLFUNC && n.Left.Op == ONAME && n.Left.Class() == PFUNC {
   597  			if fn := n.Left.Sym.Name; compiling_runtime && fn == "throw" ||
   598  				n.Left.Sym.Pkg == Runtimepkg && (fn == "throwinit" || fn == "gopanic" || fn == "panicwrap" || fn == "block") {
   599  				m := s.mem()
   600  				b := s.endBlock()
   601  				b.Kind = ssa.BlockExit
   602  				b.SetControl(m)
   603  				// TODO: never rewrite OPANIC to OCALLFUNC in the
   604  				// first place. Need to wait until all backends
   605  				// go through SSA.
   606  			}
   607  		}
   608  	case ODEFER:
   609  		s.call(n.Left, callDefer)
   610  	case OPROC:
   611  		s.call(n.Left, callGo)
   612  
   613  	case OAS2DOTTYPE:
   614  		res, resok := s.dottype(n.Rlist.First(), true)
   615  		deref := false
   616  		if !canSSAType(n.Rlist.First().Type) {
   617  			if res.Op != ssa.OpLoad {
   618  				s.Fatalf("dottype of non-load")
   619  			}
   620  			mem := s.mem()
   621  			if mem.Op == ssa.OpVarKill {
   622  				mem = mem.Args[0]
   623  			}
   624  			if res.Args[1] != mem {
   625  				s.Fatalf("memory no longer live from 2-result dottype load")
   626  			}
   627  			deref = true
   628  			res = res.Args[0]
   629  		}
   630  		s.assign(n.List.First(), res, deref, 0)
   631  		s.assign(n.List.Second(), resok, false, 0)
   632  		return
   633  
   634  	case OAS2FUNC:
   635  		// We come here only when it is an intrinsic call returning two values.
   636  		if !isIntrinsicCall(n.Rlist.First()) {
   637  			s.Fatalf("non-intrinsic AS2FUNC not expanded %v", n.Rlist.First())
   638  		}
   639  		v := s.intrinsicCall(n.Rlist.First())
   640  		v1 := s.newValue1(ssa.OpSelect0, n.List.First().Type, v)
   641  		v2 := s.newValue1(ssa.OpSelect1, n.List.Second().Type, v)
   642  		s.assign(n.List.First(), v1, false, 0)
   643  		s.assign(n.List.Second(), v2, false, 0)
   644  		return
   645  
   646  	case ODCL:
   647  		if n.Left.Class() == PAUTOHEAP {
   648  			Fatalf("DCL %v", n)
   649  		}
   650  
   651  	case OLABEL:
   652  		sym := n.Left.Sym
   653  		lab := s.label(sym)
   654  
   655  		// Associate label with its control flow node, if any
   656  		if ctl := n.labeledControl(); ctl != nil {
   657  			s.labeledNodes[ctl] = lab
   658  		}
   659  
   660  		// The label might already have a target block via a goto.
   661  		if lab.target == nil {
   662  			lab.target = s.f.NewBlock(ssa.BlockPlain)
   663  		}
   664  
   665  		// Go to that label.
   666  		// (We pretend "label:" is preceded by "goto label", unless the predecessor is unreachable.)
   667  		if s.curBlock != nil {
   668  			b := s.endBlock()
   669  			b.AddEdgeTo(lab.target)
   670  		}
   671  		s.startBlock(lab.target)
   672  
   673  	case OGOTO:
   674  		sym := n.Left.Sym
   675  
   676  		lab := s.label(sym)
   677  		if lab.target == nil {
   678  			lab.target = s.f.NewBlock(ssa.BlockPlain)
   679  		}
   680  
   681  		b := s.endBlock()
   682  		b.Pos = s.lastPos // Do this even if b is an empty block.
   683  		b.AddEdgeTo(lab.target)
   684  
   685  	case OAS:
   686  		if n.Left == n.Right && n.Left.Op == ONAME {
   687  			// An x=x assignment. No point in doing anything
   688  			// here. In addition, skipping this assignment
   689  			// prevents generating:
   690  			//   VARDEF x
   691  			//   COPY x -> x
   692  			// which is bad because x is incorrectly considered
   693  			// dead before the vardef. See issue #14904.
   694  			return
   695  		}
   696  
   697  		// Evaluate RHS.
   698  		rhs := n.Right
   699  		if rhs != nil {
   700  			switch rhs.Op {
   701  			case OSTRUCTLIT, OARRAYLIT, OSLICELIT:
   702  				// All literals with nonzero fields have already been
   703  				// rewritten during walk. Any that remain are just T{}
   704  				// or equivalents. Use the zero value.
   705  				if !iszero(rhs) {
   706  					Fatalf("literal with nonzero value in SSA: %v", rhs)
   707  				}
   708  				rhs = nil
   709  			case OAPPEND:
   710  				// Check whether we're writing the result of an append back to the same slice.
   711  				// If so, we handle it specially to avoid write barriers on the fast
   712  				// (non-growth) path.
   713  				if !samesafeexpr(n.Left, rhs.List.First()) {
   714  					break
   715  				}
   716  				// If the slice can be SSA'd, it'll be on the stack,
   717  				// so there will be no write barriers,
   718  				// so there's no need to attempt to prevent them.
   719  				if s.canSSA(n.Left) {
   720  					if Debug_append > 0 { // replicating old diagnostic message
   721  						Warnl(n.Pos, "append: len-only update (in local slice)")
   722  					}
   723  					break
   724  				}
   725  				if Debug_append > 0 {
   726  					Warnl(n.Pos, "append: len-only update")
   727  				}
   728  				s.append(rhs, true)
   729  				return
   730  			}
   731  		}
   732  
   733  		if isblank(n.Left) {
   734  			// _ = rhs
   735  			// Just evaluate rhs for side-effects.
   736  			if rhs != nil {
   737  				s.expr(rhs)
   738  			}
   739  			return
   740  		}
   741  
   742  		var t *types.Type
   743  		if n.Right != nil {
   744  			t = n.Right.Type
   745  		} else {
   746  			t = n.Left.Type
   747  		}
   748  
   749  		var r *ssa.Value
   750  		deref := !canSSAType(t)
   751  		if deref {
   752  			if rhs == nil {
   753  				r = nil // Signal assign to use OpZero.
   754  			} else {
   755  				r = s.addr(rhs, false)
   756  			}
   757  		} else {
   758  			if rhs == nil {
   759  				r = s.zeroVal(t)
   760  			} else {
   761  				r = s.expr(rhs)
   762  			}
   763  		}
   764  
   765  		var skip skipMask
   766  		if rhs != nil && (rhs.Op == OSLICE || rhs.Op == OSLICE3 || rhs.Op == OSLICESTR) && samesafeexpr(rhs.Left, n.Left) {
   767  			// We're assigning a slicing operation back to its source.
   768  			// Don't write back fields we aren't changing. See issue #14855.
   769  			i, j, k := rhs.SliceBounds()
   770  			if i != nil && (i.Op == OLITERAL && i.Val().Ctype() == CTINT && i.Int64() == 0) {
   771  				// [0:...] is the same as [:...]
   772  				i = nil
   773  			}
   774  			// TODO: detect defaults for len/cap also.
   775  			// Currently doesn't really work because (*p)[:len(*p)] appears here as:
   776  			//    tmp = len(*p)
   777  			//    (*p)[:tmp]
   778  			//if j != nil && (j.Op == OLEN && samesafeexpr(j.Left, n.Left)) {
   779  			//      j = nil
   780  			//}
   781  			//if k != nil && (k.Op == OCAP && samesafeexpr(k.Left, n.Left)) {
   782  			//      k = nil
   783  			//}
   784  			if i == nil {
   785  				skip |= skipPtr
   786  				if j == nil {
   787  					skip |= skipLen
   788  				}
   789  				if k == nil {
   790  					skip |= skipCap
   791  				}
   792  			}
   793  		}
   794  
   795  		s.assign(n.Left, r, deref, skip)
   796  
   797  	case OIF:
   798  		bThen := s.f.NewBlock(ssa.BlockPlain)
   799  		bEnd := s.f.NewBlock(ssa.BlockPlain)
   800  		var bElse *ssa.Block
   801  		var likely int8
   802  		if n.Likely() {
   803  			likely = 1
   804  		}
   805  		if n.Rlist.Len() != 0 {
   806  			bElse = s.f.NewBlock(ssa.BlockPlain)
   807  			s.condBranch(n.Left, bThen, bElse, likely)
   808  		} else {
   809  			s.condBranch(n.Left, bThen, bEnd, likely)
   810  		}
   811  
   812  		s.startBlock(bThen)
   813  		s.stmtList(n.Nbody)
   814  		if b := s.endBlock(); b != nil {
   815  			b.AddEdgeTo(bEnd)
   816  		}
   817  
   818  		if n.Rlist.Len() != 0 {
   819  			s.startBlock(bElse)
   820  			s.stmtList(n.Rlist)
   821  			if b := s.endBlock(); b != nil {
   822  				b.AddEdgeTo(bEnd)
   823  			}
   824  		}
   825  		s.startBlock(bEnd)
   826  
   827  	case ORETURN:
   828  		s.stmtList(n.List)
   829  		b := s.exit()
   830  		b.Pos = s.lastPos
   831  
   832  	case ORETJMP:
   833  		s.stmtList(n.List)
   834  		b := s.exit()
   835  		b.Kind = ssa.BlockRetJmp // override BlockRet
   836  		b.Aux = n.Sym.Linksym()
   837  
   838  	case OCONTINUE, OBREAK:
   839  		var to *ssa.Block
   840  		if n.Left == nil {
   841  			// plain break/continue
   842  			switch n.Op {
   843  			case OCONTINUE:
   844  				to = s.continueTo
   845  			case OBREAK:
   846  				to = s.breakTo
   847  			}
   848  		} else {
   849  			// labeled break/continue; look up the target
   850  			sym := n.Left.Sym
   851  			lab := s.label(sym)
   852  			switch n.Op {
   853  			case OCONTINUE:
   854  				to = lab.continueTarget
   855  			case OBREAK:
   856  				to = lab.breakTarget
   857  			}
   858  		}
   859  
   860  		b := s.endBlock()
   861  		b.Pos = s.lastPos // Do this even if b is an empty block.
   862  		b.AddEdgeTo(to)
   863  
   864  	case OFOR, OFORUNTIL:
   865  		// OFOR: for Ninit; Left; Right { Nbody }
   866  		// For      = cond; body; incr
   867  		// Foruntil = body; incr; cond
   868  		bCond := s.f.NewBlock(ssa.BlockPlain)
   869  		bBody := s.f.NewBlock(ssa.BlockPlain)
   870  		bIncr := s.f.NewBlock(ssa.BlockPlain)
   871  		bEnd := s.f.NewBlock(ssa.BlockPlain)
   872  
   873  		// first, jump to condition test (OFOR) or body (OFORUNTIL)
   874  		b := s.endBlock()
   875  		if n.Op == OFOR {
   876  			b.AddEdgeTo(bCond)
   877  			// generate code to test condition
   878  			s.startBlock(bCond)
   879  			if n.Left != nil {
   880  				s.condBranch(n.Left, bBody, bEnd, 1)
   881  			} else {
   882  				b := s.endBlock()
   883  				b.Kind = ssa.BlockPlain
   884  				b.AddEdgeTo(bBody)
   885  			}
   886  
   887  		} else {
   888  			b.AddEdgeTo(bBody)
   889  		}
   890  
   891  		// set up for continue/break in body
   892  		prevContinue := s.continueTo
   893  		prevBreak := s.breakTo
   894  		s.continueTo = bIncr
   895  		s.breakTo = bEnd
   896  		lab := s.labeledNodes[n]
   897  		if lab != nil {
   898  			// labeled for loop
   899  			lab.continueTarget = bIncr
   900  			lab.breakTarget = bEnd
   901  		}
   902  
   903  		// generate body
   904  		s.startBlock(bBody)
   905  		s.stmtList(n.Nbody)
   906  
   907  		// tear down continue/break
   908  		s.continueTo = prevContinue
   909  		s.breakTo = prevBreak
   910  		if lab != nil {
   911  			lab.continueTarget = nil
   912  			lab.breakTarget = nil
   913  		}
   914  
   915  		// done with body, goto incr
   916  		if b := s.endBlock(); b != nil {
   917  			b.AddEdgeTo(bIncr)
   918  		}
   919  
   920  		// generate incr
   921  		s.startBlock(bIncr)
   922  		if n.Right != nil {
   923  			s.stmt(n.Right)
   924  		}
   925  		if b := s.endBlock(); b != nil {
   926  			b.AddEdgeTo(bCond)
   927  			// It can happen that bIncr ends in a block containing only VARKILL,
   928  			// and that muddles the debugging experience.
   929  			if n.Op != OFORUNTIL && b.Pos == src.NoXPos {
   930  				b.Pos = bCond.Pos
   931  			}
   932  		}
   933  
   934  		if n.Op == OFORUNTIL {
   935  			// generate code to test condition
   936  			s.startBlock(bCond)
   937  			if n.Left != nil {
   938  				s.condBranch(n.Left, bBody, bEnd, 1)
   939  			} else {
   940  				b := s.endBlock()
   941  				b.Kind = ssa.BlockPlain
   942  				b.AddEdgeTo(bBody)
   943  			}
   944  		}
   945  
   946  		s.startBlock(bEnd)
   947  
   948  	case OSWITCH, OSELECT:
   949  		// These have been mostly rewritten by the front end into their Nbody fields.
   950  		// Our main task is to correctly hook up any break statements.
   951  		bEnd := s.f.NewBlock(ssa.BlockPlain)
   952  
   953  		prevBreak := s.breakTo
   954  		s.breakTo = bEnd
   955  		lab := s.labeledNodes[n]
   956  		if lab != nil {
   957  			// labeled
   958  			lab.breakTarget = bEnd
   959  		}
   960  
   961  		// generate body code
   962  		s.stmtList(n.Nbody)
   963  
   964  		s.breakTo = prevBreak
   965  		if lab != nil {
   966  			lab.breakTarget = nil
   967  		}
   968  
   969  		// walk adds explicit OBREAK nodes to the end of all reachable code paths.
   970  		// If we still have a current block here, then mark it unreachable.
   971  		if s.curBlock != nil {
   972  			m := s.mem()
   973  			b := s.endBlock()
   974  			b.Kind = ssa.BlockExit
   975  			b.SetControl(m)
   976  		}
   977  		s.startBlock(bEnd)
   978  
   979  	case OVARKILL:
   980  		// Insert a varkill op to record that a variable is no longer live.
   981  		// We only care about liveness info at call sites, so putting the
   982  		// varkill in the store chain is enough to keep it correctly ordered
   983  		// with respect to call ops.
   984  		if !s.canSSA(n.Left) {
   985  			s.vars[&memVar] = s.newValue1A(ssa.OpVarKill, types.TypeMem, n.Left, s.mem())
   986  		}
   987  
   988  	case OVARLIVE:
   989  		// Insert a varlive op to record that a variable is still live.
   990  		if !n.Left.Addrtaken() {
   991  			s.Fatalf("VARLIVE variable %v must have Addrtaken set", n.Left)
   992  		}
   993  		switch n.Left.Class() {
   994  		case PAUTO, PPARAM, PPARAMOUT:
   995  		default:
   996  			s.Fatalf("VARLIVE variable %v must be Auto or Arg", n.Left)
   997  		}
   998  		s.vars[&memVar] = s.newValue1A(ssa.OpVarLive, types.TypeMem, n.Left, s.mem())
   999  
  1000  	case OCHECKNIL:
  1001  		p := s.expr(n.Left)
  1002  		s.nilCheck(p)
  1003  
  1004  	default:
  1005  		s.Fatalf("unhandled stmt %v", n.Op)
  1006  	}
  1007  }
  1008  
  1009  // exit processes any code that needs to be generated just before returning.
  1010  // It returns a BlockRet block that ends the control flow. Its control value
  1011  // will be set to the final memory state.
  1012  func (s *state) exit() *ssa.Block {
  1013  	if s.hasdefer {
  1014  		s.rtcall(Deferreturn, true, nil)
  1015  	}
  1016  
  1017  	// Run exit code. Typically, this code copies heap-allocated PPARAMOUT
  1018  	// variables back to the stack.
  1019  	s.stmtList(s.exitCode)
  1020  
  1021  	// Store SSAable PPARAMOUT variables back to stack locations.
  1022  	for _, n := range s.returns {
  1023  		addr := s.decladdrs[n]
  1024  		val := s.variable(n, n.Type)
  1025  		s.vars[&memVar] = s.newValue1A(ssa.OpVarDef, types.TypeMem, n, s.mem())
  1026  		s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, n.Type, addr, val, s.mem())
  1027  		// TODO: if val is ever spilled, we'd like to use the
  1028  		// PPARAMOUT slot for spilling it. That won't happen
  1029  		// currently.
  1030  	}
  1031  
  1032  	// Do actual return.
  1033  	m := s.mem()
  1034  	b := s.endBlock()
  1035  	b.Kind = ssa.BlockRet
  1036  	b.SetControl(m)
  1037  	return b
  1038  }
  1039  
  1040  type opAndType struct {
  1041  	op    Op
  1042  	etype types.EType
  1043  }
  1044  
  1045  var opToSSA = map[opAndType]ssa.Op{
  1046  	opAndType{OADD, TINT8}:    ssa.OpAdd8,
  1047  	opAndType{OADD, TUINT8}:   ssa.OpAdd8,
  1048  	opAndType{OADD, TINT16}:   ssa.OpAdd16,
  1049  	opAndType{OADD, TUINT16}:  ssa.OpAdd16,
  1050  	opAndType{OADD, TINT32}:   ssa.OpAdd32,
  1051  	opAndType{OADD, TUINT32}:  ssa.OpAdd32,
  1052  	opAndType{OADD, TPTR32}:   ssa.OpAdd32,
  1053  	opAndType{OADD, TINT64}:   ssa.OpAdd64,
  1054  	opAndType{OADD, TUINT64}:  ssa.OpAdd64,
  1055  	opAndType{OADD, TPTR64}:   ssa.OpAdd64,
  1056  	opAndType{OADD, TFLOAT32}: ssa.OpAdd32F,
  1057  	opAndType{OADD, TFLOAT64}: ssa.OpAdd64F,
  1058  
  1059  	opAndType{OSUB, TINT8}:    ssa.OpSub8,
  1060  	opAndType{OSUB, TUINT8}:   ssa.OpSub8,
  1061  	opAndType{OSUB, TINT16}:   ssa.OpSub16,
  1062  	opAndType{OSUB, TUINT16}:  ssa.OpSub16,
  1063  	opAndType{OSUB, TINT32}:   ssa.OpSub32,
  1064  	opAndType{OSUB, TUINT32}:  ssa.OpSub32,
  1065  	opAndType{OSUB, TINT64}:   ssa.OpSub64,
  1066  	opAndType{OSUB, TUINT64}:  ssa.OpSub64,
  1067  	opAndType{OSUB, TFLOAT32}: ssa.OpSub32F,
  1068  	opAndType{OSUB, TFLOAT64}: ssa.OpSub64F,
  1069  
  1070  	opAndType{ONOT, TBOOL}: ssa.OpNot,
  1071  
  1072  	opAndType{OMINUS, TINT8}:    ssa.OpNeg8,
  1073  	opAndType{OMINUS, TUINT8}:   ssa.OpNeg8,
  1074  	opAndType{OMINUS, TINT16}:   ssa.OpNeg16,
  1075  	opAndType{OMINUS, TUINT16}:  ssa.OpNeg16,
  1076  	opAndType{OMINUS, TINT32}:   ssa.OpNeg32,
  1077  	opAndType{OMINUS, TUINT32}:  ssa.OpNeg32,
  1078  	opAndType{OMINUS, TINT64}:   ssa.OpNeg64,
  1079  	opAndType{OMINUS, TUINT64}:  ssa.OpNeg64,
  1080  	opAndType{OMINUS, TFLOAT32}: ssa.OpNeg32F,
  1081  	opAndType{OMINUS, TFLOAT64}: ssa.OpNeg64F,
  1082  
  1083  	opAndType{OCOM, TINT8}:   ssa.OpCom8,
  1084  	opAndType{OCOM, TUINT8}:  ssa.OpCom8,
  1085  	opAndType{OCOM, TINT16}:  ssa.OpCom16,
  1086  	opAndType{OCOM, TUINT16}: ssa.OpCom16,
  1087  	opAndType{OCOM, TINT32}:  ssa.OpCom32,
  1088  	opAndType{OCOM, TUINT32}: ssa.OpCom32,
  1089  	opAndType{OCOM, TINT64}:  ssa.OpCom64,
  1090  	opAndType{OCOM, TUINT64}: ssa.OpCom64,
  1091  
  1092  	opAndType{OIMAG, TCOMPLEX64}:  ssa.OpComplexImag,
  1093  	opAndType{OIMAG, TCOMPLEX128}: ssa.OpComplexImag,
  1094  	opAndType{OREAL, TCOMPLEX64}:  ssa.OpComplexReal,
  1095  	opAndType{OREAL, TCOMPLEX128}: ssa.OpComplexReal,
  1096  
  1097  	opAndType{OMUL, TINT8}:    ssa.OpMul8,
  1098  	opAndType{OMUL, TUINT8}:   ssa.OpMul8,
  1099  	opAndType{OMUL, TINT16}:   ssa.OpMul16,
  1100  	opAndType{OMUL, TUINT16}:  ssa.OpMul16,
  1101  	opAndType{OMUL, TINT32}:   ssa.OpMul32,
  1102  	opAndType{OMUL, TUINT32}:  ssa.OpMul32,
  1103  	opAndType{OMUL, TINT64}:   ssa.OpMul64,
  1104  	opAndType{OMUL, TUINT64}:  ssa.OpMul64,
  1105  	opAndType{OMUL, TFLOAT32}: ssa.OpMul32F,
  1106  	opAndType{OMUL, TFLOAT64}: ssa.OpMul64F,
  1107  
  1108  	opAndType{ODIV, TFLOAT32}: ssa.OpDiv32F,
  1109  	opAndType{ODIV, TFLOAT64}: ssa.OpDiv64F,
  1110  
  1111  	opAndType{ODIV, TINT8}:   ssa.OpDiv8,
  1112  	opAndType{ODIV, TUINT8}:  ssa.OpDiv8u,
  1113  	opAndType{ODIV, TINT16}:  ssa.OpDiv16,
  1114  	opAndType{ODIV, TUINT16}: ssa.OpDiv16u,
  1115  	opAndType{ODIV, TINT32}:  ssa.OpDiv32,
  1116  	opAndType{ODIV, TUINT32}: ssa.OpDiv32u,
  1117  	opAndType{ODIV, TINT64}:  ssa.OpDiv64,
  1118  	opAndType{ODIV, TUINT64}: ssa.OpDiv64u,
  1119  
  1120  	opAndType{OMOD, TINT8}:   ssa.OpMod8,
  1121  	opAndType{OMOD, TUINT8}:  ssa.OpMod8u,
  1122  	opAndType{OMOD, TINT16}:  ssa.OpMod16,
  1123  	opAndType{OMOD, TUINT16}: ssa.OpMod16u,
  1124  	opAndType{OMOD, TINT32}:  ssa.OpMod32,
  1125  	opAndType{OMOD, TUINT32}: ssa.OpMod32u,
  1126  	opAndType{OMOD, TINT64}:  ssa.OpMod64,
  1127  	opAndType{OMOD, TUINT64}: ssa.OpMod64u,
  1128  
  1129  	opAndType{OAND, TINT8}:   ssa.OpAnd8,
  1130  	opAndType{OAND, TUINT8}:  ssa.OpAnd8,
  1131  	opAndType{OAND, TINT16}:  ssa.OpAnd16,
  1132  	opAndType{OAND, TUINT16}: ssa.OpAnd16,
  1133  	opAndType{OAND, TINT32}:  ssa.OpAnd32,
  1134  	opAndType{OAND, TUINT32}: ssa.OpAnd32,
  1135  	opAndType{OAND, TINT64}:  ssa.OpAnd64,
  1136  	opAndType{OAND, TUINT64}: ssa.OpAnd64,
  1137  
  1138  	opAndType{OOR, TINT8}:   ssa.OpOr8,
  1139  	opAndType{OOR, TUINT8}:  ssa.OpOr8,
  1140  	opAndType{OOR, TINT16}:  ssa.OpOr16,
  1141  	opAndType{OOR, TUINT16}: ssa.OpOr16,
  1142  	opAndType{OOR, TINT32}:  ssa.OpOr32,
  1143  	opAndType{OOR, TUINT32}: ssa.OpOr32,
  1144  	opAndType{OOR, TINT64}:  ssa.OpOr64,
  1145  	opAndType{OOR, TUINT64}: ssa.OpOr64,
  1146  
  1147  	opAndType{OXOR, TINT8}:   ssa.OpXor8,
  1148  	opAndType{OXOR, TUINT8}:  ssa.OpXor8,
  1149  	opAndType{OXOR, TINT16}:  ssa.OpXor16,
  1150  	opAndType{OXOR, TUINT16}: ssa.OpXor16,
  1151  	opAndType{OXOR, TINT32}:  ssa.OpXor32,
  1152  	opAndType{OXOR, TUINT32}: ssa.OpXor32,
  1153  	opAndType{OXOR, TINT64}:  ssa.OpXor64,
  1154  	opAndType{OXOR, TUINT64}: ssa.OpXor64,
  1155  
  1156  	opAndType{OEQ, TBOOL}:      ssa.OpEqB,
  1157  	opAndType{OEQ, TINT8}:      ssa.OpEq8,
  1158  	opAndType{OEQ, TUINT8}:     ssa.OpEq8,
  1159  	opAndType{OEQ, TINT16}:     ssa.OpEq16,
  1160  	opAndType{OEQ, TUINT16}:    ssa.OpEq16,
  1161  	opAndType{OEQ, TINT32}:     ssa.OpEq32,
  1162  	opAndType{OEQ, TUINT32}:    ssa.OpEq32,
  1163  	opAndType{OEQ, TINT64}:     ssa.OpEq64,
  1164  	opAndType{OEQ, TUINT64}:    ssa.OpEq64,
  1165  	opAndType{OEQ, TINTER}:     ssa.OpEqInter,
  1166  	opAndType{OEQ, TSLICE}:     ssa.OpEqSlice,
  1167  	opAndType{OEQ, TFUNC}:      ssa.OpEqPtr,
  1168  	opAndType{OEQ, TMAP}:       ssa.OpEqPtr,
  1169  	opAndType{OEQ, TCHAN}:      ssa.OpEqPtr,
  1170  	opAndType{OEQ, TPTR32}:     ssa.OpEqPtr,
  1171  	opAndType{OEQ, TPTR64}:     ssa.OpEqPtr,
  1172  	opAndType{OEQ, TUINTPTR}:   ssa.OpEqPtr,
  1173  	opAndType{OEQ, TUNSAFEPTR}: ssa.OpEqPtr,
  1174  	opAndType{OEQ, TFLOAT64}:   ssa.OpEq64F,
  1175  	opAndType{OEQ, TFLOAT32}:   ssa.OpEq32F,
  1176  
  1177  	opAndType{ONE, TBOOL}:      ssa.OpNeqB,
  1178  	opAndType{ONE, TINT8}:      ssa.OpNeq8,
  1179  	opAndType{ONE, TUINT8}:     ssa.OpNeq8,
  1180  	opAndType{ONE, TINT16}:     ssa.OpNeq16,
  1181  	opAndType{ONE, TUINT16}:    ssa.OpNeq16,
  1182  	opAndType{ONE, TINT32}:     ssa.OpNeq32,
  1183  	opAndType{ONE, TUINT32}:    ssa.OpNeq32,
  1184  	opAndType{ONE, TINT64}:     ssa.OpNeq64,
  1185  	opAndType{ONE, TUINT64}:    ssa.OpNeq64,
  1186  	opAndType{ONE, TINTER}:     ssa.OpNeqInter,
  1187  	opAndType{ONE, TSLICE}:     ssa.OpNeqSlice,
  1188  	opAndType{ONE, TFUNC}:      ssa.OpNeqPtr,
  1189  	opAndType{ONE, TMAP}:       ssa.OpNeqPtr,
  1190  	opAndType{ONE, TCHAN}:      ssa.OpNeqPtr,
  1191  	opAndType{ONE, TPTR32}:     ssa.OpNeqPtr,
  1192  	opAndType{ONE, TPTR64}:     ssa.OpNeqPtr,
  1193  	opAndType{ONE, TUINTPTR}:   ssa.OpNeqPtr,
  1194  	opAndType{ONE, TUNSAFEPTR}: ssa.OpNeqPtr,
  1195  	opAndType{ONE, TFLOAT64}:   ssa.OpNeq64F,
  1196  	opAndType{ONE, TFLOAT32}:   ssa.OpNeq32F,
  1197  
  1198  	opAndType{OLT, TINT8}:    ssa.OpLess8,
  1199  	opAndType{OLT, TUINT8}:   ssa.OpLess8U,
  1200  	opAndType{OLT, TINT16}:   ssa.OpLess16,
  1201  	opAndType{OLT, TUINT16}:  ssa.OpLess16U,
  1202  	opAndType{OLT, TINT32}:   ssa.OpLess32,
  1203  	opAndType{OLT, TUINT32}:  ssa.OpLess32U,
  1204  	opAndType{OLT, TINT64}:   ssa.OpLess64,
  1205  	opAndType{OLT, TUINT64}:  ssa.OpLess64U,
  1206  	opAndType{OLT, TFLOAT64}: ssa.OpLess64F,
  1207  	opAndType{OLT, TFLOAT32}: ssa.OpLess32F,
  1208  
  1209  	opAndType{OGT, TINT8}:    ssa.OpGreater8,
  1210  	opAndType{OGT, TUINT8}:   ssa.OpGreater8U,
  1211  	opAndType{OGT, TINT16}:   ssa.OpGreater16,
  1212  	opAndType{OGT, TUINT16}:  ssa.OpGreater16U,
  1213  	opAndType{OGT, TINT32}:   ssa.OpGreater32,
  1214  	opAndType{OGT, TUINT32}:  ssa.OpGreater32U,
  1215  	opAndType{OGT, TINT64}:   ssa.OpGreater64,
  1216  	opAndType{OGT, TUINT64}:  ssa.OpGreater64U,
  1217  	opAndType{OGT, TFLOAT64}: ssa.OpGreater64F,
  1218  	opAndType{OGT, TFLOAT32}: ssa.OpGreater32F,
  1219  
  1220  	opAndType{OLE, TINT8}:    ssa.OpLeq8,
  1221  	opAndType{OLE, TUINT8}:   ssa.OpLeq8U,
  1222  	opAndType{OLE, TINT16}:   ssa.OpLeq16,
  1223  	opAndType{OLE, TUINT16}:  ssa.OpLeq16U,
  1224  	opAndType{OLE, TINT32}:   ssa.OpLeq32,
  1225  	opAndType{OLE, TUINT32}:  ssa.OpLeq32U,
  1226  	opAndType{OLE, TINT64}:   ssa.OpLeq64,
  1227  	opAndType{OLE, TUINT64}:  ssa.OpLeq64U,
  1228  	opAndType{OLE, TFLOAT64}: ssa.OpLeq64F,
  1229  	opAndType{OLE, TFLOAT32}: ssa.OpLeq32F,
  1230  
  1231  	opAndType{OGE, TINT8}:    ssa.OpGeq8,
  1232  	opAndType{OGE, TUINT8}:   ssa.OpGeq8U,
  1233  	opAndType{OGE, TINT16}:   ssa.OpGeq16,
  1234  	opAndType{OGE, TUINT16}:  ssa.OpGeq16U,
  1235  	opAndType{OGE, TINT32}:   ssa.OpGeq32,
  1236  	opAndType{OGE, TUINT32}:  ssa.OpGeq32U,
  1237  	opAndType{OGE, TINT64}:   ssa.OpGeq64,
  1238  	opAndType{OGE, TUINT64}:  ssa.OpGeq64U,
  1239  	opAndType{OGE, TFLOAT64}: ssa.OpGeq64F,
  1240  	opAndType{OGE, TFLOAT32}: ssa.OpGeq32F,
  1241  }
  1242  
  1243  func (s *state) concreteEtype(t *types.Type) types.EType {
  1244  	e := t.Etype
  1245  	switch e {
  1246  	default:
  1247  		return e
  1248  	case TINT:
  1249  		if s.config.PtrSize == 8 {
  1250  			return TINT64
  1251  		}
  1252  		return TINT32
  1253  	case TUINT:
  1254  		if s.config.PtrSize == 8 {
  1255  			return TUINT64
  1256  		}
  1257  		return TUINT32
  1258  	case TUINTPTR:
  1259  		if s.config.PtrSize == 8 {
  1260  			return TUINT64
  1261  		}
  1262  		return TUINT32
  1263  	}
  1264  }
  1265  
  1266  func (s *state) ssaOp(op Op, t *types.Type) ssa.Op {
  1267  	etype := s.concreteEtype(t)
  1268  	x, ok := opToSSA[opAndType{op, etype}]
  1269  	if !ok {
  1270  		s.Fatalf("unhandled binary op %v %s", op, etype)
  1271  	}
  1272  	return x
  1273  }
  1274  
  1275  func floatForComplex(t *types.Type) *types.Type {
  1276  	if t.Size() == 8 {
  1277  		return types.Types[TFLOAT32]
  1278  	} else {
  1279  		return types.Types[TFLOAT64]
  1280  	}
  1281  }
  1282  
  1283  type opAndTwoTypes struct {
  1284  	op     Op
  1285  	etype1 types.EType
  1286  	etype2 types.EType
  1287  }
  1288  
  1289  type twoTypes struct {
  1290  	etype1 types.EType
  1291  	etype2 types.EType
  1292  }
  1293  
  1294  type twoOpsAndType struct {
  1295  	op1              ssa.Op
  1296  	op2              ssa.Op
  1297  	intermediateType types.EType
  1298  }
  1299  
  1300  var fpConvOpToSSA = map[twoTypes]twoOpsAndType{
  1301  
  1302  	twoTypes{TINT8, TFLOAT32}:  twoOpsAndType{ssa.OpSignExt8to32, ssa.OpCvt32to32F, TINT32},
  1303  	twoTypes{TINT16, TFLOAT32}: twoOpsAndType{ssa.OpSignExt16to32, ssa.OpCvt32to32F, TINT32},
  1304  	twoTypes{TINT32, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt32to32F, TINT32},
  1305  	twoTypes{TINT64, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt64to32F, TINT64},
  1306  
  1307  	twoTypes{TINT8, TFLOAT64}:  twoOpsAndType{ssa.OpSignExt8to32, ssa.OpCvt32to64F, TINT32},
  1308  	twoTypes{TINT16, TFLOAT64}: twoOpsAndType{ssa.OpSignExt16to32, ssa.OpCvt32to64F, TINT32},
  1309  	twoTypes{TINT32, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt32to64F, TINT32},
  1310  	twoTypes{TINT64, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt64to64F, TINT64},
  1311  
  1312  	twoTypes{TFLOAT32, TINT8}:  twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to8, TINT32},
  1313  	twoTypes{TFLOAT32, TINT16}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to16, TINT32},
  1314  	twoTypes{TFLOAT32, TINT32}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpCopy, TINT32},
  1315  	twoTypes{TFLOAT32, TINT64}: twoOpsAndType{ssa.OpCvt32Fto64, ssa.OpCopy, TINT64},
  1316  
  1317  	twoTypes{TFLOAT64, TINT8}:  twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to8, TINT32},
  1318  	twoTypes{TFLOAT64, TINT16}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to16, TINT32},
  1319  	twoTypes{TFLOAT64, TINT32}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpCopy, TINT32},
  1320  	twoTypes{TFLOAT64, TINT64}: twoOpsAndType{ssa.OpCvt64Fto64, ssa.OpCopy, TINT64},
  1321  	// unsigned
  1322  	twoTypes{TUINT8, TFLOAT32}:  twoOpsAndType{ssa.OpZeroExt8to32, ssa.OpCvt32to32F, TINT32},
  1323  	twoTypes{TUINT16, TFLOAT32}: twoOpsAndType{ssa.OpZeroExt16to32, ssa.OpCvt32to32F, TINT32},
  1324  	twoTypes{TUINT32, TFLOAT32}: twoOpsAndType{ssa.OpZeroExt32to64, ssa.OpCvt64to32F, TINT64}, // go wide to dodge unsigned
  1325  	twoTypes{TUINT64, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpInvalid, TUINT64},            // Cvt64Uto32F, branchy code expansion instead
  1326  
  1327  	twoTypes{TUINT8, TFLOAT64}:  twoOpsAndType{ssa.OpZeroExt8to32, ssa.OpCvt32to64F, TINT32},
  1328  	twoTypes{TUINT16, TFLOAT64}: twoOpsAndType{ssa.OpZeroExt16to32, ssa.OpCvt32to64F, TINT32},
  1329  	twoTypes{TUINT32, TFLOAT64}: twoOpsAndType{ssa.OpZeroExt32to64, ssa.OpCvt64to64F, TINT64}, // go wide to dodge unsigned
  1330  	twoTypes{TUINT64, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpInvalid, TUINT64},            // Cvt64Uto64F, branchy code expansion instead
  1331  
  1332  	twoTypes{TFLOAT32, TUINT8}:  twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to8, TINT32},
  1333  	twoTypes{TFLOAT32, TUINT16}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to16, TINT32},
  1334  	twoTypes{TFLOAT32, TUINT32}: twoOpsAndType{ssa.OpCvt32Fto64, ssa.OpTrunc64to32, TINT64}, // go wide to dodge unsigned
  1335  	twoTypes{TFLOAT32, TUINT64}: twoOpsAndType{ssa.OpInvalid, ssa.OpCopy, TUINT64},          // Cvt32Fto64U, branchy code expansion instead
  1336  
  1337  	twoTypes{TFLOAT64, TUINT8}:  twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to8, TINT32},
  1338  	twoTypes{TFLOAT64, TUINT16}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to16, TINT32},
  1339  	twoTypes{TFLOAT64, TUINT32}: twoOpsAndType{ssa.OpCvt64Fto64, ssa.OpTrunc64to32, TINT64}, // go wide to dodge unsigned
  1340  	twoTypes{TFLOAT64, TUINT64}: twoOpsAndType{ssa.OpInvalid, ssa.OpCopy, TUINT64},          // Cvt64Fto64U, branchy code expansion instead
  1341  
  1342  	// float
  1343  	twoTypes{TFLOAT64, TFLOAT32}: twoOpsAndType{ssa.OpCvt64Fto32F, ssa.OpCopy, TFLOAT32},
  1344  	twoTypes{TFLOAT64, TFLOAT64}: twoOpsAndType{ssa.OpRound64F, ssa.OpCopy, TFLOAT64},
  1345  	twoTypes{TFLOAT32, TFLOAT32}: twoOpsAndType{ssa.OpRound32F, ssa.OpCopy, TFLOAT32},
  1346  	twoTypes{TFLOAT32, TFLOAT64}: twoOpsAndType{ssa.OpCvt32Fto64F, ssa.OpCopy, TFLOAT64},
  1347  }
  1348  
  1349  // this map is used only for 32-bit arch, and only includes the difference
  1350  // on 32-bit arch, don't use int64<->float conversion for uint32
  1351  var fpConvOpToSSA32 = map[twoTypes]twoOpsAndType{
  1352  	twoTypes{TUINT32, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt32Uto32F, TUINT32},
  1353  	twoTypes{TUINT32, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt32Uto64F, TUINT32},
  1354  	twoTypes{TFLOAT32, TUINT32}: twoOpsAndType{ssa.OpCvt32Fto32U, ssa.OpCopy, TUINT32},
  1355  	twoTypes{TFLOAT64, TUINT32}: twoOpsAndType{ssa.OpCvt64Fto32U, ssa.OpCopy, TUINT32},
  1356  }
  1357  
  1358  // uint64<->float conversions, only on machines that have intructions for that
  1359  var uint64fpConvOpToSSA = map[twoTypes]twoOpsAndType{
  1360  	twoTypes{TUINT64, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt64Uto32F, TUINT64},
  1361  	twoTypes{TUINT64, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt64Uto64F, TUINT64},
  1362  	twoTypes{TFLOAT32, TUINT64}: twoOpsAndType{ssa.OpCvt32Fto64U, ssa.OpCopy, TUINT64},
  1363  	twoTypes{TFLOAT64, TUINT64}: twoOpsAndType{ssa.OpCvt64Fto64U, ssa.OpCopy, TUINT64},
  1364  }
  1365  
  1366  var shiftOpToSSA = map[opAndTwoTypes]ssa.Op{
  1367  	opAndTwoTypes{OLSH, TINT8, TUINT8}:   ssa.OpLsh8x8,
  1368  	opAndTwoTypes{OLSH, TUINT8, TUINT8}:  ssa.OpLsh8x8,
  1369  	opAndTwoTypes{OLSH, TINT8, TUINT16}:  ssa.OpLsh8x16,
  1370  	opAndTwoTypes{OLSH, TUINT8, TUINT16}: ssa.OpLsh8x16,
  1371  	opAndTwoTypes{OLSH, TINT8, TUINT32}:  ssa.OpLsh8x32,
  1372  	opAndTwoTypes{OLSH, TUINT8, TUINT32}: ssa.OpLsh8x32,
  1373  	opAndTwoTypes{OLSH, TINT8, TUINT64}:  ssa.OpLsh8x64,
  1374  	opAndTwoTypes{OLSH, TUINT8, TUINT64}: ssa.OpLsh8x64,
  1375  
  1376  	opAndTwoTypes{OLSH, TINT16, TUINT8}:   ssa.OpLsh16x8,
  1377  	opAndTwoTypes{OLSH, TUINT16, TUINT8}:  ssa.OpLsh16x8,
  1378  	opAndTwoTypes{OLSH, TINT16, TUINT16}:  ssa.OpLsh16x16,
  1379  	opAndTwoTypes{OLSH, TUINT16, TUINT16}: ssa.OpLsh16x16,
  1380  	opAndTwoTypes{OLSH, TINT16, TUINT32}:  ssa.OpLsh16x32,
  1381  	opAndTwoTypes{OLSH, TUINT16, TUINT32}: ssa.OpLsh16x32,
  1382  	opAndTwoTypes{OLSH, TINT16, TUINT64}:  ssa.OpLsh16x64,
  1383  	opAndTwoTypes{OLSH, TUINT16, TUINT64}: ssa.OpLsh16x64,
  1384  
  1385  	opAndTwoTypes{OLSH, TINT32, TUINT8}:   ssa.OpLsh32x8,
  1386  	opAndTwoTypes{OLSH, TUINT32, TUINT8}:  ssa.OpLsh32x8,
  1387  	opAndTwoTypes{OLSH, TINT32, TUINT16}:  ssa.OpLsh32x16,
  1388  	opAndTwoTypes{OLSH, TUINT32, TUINT16}: ssa.OpLsh32x16,
  1389  	opAndTwoTypes{OLSH, TINT32, TUINT32}:  ssa.OpLsh32x32,
  1390  	opAndTwoTypes{OLSH, TUINT32, TUINT32}: ssa.OpLsh32x32,
  1391  	opAndTwoTypes{OLSH, TINT32, TUINT64}:  ssa.OpLsh32x64,
  1392  	opAndTwoTypes{OLSH, TUINT32, TUINT64}: ssa.OpLsh32x64,
  1393  
  1394  	opAndTwoTypes{OLSH, TINT64, TUINT8}:   ssa.OpLsh64x8,
  1395  	opAndTwoTypes{OLSH, TUINT64, TUINT8}:  ssa.OpLsh64x8,
  1396  	opAndTwoTypes{OLSH, TINT64, TUINT16}:  ssa.OpLsh64x16,
  1397  	opAndTwoTypes{OLSH, TUINT64, TUINT16}: ssa.OpLsh64x16,
  1398  	opAndTwoTypes{OLSH, TINT64, TUINT32}:  ssa.OpLsh64x32,
  1399  	opAndTwoTypes{OLSH, TUINT64, TUINT32}: ssa.OpLsh64x32,
  1400  	opAndTwoTypes{OLSH, TINT64, TUINT64}:  ssa.OpLsh64x64,
  1401  	opAndTwoTypes{OLSH, TUINT64, TUINT64}: ssa.OpLsh64x64,
  1402  
  1403  	opAndTwoTypes{ORSH, TINT8, TUINT8}:   ssa.OpRsh8x8,
  1404  	opAndTwoTypes{ORSH, TUINT8, TUINT8}:  ssa.OpRsh8Ux8,
  1405  	opAndTwoTypes{ORSH, TINT8, TUINT16}:  ssa.OpRsh8x16,
  1406  	opAndTwoTypes{ORSH, TUINT8, TUINT16}: ssa.OpRsh8Ux16,
  1407  	opAndTwoTypes{ORSH, TINT8, TUINT32}:  ssa.OpRsh8x32,
  1408  	opAndTwoTypes{ORSH, TUINT8, TUINT32}: ssa.OpRsh8Ux32,
  1409  	opAndTwoTypes{ORSH, TINT8, TUINT64}:  ssa.OpRsh8x64,
  1410  	opAndTwoTypes{ORSH, TUINT8, TUINT64}: ssa.OpRsh8Ux64,
  1411  
  1412  	opAndTwoTypes{ORSH, TINT16, TUINT8}:   ssa.OpRsh16x8,
  1413  	opAndTwoTypes{ORSH, TUINT16, TUINT8}:  ssa.OpRsh16Ux8,
  1414  	opAndTwoTypes{ORSH, TINT16, TUINT16}:  ssa.OpRsh16x16,
  1415  	opAndTwoTypes{ORSH, TUINT16, TUINT16}: ssa.OpRsh16Ux16,
  1416  	opAndTwoTypes{ORSH, TINT16, TUINT32}:  ssa.OpRsh16x32,
  1417  	opAndTwoTypes{ORSH, TUINT16, TUINT32}: ssa.OpRsh16Ux32,
  1418  	opAndTwoTypes{ORSH, TINT16, TUINT64}:  ssa.OpRsh16x64,
  1419  	opAndTwoTypes{ORSH, TUINT16, TUINT64}: ssa.OpRsh16Ux64,
  1420  
  1421  	opAndTwoTypes{ORSH, TINT32, TUINT8}:   ssa.OpRsh32x8,
  1422  	opAndTwoTypes{ORSH, TUINT32, TUINT8}:  ssa.OpRsh32Ux8,
  1423  	opAndTwoTypes{ORSH, TINT32, TUINT16}:  ssa.OpRsh32x16,
  1424  	opAndTwoTypes{ORSH, TUINT32, TUINT16}: ssa.OpRsh32Ux16,
  1425  	opAndTwoTypes{ORSH, TINT32, TUINT32}:  ssa.OpRsh32x32,
  1426  	opAndTwoTypes{ORSH, TUINT32, TUINT32}: ssa.OpRsh32Ux32,
  1427  	opAndTwoTypes{ORSH, TINT32, TUINT64}:  ssa.OpRsh32x64,
  1428  	opAndTwoTypes{ORSH, TUINT32, TUINT64}: ssa.OpRsh32Ux64,
  1429  
  1430  	opAndTwoTypes{ORSH, TINT64, TUINT8}:   ssa.OpRsh64x8,
  1431  	opAndTwoTypes{ORSH, TUINT64, TUINT8}:  ssa.OpRsh64Ux8,
  1432  	opAndTwoTypes{ORSH, TINT64, TUINT16}:  ssa.OpRsh64x16,
  1433  	opAndTwoTypes{ORSH, TUINT64, TUINT16}: ssa.OpRsh64Ux16,
  1434  	opAndTwoTypes{ORSH, TINT64, TUINT32}:  ssa.OpRsh64x32,
  1435  	opAndTwoTypes{ORSH, TUINT64, TUINT32}: ssa.OpRsh64Ux32,
  1436  	opAndTwoTypes{ORSH, TINT64, TUINT64}:  ssa.OpRsh64x64,
  1437  	opAndTwoTypes{ORSH, TUINT64, TUINT64}: ssa.OpRsh64Ux64,
  1438  }
  1439  
  1440  func (s *state) ssaShiftOp(op Op, t *types.Type, u *types.Type) ssa.Op {
  1441  	etype1 := s.concreteEtype(t)
  1442  	etype2 := s.concreteEtype(u)
  1443  	x, ok := shiftOpToSSA[opAndTwoTypes{op, etype1, etype2}]
  1444  	if !ok {
  1445  		s.Fatalf("unhandled shift op %v etype=%s/%s", op, etype1, etype2)
  1446  	}
  1447  	return x
  1448  }
  1449  
  1450  // expr converts the expression n to ssa, adds it to s and returns the ssa result.
  1451  func (s *state) expr(n *Node) *ssa.Value {
  1452  	if !(n.Op == ONAME || n.Op == OLITERAL && n.Sym != nil) {
  1453  		// ONAMEs and named OLITERALs have the line number
  1454  		// of the decl, not the use. See issue 14742.
  1455  		s.pushLine(n.Pos)
  1456  		defer s.popLine()
  1457  	}
  1458  
  1459  	s.stmtList(n.Ninit)
  1460  	switch n.Op {
  1461  	case OARRAYBYTESTRTMP:
  1462  		slice := s.expr(n.Left)
  1463  		ptr := s.newValue1(ssa.OpSlicePtr, s.f.Config.Types.BytePtr, slice)
  1464  		len := s.newValue1(ssa.OpSliceLen, types.Types[TINT], slice)
  1465  		return s.newValue2(ssa.OpStringMake, n.Type, ptr, len)
  1466  	case OSTRARRAYBYTETMP:
  1467  		str := s.expr(n.Left)
  1468  		ptr := s.newValue1(ssa.OpStringPtr, s.f.Config.Types.BytePtr, str)
  1469  		len := s.newValue1(ssa.OpStringLen, types.Types[TINT], str)
  1470  		return s.newValue3(ssa.OpSliceMake, n.Type, ptr, len, len)
  1471  	case OCFUNC:
  1472  		aux := n.Left.Sym.Linksym()
  1473  		return s.entryNewValue1A(ssa.OpAddr, n.Type, aux, s.sb)
  1474  	case ONAME:
  1475  		if n.Class() == PFUNC {
  1476  			// "value" of a function is the address of the function's closure
  1477  			sym := funcsym(n.Sym).Linksym()
  1478  			return s.entryNewValue1A(ssa.OpAddr, types.NewPtr(n.Type), sym, s.sb)
  1479  		}
  1480  		if s.canSSA(n) {
  1481  			return s.variable(n, n.Type)
  1482  		}
  1483  		addr := s.addr(n, false)
  1484  		return s.newValue2(ssa.OpLoad, n.Type, addr, s.mem())
  1485  	case OCLOSUREVAR:
  1486  		addr := s.addr(n, false)
  1487  		return s.newValue2(ssa.OpLoad, n.Type, addr, s.mem())
  1488  	case OLITERAL:
  1489  		switch u := n.Val().U.(type) {
  1490  		case *Mpint:
  1491  			i := u.Int64()
  1492  			switch n.Type.Size() {
  1493  			case 1:
  1494  				return s.constInt8(n.Type, int8(i))
  1495  			case 2:
  1496  				return s.constInt16(n.Type, int16(i))
  1497  			case 4:
  1498  				return s.constInt32(n.Type, int32(i))
  1499  			case 8:
  1500  				return s.constInt64(n.Type, i)
  1501  			default:
  1502  				s.Fatalf("bad integer size %d", n.Type.Size())
  1503  				return nil
  1504  			}
  1505  		case string:
  1506  			if u == "" {
  1507  				return s.constEmptyString(n.Type)
  1508  			}
  1509  			return s.entryNewValue0A(ssa.OpConstString, n.Type, u)
  1510  		case bool:
  1511  			return s.constBool(u)
  1512  		case *NilVal:
  1513  			t := n.Type
  1514  			switch {
  1515  			case t.IsSlice():
  1516  				return s.constSlice(t)
  1517  			case t.IsInterface():
  1518  				return s.constInterface(t)
  1519  			default:
  1520  				return s.constNil(t)
  1521  			}
  1522  		case *Mpflt:
  1523  			switch n.Type.Size() {
  1524  			case 4:
  1525  				return s.constFloat32(n.Type, u.Float32())
  1526  			case 8:
  1527  				return s.constFloat64(n.Type, u.Float64())
  1528  			default:
  1529  				s.Fatalf("bad float size %d", n.Type.Size())
  1530  				return nil
  1531  			}
  1532  		case *Mpcplx:
  1533  			r := &u.Real
  1534  			i := &u.Imag
  1535  			switch n.Type.Size() {
  1536  			case 8:
  1537  				pt := types.Types[TFLOAT32]
  1538  				return s.newValue2(ssa.OpComplexMake, n.Type,
  1539  					s.constFloat32(pt, r.Float32()),
  1540  					s.constFloat32(pt, i.Float32()))
  1541  			case 16:
  1542  				pt := types.Types[TFLOAT64]
  1543  				return s.newValue2(ssa.OpComplexMake, n.Type,
  1544  					s.constFloat64(pt, r.Float64()),
  1545  					s.constFloat64(pt, i.Float64()))
  1546  			default:
  1547  				s.Fatalf("bad float size %d", n.Type.Size())
  1548  				return nil
  1549  			}
  1550  
  1551  		default:
  1552  			s.Fatalf("unhandled OLITERAL %v", n.Val().Ctype())
  1553  			return nil
  1554  		}
  1555  	case OCONVNOP:
  1556  		to := n.Type
  1557  		from := n.Left.Type
  1558  
  1559  		// Assume everything will work out, so set up our return value.
  1560  		// Anything interesting that happens from here is a fatal.
  1561  		x := s.expr(n.Left)
  1562  
  1563  		// Special case for not confusing GC and liveness.
  1564  		// We don't want pointers accidentally classified
  1565  		// as not-pointers or vice-versa because of copy
  1566  		// elision.
  1567  		if to.IsPtrShaped() != from.IsPtrShaped() {
  1568  			return s.newValue2(ssa.OpConvert, to, x, s.mem())
  1569  		}
  1570  
  1571  		v := s.newValue1(ssa.OpCopy, to, x) // ensure that v has the right type
  1572  
  1573  		// CONVNOP closure
  1574  		if to.Etype == TFUNC && from.IsPtrShaped() {
  1575  			return v
  1576  		}
  1577  
  1578  		// named <--> unnamed type or typed <--> untyped const
  1579  		if from.Etype == to.Etype {
  1580  			return v
  1581  		}
  1582  
  1583  		// unsafe.Pointer <--> *T
  1584  		if to.Etype == TUNSAFEPTR && from.IsPtr() || from.Etype == TUNSAFEPTR && to.IsPtr() {
  1585  			return v
  1586  		}
  1587  
  1588  		// map <--> *hmap
  1589  		if to.Etype == TMAP && from.IsPtr() &&
  1590  			to.MapType().Hmap == from.Elem() {
  1591  			return v
  1592  		}
  1593  
  1594  		dowidth(from)
  1595  		dowidth(to)
  1596  		if from.Width != to.Width {
  1597  			s.Fatalf("CONVNOP width mismatch %v (%d) -> %v (%d)\n", from, from.Width, to, to.Width)
  1598  			return nil
  1599  		}
  1600  		if etypesign(from.Etype) != etypesign(to.Etype) {
  1601  			s.Fatalf("CONVNOP sign mismatch %v (%s) -> %v (%s)\n", from, from.Etype, to, to.Etype)
  1602  			return nil
  1603  		}
  1604  
  1605  		if instrumenting {
  1606  			// These appear to be fine, but they fail the
  1607  			// integer constraint below, so okay them here.
  1608  			// Sample non-integer conversion: map[string]string -> *uint8
  1609  			return v
  1610  		}
  1611  
  1612  		if etypesign(from.Etype) == 0 {
  1613  			s.Fatalf("CONVNOP unrecognized non-integer %v -> %v\n", from, to)
  1614  			return nil
  1615  		}
  1616  
  1617  		// integer, same width, same sign
  1618  		return v
  1619  
  1620  	case OCONV:
  1621  		x := s.expr(n.Left)
  1622  		ft := n.Left.Type // from type
  1623  		tt := n.Type      // to type
  1624  		if ft.IsBoolean() && tt.IsKind(TUINT8) {
  1625  			// Bool -> uint8 is generated internally when indexing into runtime.staticbyte.
  1626  			return s.newValue1(ssa.OpCopy, n.Type, x)
  1627  		}
  1628  		if ft.IsInteger() && tt.IsInteger() {
  1629  			var op ssa.Op
  1630  			if tt.Size() == ft.Size() {
  1631  				op = ssa.OpCopy
  1632  			} else if tt.Size() < ft.Size() {
  1633  				// truncation
  1634  				switch 10*ft.Size() + tt.Size() {
  1635  				case 21:
  1636  					op = ssa.OpTrunc16to8
  1637  				case 41:
  1638  					op = ssa.OpTrunc32to8
  1639  				case 42:
  1640  					op = ssa.OpTrunc32to16
  1641  				case 81:
  1642  					op = ssa.OpTrunc64to8
  1643  				case 82:
  1644  					op = ssa.OpTrunc64to16
  1645  				case 84:
  1646  					op = ssa.OpTrunc64to32
  1647  				default:
  1648  					s.Fatalf("weird integer truncation %v -> %v", ft, tt)
  1649  				}
  1650  			} else if ft.IsSigned() {
  1651  				// sign extension
  1652  				switch 10*ft.Size() + tt.Size() {
  1653  				case 12:
  1654  					op = ssa.OpSignExt8to16
  1655  				case 14:
  1656  					op = ssa.OpSignExt8to32
  1657  				case 18:
  1658  					op = ssa.OpSignExt8to64
  1659  				case 24:
  1660  					op = ssa.OpSignExt16to32
  1661  				case 28:
  1662  					op = ssa.OpSignExt16to64
  1663  				case 48:
  1664  					op = ssa.OpSignExt32to64
  1665  				default:
  1666  					s.Fatalf("bad integer sign extension %v -> %v", ft, tt)
  1667  				}
  1668  			} else {
  1669  				// zero extension
  1670  				switch 10*ft.Size() + tt.Size() {
  1671  				case 12:
  1672  					op = ssa.OpZeroExt8to16
  1673  				case 14:
  1674  					op = ssa.OpZeroExt8to32
  1675  				case 18:
  1676  					op = ssa.OpZeroExt8to64
  1677  				case 24:
  1678  					op = ssa.OpZeroExt16to32
  1679  				case 28:
  1680  					op = ssa.OpZeroExt16to64
  1681  				case 48:
  1682  					op = ssa.OpZeroExt32to64
  1683  				default:
  1684  					s.Fatalf("weird integer sign extension %v -> %v", ft, tt)
  1685  				}
  1686  			}
  1687  			return s.newValue1(op, n.Type, x)
  1688  		}
  1689  
  1690  		if ft.IsFloat() || tt.IsFloat() {
  1691  			conv, ok := fpConvOpToSSA[twoTypes{s.concreteEtype(ft), s.concreteEtype(tt)}]
  1692  			if s.config.RegSize == 4 && thearch.LinkArch.Family != sys.MIPS {
  1693  				if conv1, ok1 := fpConvOpToSSA32[twoTypes{s.concreteEtype(ft), s.concreteEtype(tt)}]; ok1 {
  1694  					conv = conv1
  1695  				}
  1696  			}
  1697  			if thearch.LinkArch.Family == sys.ARM64 {
  1698  				if conv1, ok1 := uint64fpConvOpToSSA[twoTypes{s.concreteEtype(ft), s.concreteEtype(tt)}]; ok1 {
  1699  					conv = conv1
  1700  				}
  1701  			}
  1702  
  1703  			if thearch.LinkArch.Family == sys.MIPS {
  1704  				if ft.Size() == 4 && ft.IsInteger() && !ft.IsSigned() {
  1705  					// tt is float32 or float64, and ft is also unsigned
  1706  					if tt.Size() == 4 {
  1707  						return s.uint32Tofloat32(n, x, ft, tt)
  1708  					}
  1709  					if tt.Size() == 8 {
  1710  						return s.uint32Tofloat64(n, x, ft, tt)
  1711  					}
  1712  				} else if tt.Size() == 4 && tt.IsInteger() && !tt.IsSigned() {
  1713  					// ft is float32 or float64, and tt is unsigned integer
  1714  					if ft.Size() == 4 {
  1715  						return s.float32ToUint32(n, x, ft, tt)
  1716  					}
  1717  					if ft.Size() == 8 {
  1718  						return s.float64ToUint32(n, x, ft, tt)
  1719  					}
  1720  				}
  1721  			}
  1722  
  1723  			if !ok {
  1724  				s.Fatalf("weird float conversion %v -> %v", ft, tt)
  1725  			}
  1726  			op1, op2, it := conv.op1, conv.op2, conv.intermediateType
  1727  
  1728  			if op1 != ssa.OpInvalid && op2 != ssa.OpInvalid {
  1729  				// normal case, not tripping over unsigned 64
  1730  				if op1 == ssa.OpCopy {
  1731  					if op2 == ssa.OpCopy {
  1732  						return x
  1733  					}
  1734  					return s.newValue1(op2, n.Type, x)
  1735  				}
  1736  				if op2 == ssa.OpCopy {
  1737  					return s.newValue1(op1, n.Type, x)
  1738  				}
  1739  				return s.newValue1(op2, n.Type, s.newValue1(op1, types.Types[it], x))
  1740  			}
  1741  			// Tricky 64-bit unsigned cases.
  1742  			if ft.IsInteger() {
  1743  				// tt is float32 or float64, and ft is also unsigned
  1744  				if tt.Size() == 4 {
  1745  					return s.uint64Tofloat32(n, x, ft, tt)
  1746  				}
  1747  				if tt.Size() == 8 {
  1748  					return s.uint64Tofloat64(n, x, ft, tt)
  1749  				}
  1750  				s.Fatalf("weird unsigned integer to float conversion %v -> %v", ft, tt)
  1751  			}
  1752  			// ft is float32 or float64, and tt is unsigned integer
  1753  			if ft.Size() == 4 {
  1754  				return s.float32ToUint64(n, x, ft, tt)
  1755  			}
  1756  			if ft.Size() == 8 {
  1757  				return s.float64ToUint64(n, x, ft, tt)
  1758  			}
  1759  			s.Fatalf("weird float to unsigned integer conversion %v -> %v", ft, tt)
  1760  			return nil
  1761  		}
  1762  
  1763  		if ft.IsComplex() && tt.IsComplex() {
  1764  			var op ssa.Op
  1765  			if ft.Size() == tt.Size() {
  1766  				switch ft.Size() {
  1767  				case 8:
  1768  					op = ssa.OpRound32F
  1769  				case 16:
  1770  					op = ssa.OpRound64F
  1771  				default:
  1772  					s.Fatalf("weird complex conversion %v -> %v", ft, tt)
  1773  				}
  1774  			} else if ft.Size() == 8 && tt.Size() == 16 {
  1775  				op = ssa.OpCvt32Fto64F
  1776  			} else if ft.Size() == 16 && tt.Size() == 8 {
  1777  				op = ssa.OpCvt64Fto32F
  1778  			} else {
  1779  				s.Fatalf("weird complex conversion %v -> %v", ft, tt)
  1780  			}
  1781  			ftp := floatForComplex(ft)
  1782  			ttp := floatForComplex(tt)
  1783  			return s.newValue2(ssa.OpComplexMake, tt,
  1784  				s.newValue1(op, ttp, s.newValue1(ssa.OpComplexReal, ftp, x)),
  1785  				s.newValue1(op, ttp, s.newValue1(ssa.OpComplexImag, ftp, x)))
  1786  		}
  1787  
  1788  		s.Fatalf("unhandled OCONV %s -> %s", n.Left.Type.Etype, n.Type.Etype)
  1789  		return nil
  1790  
  1791  	case ODOTTYPE:
  1792  		res, _ := s.dottype(n, false)
  1793  		return res
  1794  
  1795  	// binary ops
  1796  	case OLT, OEQ, ONE, OLE, OGE, OGT:
  1797  		a := s.expr(n.Left)
  1798  		b := s.expr(n.Right)
  1799  		if n.Left.Type.IsComplex() {
  1800  			pt := floatForComplex(n.Left.Type)
  1801  			op := s.ssaOp(OEQ, pt)
  1802  			r := s.newValue2(op, types.Types[TBOOL], s.newValue1(ssa.OpComplexReal, pt, a), s.newValue1(ssa.OpComplexReal, pt, b))
  1803  			i := s.newValue2(op, types.Types[TBOOL], s.newValue1(ssa.OpComplexImag, pt, a), s.newValue1(ssa.OpComplexImag, pt, b))
  1804  			c := s.newValue2(ssa.OpAndB, types.Types[TBOOL], r, i)
  1805  			switch n.Op {
  1806  			case OEQ:
  1807  				return c
  1808  			case ONE:
  1809  				return s.newValue1(ssa.OpNot, types.Types[TBOOL], c)
  1810  			default:
  1811  				s.Fatalf("ordered complex compare %v", n.Op)
  1812  			}
  1813  		}
  1814  		return s.newValue2(s.ssaOp(n.Op, n.Left.Type), types.Types[TBOOL], a, b)
  1815  	case OMUL:
  1816  		a := s.expr(n.Left)
  1817  		b := s.expr(n.Right)
  1818  		if n.Type.IsComplex() {
  1819  			mulop := ssa.OpMul64F
  1820  			addop := ssa.OpAdd64F
  1821  			subop := ssa.OpSub64F
  1822  			pt := floatForComplex(n.Type) // Could be Float32 or Float64
  1823  			wt := types.Types[TFLOAT64]   // Compute in Float64 to minimize cancelation error
  1824  
  1825  			areal := s.newValue1(ssa.OpComplexReal, pt, a)
  1826  			breal := s.newValue1(ssa.OpComplexReal, pt, b)
  1827  			aimag := s.newValue1(ssa.OpComplexImag, pt, a)
  1828  			bimag := s.newValue1(ssa.OpComplexImag, pt, b)
  1829  
  1830  			if pt != wt { // Widen for calculation
  1831  				areal = s.newValue1(ssa.OpCvt32Fto64F, wt, areal)
  1832  				breal = s.newValue1(ssa.OpCvt32Fto64F, wt, breal)
  1833  				aimag = s.newValue1(ssa.OpCvt32Fto64F, wt, aimag)
  1834  				bimag = s.newValue1(ssa.OpCvt32Fto64F, wt, bimag)
  1835  			}
  1836  
  1837  			xreal := s.newValue2(subop, wt, s.newValue2(mulop, wt, areal, breal), s.newValue2(mulop, wt, aimag, bimag))
  1838  			ximag := s.newValue2(addop, wt, s.newValue2(mulop, wt, areal, bimag), s.newValue2(mulop, wt, aimag, breal))
  1839  
  1840  			if pt != wt { // Narrow to store back
  1841  				xreal = s.newValue1(ssa.OpCvt64Fto32F, pt, xreal)
  1842  				ximag = s.newValue1(ssa.OpCvt64Fto32F, pt, ximag)
  1843  			}
  1844  
  1845  			return s.newValue2(ssa.OpComplexMake, n.Type, xreal, ximag)
  1846  		}
  1847  		return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b)
  1848  
  1849  	case ODIV:
  1850  		a := s.expr(n.Left)
  1851  		b := s.expr(n.Right)
  1852  		if n.Type.IsComplex() {
  1853  			// TODO this is not executed because the front-end substitutes a runtime call.
  1854  			// That probably ought to change; with modest optimization the widen/narrow
  1855  			// conversions could all be elided in larger expression trees.
  1856  			mulop := ssa.OpMul64F
  1857  			addop := ssa.OpAdd64F
  1858  			subop := ssa.OpSub64F
  1859  			divop := ssa.OpDiv64F
  1860  			pt := floatForComplex(n.Type) // Could be Float32 or Float64
  1861  			wt := types.Types[TFLOAT64]   // Compute in Float64 to minimize cancelation error
  1862  
  1863  			areal := s.newValue1(ssa.OpComplexReal, pt, a)
  1864  			breal := s.newValue1(ssa.OpComplexReal, pt, b)
  1865  			aimag := s.newValue1(ssa.OpComplexImag, pt, a)
  1866  			bimag := s.newValue1(ssa.OpComplexImag, pt, b)
  1867  
  1868  			if pt != wt { // Widen for calculation
  1869  				areal = s.newValue1(ssa.OpCvt32Fto64F, wt, areal)
  1870  				breal = s.newValue1(ssa.OpCvt32Fto64F, wt, breal)
  1871  				aimag = s.newValue1(ssa.OpCvt32Fto64F, wt, aimag)
  1872  				bimag = s.newValue1(ssa.OpCvt32Fto64F, wt, bimag)
  1873  			}
  1874  
  1875  			denom := s.newValue2(addop, wt, s.newValue2(mulop, wt, breal, breal), s.newValue2(mulop, wt, bimag, bimag))
  1876  			xreal := s.newValue2(addop, wt, s.newValue2(mulop, wt, areal, breal), s.newValue2(mulop, wt, aimag, bimag))
  1877  			ximag := s.newValue2(subop, wt, s.newValue2(mulop, wt, aimag, breal), s.newValue2(mulop, wt, areal, bimag))
  1878  
  1879  			// TODO not sure if this is best done in wide precision or narrow
  1880  			// Double-rounding might be an issue.
  1881  			// Note that the pre-SSA implementation does the entire calculation
  1882  			// in wide format, so wide is compatible.
  1883  			xreal = s.newValue2(divop, wt, xreal, denom)
  1884  			ximag = s.newValue2(divop, wt, ximag, denom)
  1885  
  1886  			if pt != wt { // Narrow to store back
  1887  				xreal = s.newValue1(ssa.OpCvt64Fto32F, pt, xreal)
  1888  				ximag = s.newValue1(ssa.OpCvt64Fto32F, pt, ximag)
  1889  			}
  1890  			return s.newValue2(ssa.OpComplexMake, n.Type, xreal, ximag)
  1891  		}
  1892  		if n.Type.IsFloat() {
  1893  			return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b)
  1894  		}
  1895  		return s.intDivide(n, a, b)
  1896  	case OMOD:
  1897  		a := s.expr(n.Left)
  1898  		b := s.expr(n.Right)
  1899  		return s.intDivide(n, a, b)
  1900  	case OADD, OSUB:
  1901  		a := s.expr(n.Left)
  1902  		b := s.expr(n.Right)
  1903  		if n.Type.IsComplex() {
  1904  			pt := floatForComplex(n.Type)
  1905  			op := s.ssaOp(n.Op, pt)
  1906  			return s.newValue2(ssa.OpComplexMake, n.Type,
  1907  				s.newValue2(op, pt, s.newValue1(ssa.OpComplexReal, pt, a), s.newValue1(ssa.OpComplexReal, pt, b)),
  1908  				s.newValue2(op, pt, s.newValue1(ssa.OpComplexImag, pt, a), s.newValue1(ssa.OpComplexImag, pt, b)))
  1909  		}
  1910  		return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b)
  1911  	case OAND, OOR, OXOR:
  1912  		a := s.expr(n.Left)
  1913  		b := s.expr(n.Right)
  1914  		return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b)
  1915  	case OLSH, ORSH:
  1916  		a := s.expr(n.Left)
  1917  		b := s.expr(n.Right)
  1918  		return s.newValue2(s.ssaShiftOp(n.Op, n.Type, n.Right.Type), a.Type, a, b)
  1919  	case OANDAND, OOROR:
  1920  		// To implement OANDAND (and OOROR), we introduce a
  1921  		// new temporary variable to hold the result. The
  1922  		// variable is associated with the OANDAND node in the
  1923  		// s.vars table (normally variables are only
  1924  		// associated with ONAME nodes). We convert
  1925  		//     A && B
  1926  		// to
  1927  		//     var = A
  1928  		//     if var {
  1929  		//         var = B
  1930  		//     }
  1931  		// Using var in the subsequent block introduces the
  1932  		// necessary phi variable.
  1933  		el := s.expr(n.Left)
  1934  		s.vars[n] = el
  1935  
  1936  		b := s.endBlock()
  1937  		b.Kind = ssa.BlockIf
  1938  		b.SetControl(el)
  1939  		// In theory, we should set b.Likely here based on context.
  1940  		// However, gc only gives us likeliness hints
  1941  		// in a single place, for plain OIF statements,
  1942  		// and passing around context is finnicky, so don't bother for now.
  1943  
  1944  		bRight := s.f.NewBlock(ssa.BlockPlain)
  1945  		bResult := s.f.NewBlock(ssa.BlockPlain)
  1946  		if n.Op == OANDAND {
  1947  			b.AddEdgeTo(bRight)
  1948  			b.AddEdgeTo(bResult)
  1949  		} else if n.Op == OOROR {
  1950  			b.AddEdgeTo(bResult)
  1951  			b.AddEdgeTo(bRight)
  1952  		}
  1953  
  1954  		s.startBlock(bRight)
  1955  		er := s.expr(n.Right)
  1956  		s.vars[n] = er
  1957  
  1958  		b = s.endBlock()
  1959  		b.AddEdgeTo(bResult)
  1960  
  1961  		s.startBlock(bResult)
  1962  		return s.variable(n, types.Types[TBOOL])
  1963  	case OCOMPLEX:
  1964  		r := s.expr(n.Left)
  1965  		i := s.expr(n.Right)
  1966  		return s.newValue2(ssa.OpComplexMake, n.Type, r, i)
  1967  
  1968  	// unary ops
  1969  	case OMINUS:
  1970  		a := s.expr(n.Left)
  1971  		if n.Type.IsComplex() {
  1972  			tp := floatForComplex(n.Type)
  1973  			negop := s.ssaOp(n.Op, tp)
  1974  			return s.newValue2(ssa.OpComplexMake, n.Type,
  1975  				s.newValue1(negop, tp, s.newValue1(ssa.OpComplexReal, tp, a)),
  1976  				s.newValue1(negop, tp, s.newValue1(ssa.OpComplexImag, tp, a)))
  1977  		}
  1978  		return s.newValue1(s.ssaOp(n.Op, n.Type), a.Type, a)
  1979  	case ONOT, OCOM:
  1980  		a := s.expr(n.Left)
  1981  		return s.newValue1(s.ssaOp(n.Op, n.Type), a.Type, a)
  1982  	case OIMAG, OREAL:
  1983  		a := s.expr(n.Left)
  1984  		return s.newValue1(s.ssaOp(n.Op, n.Left.Type), n.Type, a)
  1985  	case OPLUS:
  1986  		return s.expr(n.Left)
  1987  
  1988  	case OADDR:
  1989  		return s.addr(n.Left, n.Bounded())
  1990  
  1991  	case OINDREGSP:
  1992  		addr := s.constOffPtrSP(types.NewPtr(n.Type), n.Xoffset)
  1993  		return s.newValue2(ssa.OpLoad, n.Type, addr, s.mem())
  1994  
  1995  	case OIND:
  1996  		p := s.exprPtr(n.Left, false, n.Pos)
  1997  		return s.newValue2(ssa.OpLoad, n.Type, p, s.mem())
  1998  
  1999  	case ODOT:
  2000  		t := n.Left.Type
  2001  		if canSSAType(t) {
  2002  			v := s.expr(n.Left)
  2003  			return s.newValue1I(ssa.OpStructSelect, n.Type, int64(fieldIdx(n)), v)
  2004  		}
  2005  		if n.Left.Op == OSTRUCTLIT {
  2006  			// All literals with nonzero fields have already been
  2007  			// rewritten during walk. Any that remain are just T{}
  2008  			// or equivalents. Use the zero value.
  2009  			if !iszero(n.Left) {
  2010  				Fatalf("literal with nonzero value in SSA: %v", n.Left)
  2011  			}
  2012  			return s.zeroVal(n.Type)
  2013  		}
  2014  		p := s.addr(n, false)
  2015  		return s.newValue2(ssa.OpLoad, n.Type, p, s.mem())
  2016  
  2017  	case ODOTPTR:
  2018  		p := s.exprPtr(n.Left, false, n.Pos)
  2019  		p = s.newValue1I(ssa.OpOffPtr, types.NewPtr(n.Type), n.Xoffset, p)
  2020  		return s.newValue2(ssa.OpLoad, n.Type, p, s.mem())
  2021  
  2022  	case OINDEX:
  2023  		switch {
  2024  		case n.Left.Type.IsString():
  2025  			if n.Bounded() && Isconst(n.Left, CTSTR) && Isconst(n.Right, CTINT) {
  2026  				// Replace "abc"[1] with 'b'.
  2027  				// Delayed until now because "abc"[1] is not an ideal constant.
  2028  				// See test/fixedbugs/issue11370.go.
  2029  				return s.newValue0I(ssa.OpConst8, types.Types[TUINT8], int64(int8(n.Left.Val().U.(string)[n.Right.Int64()])))
  2030  			}
  2031  			a := s.expr(n.Left)
  2032  			i := s.expr(n.Right)
  2033  			i = s.extendIndex(i, panicindex)
  2034  			if !n.Bounded() {
  2035  				len := s.newValue1(ssa.OpStringLen, types.Types[TINT], a)
  2036  				s.boundsCheck(i, len)
  2037  			}
  2038  			ptrtyp := s.f.Config.Types.BytePtr
  2039  			ptr := s.newValue1(ssa.OpStringPtr, ptrtyp, a)
  2040  			if Isconst(n.Right, CTINT) {
  2041  				ptr = s.newValue1I(ssa.OpOffPtr, ptrtyp, n.Right.Int64(), ptr)
  2042  			} else {
  2043  				ptr = s.newValue2(ssa.OpAddPtr, ptrtyp, ptr, i)
  2044  			}
  2045  			return s.newValue2(ssa.OpLoad, types.Types[TUINT8], ptr, s.mem())
  2046  		case n.Left.Type.IsSlice():
  2047  			p := s.addr(n, false)
  2048  			return s.newValue2(ssa.OpLoad, n.Left.Type.Elem(), p, s.mem())
  2049  		case n.Left.Type.IsArray():
  2050  			if bound := n.Left.Type.NumElem(); bound <= 1 {
  2051  				// SSA can handle arrays of length at most 1.
  2052  				a := s.expr(n.Left)
  2053  				i := s.expr(n.Right)
  2054  				if bound == 0 {
  2055  					// Bounds check will never succeed.  Might as well
  2056  					// use constants for the bounds check.
  2057  					z := s.constInt(types.Types[TINT], 0)
  2058  					s.boundsCheck(z, z)
  2059  					// The return value won't be live, return junk.
  2060  					return s.newValue0(ssa.OpUnknown, n.Type)
  2061  				}
  2062  				i = s.extendIndex(i, panicindex)
  2063  				if !n.Bounded() {
  2064  					s.boundsCheck(i, s.constInt(types.Types[TINT], bound))
  2065  				}
  2066  				return s.newValue1I(ssa.OpArraySelect, n.Type, 0, a)
  2067  			}
  2068  			p := s.addr(n, false)
  2069  			return s.newValue2(ssa.OpLoad, n.Left.Type.Elem(), p, s.mem())
  2070  		default:
  2071  			s.Fatalf("bad type for index %v", n.Left.Type)
  2072  			return nil
  2073  		}
  2074  
  2075  	case OLEN, OCAP:
  2076  		switch {
  2077  		case n.Left.Type.IsSlice():
  2078  			op := ssa.OpSliceLen
  2079  			if n.Op == OCAP {
  2080  				op = ssa.OpSliceCap
  2081  			}
  2082  			return s.newValue1(op, types.Types[TINT], s.expr(n.Left))
  2083  		case n.Left.Type.IsString(): // string; not reachable for OCAP
  2084  			return s.newValue1(ssa.OpStringLen, types.Types[TINT], s.expr(n.Left))
  2085  		case n.Left.Type.IsMap(), n.Left.Type.IsChan():
  2086  			return s.referenceTypeBuiltin(n, s.expr(n.Left))
  2087  		default: // array
  2088  			return s.constInt(types.Types[TINT], n.Left.Type.NumElem())
  2089  		}
  2090  
  2091  	case OSPTR:
  2092  		a := s.expr(n.Left)
  2093  		if n.Left.Type.IsSlice() {
  2094  			return s.newValue1(ssa.OpSlicePtr, n.Type, a)
  2095  		} else {
  2096  			return s.newValue1(ssa.OpStringPtr, n.Type, a)
  2097  		}
  2098  
  2099  	case OITAB:
  2100  		a := s.expr(n.Left)
  2101  		return s.newValue1(ssa.OpITab, n.Type, a)
  2102  
  2103  	case OIDATA:
  2104  		a := s.expr(n.Left)
  2105  		return s.newValue1(ssa.OpIData, n.Type, a)
  2106  
  2107  	case OEFACE:
  2108  		tab := s.expr(n.Left)
  2109  		data := s.expr(n.Right)
  2110  		return s.newValue2(ssa.OpIMake, n.Type, tab, data)
  2111  
  2112  	case OSLICE, OSLICEARR, OSLICE3, OSLICE3ARR:
  2113  		v := s.expr(n.Left)
  2114  		var i, j, k *ssa.Value
  2115  		low, high, max := n.SliceBounds()
  2116  		if low != nil {
  2117  			i = s.extendIndex(s.expr(low), panicslice)
  2118  		}
  2119  		if high != nil {
  2120  			j = s.extendIndex(s.expr(high), panicslice)
  2121  		}
  2122  		if max != nil {
  2123  			k = s.extendIndex(s.expr(max), panicslice)
  2124  		}
  2125  		p, l, c := s.slice(n.Left.Type, v, i, j, k)
  2126  		return s.newValue3(ssa.OpSliceMake, n.Type, p, l, c)
  2127  
  2128  	case OSLICESTR:
  2129  		v := s.expr(n.Left)
  2130  		var i, j *ssa.Value
  2131  		low, high, _ := n.SliceBounds()
  2132  		if low != nil {
  2133  			i = s.extendIndex(s.expr(low), panicslice)
  2134  		}
  2135  		if high != nil {
  2136  			j = s.extendIndex(s.expr(high), panicslice)
  2137  		}
  2138  		p, l, _ := s.slice(n.Left.Type, v, i, j, nil)
  2139  		return s.newValue2(ssa.OpStringMake, n.Type, p, l)
  2140  
  2141  	case OCALLFUNC:
  2142  		if isIntrinsicCall(n) {
  2143  			return s.intrinsicCall(n)
  2144  		}
  2145  		fallthrough
  2146  
  2147  	case OCALLINTER, OCALLMETH:
  2148  		a := s.call(n, callNormal)
  2149  		return s.newValue2(ssa.OpLoad, n.Type, a, s.mem())
  2150  
  2151  	case OGETG:
  2152  		return s.newValue1(ssa.OpGetG, n.Type, s.mem())
  2153  
  2154  	case OAPPEND:
  2155  		return s.append(n, false)
  2156  
  2157  	case OSTRUCTLIT, OARRAYLIT:
  2158  		// All literals with nonzero fields have already been
  2159  		// rewritten during walk. Any that remain are just T{}
  2160  		// or equivalents. Use the zero value.
  2161  		if !iszero(n) {
  2162  			Fatalf("literal with nonzero value in SSA: %v", n)
  2163  		}
  2164  		return s.zeroVal(n.Type)
  2165  
  2166  	default:
  2167  		s.Fatalf("unhandled expr %v", n.Op)
  2168  		return nil
  2169  	}
  2170  }
  2171  
  2172  // append converts an OAPPEND node to SSA.
  2173  // If inplace is false, it converts the OAPPEND expression n to an ssa.Value,
  2174  // adds it to s, and returns the Value.
  2175  // If inplace is true, it writes the result of the OAPPEND expression n
  2176  // back to the slice being appended to, and returns nil.
  2177  // inplace MUST be set to false if the slice can be SSA'd.
  2178  func (s *state) append(n *Node, inplace bool) *ssa.Value {
  2179  	// If inplace is false, process as expression "append(s, e1, e2, e3)":
  2180  	//
  2181  	// ptr, len, cap := s
  2182  	// newlen := len + 3
  2183  	// if newlen > cap {
  2184  	//     ptr, len, cap = growslice(s, newlen)
  2185  	//     newlen = len + 3 // recalculate to avoid a spill
  2186  	// }
  2187  	// // with write barriers, if needed:
  2188  	// *(ptr+len) = e1
  2189  	// *(ptr+len+1) = e2
  2190  	// *(ptr+len+2) = e3
  2191  	// return makeslice(ptr, newlen, cap)
  2192  	//
  2193  	//
  2194  	// If inplace is true, process as statement "s = append(s, e1, e2, e3)":
  2195  	//
  2196  	// a := &s
  2197  	// ptr, len, cap := s
  2198  	// newlen := len + 3
  2199  	// if newlen > cap {
  2200  	//    newptr, len, newcap = growslice(ptr, len, cap, newlen)
  2201  	//    vardef(a)       // if necessary, advise liveness we are writing a new a
  2202  	//    *a.cap = newcap // write before ptr to avoid a spill
  2203  	//    *a.ptr = newptr // with write barrier
  2204  	// }
  2205  	// newlen = len + 3 // recalculate to avoid a spill
  2206  	// *a.len = newlen
  2207  	// // with write barriers, if needed:
  2208  	// *(ptr+len) = e1
  2209  	// *(ptr+len+1) = e2
  2210  	// *(ptr+len+2) = e3
  2211  
  2212  	et := n.Type.Elem()
  2213  	pt := types.NewPtr(et)
  2214  
  2215  	// Evaluate slice
  2216  	sn := n.List.First() // the slice node is the first in the list
  2217  
  2218  	var slice, addr *ssa.Value
  2219  	if inplace {
  2220  		addr = s.addr(sn, false)
  2221  		slice = s.newValue2(ssa.OpLoad, n.Type, addr, s.mem())
  2222  	} else {
  2223  		slice = s.expr(sn)
  2224  	}
  2225  
  2226  	// Allocate new blocks
  2227  	grow := s.f.NewBlock(ssa.BlockPlain)
  2228  	assign := s.f.NewBlock(ssa.BlockPlain)
  2229  
  2230  	// Decide if we need to grow
  2231  	nargs := int64(n.List.Len() - 1)
  2232  	p := s.newValue1(ssa.OpSlicePtr, pt, slice)
  2233  	l := s.newValue1(ssa.OpSliceLen, types.Types[TINT], slice)
  2234  	c := s.newValue1(ssa.OpSliceCap, types.Types[TINT], slice)
  2235  	nl := s.newValue2(s.ssaOp(OADD, types.Types[TINT]), types.Types[TINT], l, s.constInt(types.Types[TINT], nargs))
  2236  
  2237  	cmp := s.newValue2(s.ssaOp(OGT, types.Types[TINT]), types.Types[TBOOL], nl, c)
  2238  	s.vars[&ptrVar] = p
  2239  
  2240  	if !inplace {
  2241  		s.vars[&newlenVar] = nl
  2242  		s.vars[&capVar] = c
  2243  	} else {
  2244  		s.vars[&lenVar] = l
  2245  	}
  2246  
  2247  	b := s.endBlock()
  2248  	b.Kind = ssa.BlockIf
  2249  	b.Likely = ssa.BranchUnlikely
  2250  	b.SetControl(cmp)
  2251  	b.AddEdgeTo(grow)
  2252  	b.AddEdgeTo(assign)
  2253  
  2254  	// Call growslice
  2255  	s.startBlock(grow)
  2256  	taddr := s.expr(n.Left)
  2257  	r := s.rtcall(growslice, true, []*types.Type{pt, types.Types[TINT], types.Types[TINT]}, taddr, p, l, c, nl)
  2258  
  2259  	if inplace {
  2260  		if sn.Op == ONAME && sn.Class() != PEXTERN {
  2261  			// Tell liveness we're about to build a new slice
  2262  			s.vars[&memVar] = s.newValue1A(ssa.OpVarDef, types.TypeMem, sn, s.mem())
  2263  		}
  2264  		capaddr := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.IntPtr, int64(array_cap), addr)
  2265  		s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, types.Types[TINT], capaddr, r[2], s.mem())
  2266  		s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, pt, addr, r[0], s.mem())
  2267  		// load the value we just stored to avoid having to spill it
  2268  		s.vars[&ptrVar] = s.newValue2(ssa.OpLoad, pt, addr, s.mem())
  2269  		s.vars[&lenVar] = r[1] // avoid a spill in the fast path
  2270  	} else {
  2271  		s.vars[&ptrVar] = r[0]
  2272  		s.vars[&newlenVar] = s.newValue2(s.ssaOp(OADD, types.Types[TINT]), types.Types[TINT], r[1], s.constInt(types.Types[TINT], nargs))
  2273  		s.vars[&capVar] = r[2]
  2274  	}
  2275  
  2276  	b = s.endBlock()
  2277  	b.AddEdgeTo(assign)
  2278  
  2279  	// assign new elements to slots
  2280  	s.startBlock(assign)
  2281  
  2282  	if inplace {
  2283  		l = s.variable(&lenVar, types.Types[TINT]) // generates phi for len
  2284  		nl = s.newValue2(s.ssaOp(OADD, types.Types[TINT]), types.Types[TINT], l, s.constInt(types.Types[TINT], nargs))
  2285  		lenaddr := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.IntPtr, int64(array_nel), addr)
  2286  		s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, types.Types[TINT], lenaddr, nl, s.mem())
  2287  	}
  2288  
  2289  	// Evaluate args
  2290  	type argRec struct {
  2291  		// if store is true, we're appending the value v.  If false, we're appending the
  2292  		// value at *v.
  2293  		v     *ssa.Value
  2294  		store bool
  2295  	}
  2296  	args := make([]argRec, 0, nargs)
  2297  	for _, n := range n.List.Slice()[1:] {
  2298  		if canSSAType(n.Type) {
  2299  			args = append(args, argRec{v: s.expr(n), store: true})
  2300  		} else {
  2301  			v := s.addr(n, false)
  2302  			args = append(args, argRec{v: v})
  2303  		}
  2304  	}
  2305  
  2306  	p = s.variable(&ptrVar, pt) // generates phi for ptr
  2307  	if !inplace {
  2308  		nl = s.variable(&newlenVar, types.Types[TINT]) // generates phi for nl
  2309  		c = s.variable(&capVar, types.Types[TINT])     // generates phi for cap
  2310  	}
  2311  	p2 := s.newValue2(ssa.OpPtrIndex, pt, p, l)
  2312  	for i, arg := range args {
  2313  		addr := s.newValue2(ssa.OpPtrIndex, pt, p2, s.constInt(types.Types[TINT], int64(i)))
  2314  		if arg.store {
  2315  			s.storeType(et, addr, arg.v, 0)
  2316  		} else {
  2317  			store := s.newValue3I(ssa.OpMove, types.TypeMem, et.Size(), addr, arg.v, s.mem())
  2318  			store.Aux = et
  2319  			s.vars[&memVar] = store
  2320  		}
  2321  	}
  2322  
  2323  	delete(s.vars, &ptrVar)
  2324  	if inplace {
  2325  		delete(s.vars, &lenVar)
  2326  		return nil
  2327  	}
  2328  	delete(s.vars, &newlenVar)
  2329  	delete(s.vars, &capVar)
  2330  	// make result
  2331  	return s.newValue3(ssa.OpSliceMake, n.Type, p, nl, c)
  2332  }
  2333  
  2334  // condBranch evaluates the boolean expression cond and branches to yes
  2335  // if cond is true and no if cond is false.
  2336  // This function is intended to handle && and || better than just calling
  2337  // s.expr(cond) and branching on the result.
  2338  func (s *state) condBranch(cond *Node, yes, no *ssa.Block, likely int8) {
  2339  	switch cond.Op {
  2340  	case OANDAND:
  2341  		mid := s.f.NewBlock(ssa.BlockPlain)
  2342  		s.stmtList(cond.Ninit)
  2343  		s.condBranch(cond.Left, mid, no, max8(likely, 0))
  2344  		s.startBlock(mid)
  2345  		s.condBranch(cond.Right, yes, no, likely)
  2346  		return
  2347  		// Note: if likely==1, then both recursive calls pass 1.
  2348  		// If likely==-1, then we don't have enough information to decide
  2349  		// whether the first branch is likely or not. So we pass 0 for
  2350  		// the likeliness of the first branch.
  2351  		// TODO: have the frontend give us branch prediction hints for
  2352  		// OANDAND and OOROR nodes (if it ever has such info).
  2353  	case OOROR:
  2354  		mid := s.f.NewBlock(ssa.BlockPlain)
  2355  		s.stmtList(cond.Ninit)
  2356  		s.condBranch(cond.Left, yes, mid, min8(likely, 0))
  2357  		s.startBlock(mid)
  2358  		s.condBranch(cond.Right, yes, no, likely)
  2359  		return
  2360  		// Note: if likely==-1, then both recursive calls pass -1.
  2361  		// If likely==1, then we don't have enough info to decide
  2362  		// the likelihood of the first branch.
  2363  	case ONOT:
  2364  		s.stmtList(cond.Ninit)
  2365  		s.condBranch(cond.Left, no, yes, -likely)
  2366  		return
  2367  	}
  2368  	c := s.expr(cond)
  2369  	b := s.endBlock()
  2370  	b.Kind = ssa.BlockIf
  2371  	b.SetControl(c)
  2372  	b.Likely = ssa.BranchPrediction(likely) // gc and ssa both use -1/0/+1 for likeliness
  2373  	b.AddEdgeTo(yes)
  2374  	b.AddEdgeTo(no)
  2375  }
  2376  
  2377  type skipMask uint8
  2378  
  2379  const (
  2380  	skipPtr skipMask = 1 << iota
  2381  	skipLen
  2382  	skipCap
  2383  )
  2384  
  2385  // assign does left = right.
  2386  // Right has already been evaluated to ssa, left has not.
  2387  // If deref is true, then we do left = *right instead (and right has already been nil-checked).
  2388  // If deref is true and right == nil, just do left = 0.
  2389  // skip indicates assignments (at the top level) that can be avoided.
  2390  func (s *state) assign(left *Node, right *ssa.Value, deref bool, skip skipMask) {
  2391  	if left.Op == ONAME && isblank(left) {
  2392  		return
  2393  	}
  2394  	t := left.Type
  2395  	dowidth(t)
  2396  	if s.canSSA(left) {
  2397  		if deref {
  2398  			s.Fatalf("can SSA LHS %v but not RHS %s", left, right)
  2399  		}
  2400  		if left.Op == ODOT {
  2401  			// We're assigning to a field of an ssa-able value.
  2402  			// We need to build a new structure with the new value for the
  2403  			// field we're assigning and the old values for the other fields.
  2404  			// For instance:
  2405  			//   type T struct {a, b, c int}
  2406  			//   var T x
  2407  			//   x.b = 5
  2408  			// For the x.b = 5 assignment we want to generate x = T{x.a, 5, x.c}
  2409  
  2410  			// Grab information about the structure type.
  2411  			t := left.Left.Type
  2412  			nf := t.NumFields()
  2413  			idx := fieldIdx(left)
  2414  
  2415  			// Grab old value of structure.
  2416  			old := s.expr(left.Left)
  2417  
  2418  			// Make new structure.
  2419  			new := s.newValue0(ssa.StructMakeOp(t.NumFields()), t)
  2420  
  2421  			// Add fields as args.
  2422  			for i := 0; i < nf; i++ {
  2423  				if i == idx {
  2424  					new.AddArg(right)
  2425  				} else {
  2426  					new.AddArg(s.newValue1I(ssa.OpStructSelect, t.FieldType(i), int64(i), old))
  2427  				}
  2428  			}
  2429  
  2430  			// Recursively assign the new value we've made to the base of the dot op.
  2431  			s.assign(left.Left, new, false, 0)
  2432  			// TODO: do we need to update named values here?
  2433  			return
  2434  		}
  2435  		if left.Op == OINDEX && left.Left.Type.IsArray() {
  2436  			// We're assigning to an element of an ssa-able array.
  2437  			// a[i] = v
  2438  			t := left.Left.Type
  2439  			n := t.NumElem()
  2440  
  2441  			i := s.expr(left.Right) // index
  2442  			if n == 0 {
  2443  				// The bounds check must fail.  Might as well
  2444  				// ignore the actual index and just use zeros.
  2445  				z := s.constInt(types.Types[TINT], 0)
  2446  				s.boundsCheck(z, z)
  2447  				return
  2448  			}
  2449  			if n != 1 {
  2450  				s.Fatalf("assigning to non-1-length array")
  2451  			}
  2452  			// Rewrite to a = [1]{v}
  2453  			i = s.extendIndex(i, panicindex)
  2454  			s.boundsCheck(i, s.constInt(types.Types[TINT], 1))
  2455  			v := s.newValue1(ssa.OpArrayMake1, t, right)
  2456  			s.assign(left.Left, v, false, 0)
  2457  			return
  2458  		}
  2459  		// Update variable assignment.
  2460  		s.vars[left] = right
  2461  		s.addNamedValue(left, right)
  2462  		return
  2463  	}
  2464  	// Left is not ssa-able. Compute its address.
  2465  	addr := s.addr(left, false)
  2466  	if left.Op == ONAME && left.Class() != PEXTERN && skip == 0 {
  2467  		s.vars[&memVar] = s.newValue1A(ssa.OpVarDef, types.TypeMem, left, s.mem())
  2468  	}
  2469  	if isReflectHeaderDataField(left) {
  2470  		// Package unsafe's documentation says storing pointers into
  2471  		// reflect.SliceHeader and reflect.StringHeader's Data fields
  2472  		// is valid, even though they have type uintptr (#19168).
  2473  		// Mark it pointer type to signal the writebarrier pass to
  2474  		// insert a write barrier.
  2475  		t = types.Types[TUNSAFEPTR]
  2476  	}
  2477  	if deref {
  2478  		// Treat as a mem->mem move.
  2479  		var store *ssa.Value
  2480  		if right == nil {
  2481  			store = s.newValue2I(ssa.OpZero, types.TypeMem, t.Size(), addr, s.mem())
  2482  		} else {
  2483  			store = s.newValue3I(ssa.OpMove, types.TypeMem, t.Size(), addr, right, s.mem())
  2484  		}
  2485  		store.Aux = t
  2486  		s.vars[&memVar] = store
  2487  		return
  2488  	}
  2489  	// Treat as a store.
  2490  	s.storeType(t, addr, right, skip)
  2491  }
  2492  
  2493  // zeroVal returns the zero value for type t.
  2494  func (s *state) zeroVal(t *types.Type) *ssa.Value {
  2495  	switch {
  2496  	case t.IsInteger():
  2497  		switch t.Size() {
  2498  		case 1:
  2499  			return s.constInt8(t, 0)
  2500  		case 2:
  2501  			return s.constInt16(t, 0)
  2502  		case 4:
  2503  			return s.constInt32(t, 0)
  2504  		case 8:
  2505  			return s.constInt64(t, 0)
  2506  		default:
  2507  			s.Fatalf("bad sized integer type %v", t)
  2508  		}
  2509  	case t.IsFloat():
  2510  		switch t.Size() {
  2511  		case 4:
  2512  			return s.constFloat32(t, 0)
  2513  		case 8:
  2514  			return s.constFloat64(t, 0)
  2515  		default:
  2516  			s.Fatalf("bad sized float type %v", t)
  2517  		}
  2518  	case t.IsComplex():
  2519  		switch t.Size() {
  2520  		case 8:
  2521  			z := s.constFloat32(types.Types[TFLOAT32], 0)
  2522  			return s.entryNewValue2(ssa.OpComplexMake, t, z, z)
  2523  		case 16:
  2524  			z := s.constFloat64(types.Types[TFLOAT64], 0)
  2525  			return s.entryNewValue2(ssa.OpComplexMake, t, z, z)
  2526  		default:
  2527  			s.Fatalf("bad sized complex type %v", t)
  2528  		}
  2529  
  2530  	case t.IsString():
  2531  		return s.constEmptyString(t)
  2532  	case t.IsPtrShaped():
  2533  		return s.constNil(t)
  2534  	case t.IsBoolean():
  2535  		return s.constBool(false)
  2536  	case t.IsInterface():
  2537  		return s.constInterface(t)
  2538  	case t.IsSlice():
  2539  		return s.constSlice(t)
  2540  	case t.IsStruct():
  2541  		n := t.NumFields()
  2542  		v := s.entryNewValue0(ssa.StructMakeOp(t.NumFields()), t)
  2543  		for i := 0; i < n; i++ {
  2544  			v.AddArg(s.zeroVal(t.FieldType(i)))
  2545  		}
  2546  		return v
  2547  	case t.IsArray():
  2548  		switch t.NumElem() {
  2549  		case 0:
  2550  			return s.entryNewValue0(ssa.OpArrayMake0, t)
  2551  		case 1:
  2552  			return s.entryNewValue1(ssa.OpArrayMake1, t, s.zeroVal(t.Elem()))
  2553  		}
  2554  	}
  2555  	s.Fatalf("zero for type %v not implemented", t)
  2556  	return nil
  2557  }
  2558  
  2559  type callKind int8
  2560  
  2561  const (
  2562  	callNormal callKind = iota
  2563  	callDefer
  2564  	callGo
  2565  )
  2566  
  2567  var intrinsics map[intrinsicKey]intrinsicBuilder
  2568  
  2569  // An intrinsicBuilder converts a call node n into an ssa value that
  2570  // implements that call as an intrinsic. args is a list of arguments to the func.
  2571  type intrinsicBuilder func(s *state, n *Node, args []*ssa.Value) *ssa.Value
  2572  
  2573  type intrinsicKey struct {
  2574  	arch *sys.Arch
  2575  	pkg  string
  2576  	fn   string
  2577  }
  2578  
  2579  func init() {
  2580  	intrinsics = map[intrinsicKey]intrinsicBuilder{}
  2581  
  2582  	var all []*sys.Arch
  2583  	var p4 []*sys.Arch
  2584  	var p8 []*sys.Arch
  2585  	for _, a := range sys.Archs {
  2586  		all = append(all, a)
  2587  		if a.PtrSize == 4 {
  2588  			p4 = append(p4, a)
  2589  		} else {
  2590  			p8 = append(p8, a)
  2591  		}
  2592  	}
  2593  
  2594  	// add adds the intrinsic b for pkg.fn for the given list of architectures.
  2595  	add := func(pkg, fn string, b intrinsicBuilder, archs ...*sys.Arch) {
  2596  		for _, a := range archs {
  2597  			intrinsics[intrinsicKey{a, pkg, fn}] = b
  2598  		}
  2599  	}
  2600  	// addF does the same as add but operates on architecture families.
  2601  	addF := func(pkg, fn string, b intrinsicBuilder, archFamilies ...sys.ArchFamily) {
  2602  		m := 0
  2603  		for _, f := range archFamilies {
  2604  			if f >= 32 {
  2605  				panic("too many architecture families")
  2606  			}
  2607  			m |= 1 << uint(f)
  2608  		}
  2609  		for _, a := range all {
  2610  			if m>>uint(a.Family)&1 != 0 {
  2611  				intrinsics[intrinsicKey{a, pkg, fn}] = b
  2612  			}
  2613  		}
  2614  	}
  2615  	// alias defines pkg.fn = pkg2.fn2 for all architectures in archs for which pkg2.fn2 exists.
  2616  	alias := func(pkg, fn, pkg2, fn2 string, archs ...*sys.Arch) {
  2617  		for _, a := range archs {
  2618  			if b, ok := intrinsics[intrinsicKey{a, pkg2, fn2}]; ok {
  2619  				intrinsics[intrinsicKey{a, pkg, fn}] = b
  2620  			}
  2621  		}
  2622  	}
  2623  
  2624  	/******** runtime ********/
  2625  	if !instrumenting {
  2626  		add("runtime", "slicebytetostringtmp",
  2627  			func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2628  				// Compiler frontend optimizations emit OARRAYBYTESTRTMP nodes
  2629  				// for the backend instead of slicebytetostringtmp calls
  2630  				// when not instrumenting.
  2631  				slice := args[0]
  2632  				ptr := s.newValue1(ssa.OpSlicePtr, s.f.Config.Types.BytePtr, slice)
  2633  				len := s.newValue1(ssa.OpSliceLen, types.Types[TINT], slice)
  2634  				return s.newValue2(ssa.OpStringMake, n.Type, ptr, len)
  2635  			},
  2636  			all...)
  2637  	}
  2638  	add("runtime", "KeepAlive",
  2639  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2640  			data := s.newValue1(ssa.OpIData, s.f.Config.Types.BytePtr, args[0])
  2641  			s.vars[&memVar] = s.newValue2(ssa.OpKeepAlive, types.TypeMem, data, s.mem())
  2642  			return nil
  2643  		},
  2644  		all...)
  2645  	add("runtime", "getclosureptr",
  2646  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2647  			return s.newValue0(ssa.OpGetClosurePtr, s.f.Config.Types.Uintptr)
  2648  		},
  2649  		all...)
  2650  
  2651  	addF("runtime", "getcallerpc",
  2652  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2653  			return s.newValue0(ssa.OpGetCallerPC, s.f.Config.Types.Uintptr)
  2654  		}, sys.AMD64, sys.I386)
  2655  
  2656  	add("runtime", "getcallersp",
  2657  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2658  			return s.newValue0(ssa.OpGetCallerSP, s.f.Config.Types.Uintptr)
  2659  		},
  2660  		all...)
  2661  
  2662  	/******** runtime/internal/sys ********/
  2663  	addF("runtime/internal/sys", "Ctz32",
  2664  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2665  			return s.newValue1(ssa.OpCtz32, types.Types[TINT], args[0])
  2666  		},
  2667  		sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64)
  2668  	addF("runtime/internal/sys", "Ctz64",
  2669  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2670  			return s.newValue1(ssa.OpCtz64, types.Types[TINT], args[0])
  2671  		},
  2672  		sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64)
  2673  	addF("runtime/internal/sys", "Bswap32",
  2674  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2675  			return s.newValue1(ssa.OpBswap32, types.Types[TUINT32], args[0])
  2676  		},
  2677  		sys.AMD64, sys.ARM64, sys.ARM, sys.S390X)
  2678  	addF("runtime/internal/sys", "Bswap64",
  2679  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2680  			return s.newValue1(ssa.OpBswap64, types.Types[TUINT64], args[0])
  2681  		},
  2682  		sys.AMD64, sys.ARM64, sys.ARM, sys.S390X)
  2683  
  2684  	/******** runtime/internal/atomic ********/
  2685  	addF("runtime/internal/atomic", "Load",
  2686  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2687  			v := s.newValue2(ssa.OpAtomicLoad32, types.NewTuple(types.Types[TUINT32], types.TypeMem), args[0], s.mem())
  2688  			s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
  2689  			return s.newValue1(ssa.OpSelect0, types.Types[TUINT32], v)
  2690  		},
  2691  		sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS, sys.MIPS64, sys.PPC64)
  2692  	addF("runtime/internal/atomic", "Load64",
  2693  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2694  			v := s.newValue2(ssa.OpAtomicLoad64, types.NewTuple(types.Types[TUINT64], types.TypeMem), args[0], s.mem())
  2695  			s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
  2696  			return s.newValue1(ssa.OpSelect0, types.Types[TUINT64], v)
  2697  		},
  2698  		sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS64, sys.PPC64)
  2699  	addF("runtime/internal/atomic", "Loadp",
  2700  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2701  			v := s.newValue2(ssa.OpAtomicLoadPtr, types.NewTuple(s.f.Config.Types.BytePtr, types.TypeMem), args[0], s.mem())
  2702  			s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
  2703  			return s.newValue1(ssa.OpSelect0, s.f.Config.Types.BytePtr, v)
  2704  		},
  2705  		sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS, sys.MIPS64, sys.PPC64)
  2706  
  2707  	addF("runtime/internal/atomic", "Store",
  2708  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2709  			s.vars[&memVar] = s.newValue3(ssa.OpAtomicStore32, types.TypeMem, args[0], args[1], s.mem())
  2710  			return nil
  2711  		},
  2712  		sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS, sys.MIPS64, sys.PPC64)
  2713  	addF("runtime/internal/atomic", "Store64",
  2714  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2715  			s.vars[&memVar] = s.newValue3(ssa.OpAtomicStore64, types.TypeMem, args[0], args[1], s.mem())
  2716  			return nil
  2717  		},
  2718  		sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS64, sys.PPC64)
  2719  	addF("runtime/internal/atomic", "StorepNoWB",
  2720  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2721  			s.vars[&memVar] = s.newValue3(ssa.OpAtomicStorePtrNoWB, types.TypeMem, args[0], args[1], s.mem())
  2722  			return nil
  2723  		},
  2724  		sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS, sys.MIPS64)
  2725  
  2726  	addF("runtime/internal/atomic", "Xchg",
  2727  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2728  			v := s.newValue3(ssa.OpAtomicExchange32, types.NewTuple(types.Types[TUINT32], types.TypeMem), args[0], args[1], s.mem())
  2729  			s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
  2730  			return s.newValue1(ssa.OpSelect0, types.Types[TUINT32], v)
  2731  		},
  2732  		sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS, sys.MIPS64, sys.PPC64)
  2733  	addF("runtime/internal/atomic", "Xchg64",
  2734  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2735  			v := s.newValue3(ssa.OpAtomicExchange64, types.NewTuple(types.Types[TUINT64], types.TypeMem), args[0], args[1], s.mem())
  2736  			s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
  2737  			return s.newValue1(ssa.OpSelect0, types.Types[TUINT64], v)
  2738  		},
  2739  		sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS64, sys.PPC64)
  2740  
  2741  	addF("runtime/internal/atomic", "Xadd",
  2742  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2743  			v := s.newValue3(ssa.OpAtomicAdd32, types.NewTuple(types.Types[TUINT32], types.TypeMem), args[0], args[1], s.mem())
  2744  			s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
  2745  			return s.newValue1(ssa.OpSelect0, types.Types[TUINT32], v)
  2746  		},
  2747  		sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS, sys.MIPS64, sys.PPC64)
  2748  	addF("runtime/internal/atomic", "Xadd64",
  2749  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2750  			v := s.newValue3(ssa.OpAtomicAdd64, types.NewTuple(types.Types[TUINT64], types.TypeMem), args[0], args[1], s.mem())
  2751  			s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
  2752  			return s.newValue1(ssa.OpSelect0, types.Types[TUINT64], v)
  2753  		},
  2754  		sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS64, sys.PPC64)
  2755  
  2756  	addF("runtime/internal/atomic", "Cas",
  2757  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2758  			v := s.newValue4(ssa.OpAtomicCompareAndSwap32, types.NewTuple(types.Types[TBOOL], types.TypeMem), args[0], args[1], args[2], s.mem())
  2759  			s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
  2760  			return s.newValue1(ssa.OpSelect0, types.Types[TBOOL], v)
  2761  		},
  2762  		sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS, sys.MIPS64, sys.PPC64)
  2763  	addF("runtime/internal/atomic", "Cas64",
  2764  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2765  			v := s.newValue4(ssa.OpAtomicCompareAndSwap64, types.NewTuple(types.Types[TBOOL], types.TypeMem), args[0], args[1], args[2], s.mem())
  2766  			s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
  2767  			return s.newValue1(ssa.OpSelect0, types.Types[TBOOL], v)
  2768  		},
  2769  		sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS64, sys.PPC64)
  2770  
  2771  	addF("runtime/internal/atomic", "And8",
  2772  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2773  			s.vars[&memVar] = s.newValue3(ssa.OpAtomicAnd8, types.TypeMem, args[0], args[1], s.mem())
  2774  			return nil
  2775  		},
  2776  		sys.AMD64, sys.ARM64, sys.MIPS, sys.PPC64)
  2777  	addF("runtime/internal/atomic", "Or8",
  2778  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2779  			s.vars[&memVar] = s.newValue3(ssa.OpAtomicOr8, types.TypeMem, args[0], args[1], s.mem())
  2780  			return nil
  2781  		},
  2782  		sys.AMD64, sys.ARM64, sys.MIPS, sys.PPC64)
  2783  
  2784  	alias("runtime/internal/atomic", "Loadint64", "runtime/internal/atomic", "Load64", all...)
  2785  	alias("runtime/internal/atomic", "Xaddint64", "runtime/internal/atomic", "Xadd64", all...)
  2786  	alias("runtime/internal/atomic", "Loaduint", "runtime/internal/atomic", "Load", p4...)
  2787  	alias("runtime/internal/atomic", "Loaduint", "runtime/internal/atomic", "Load64", p8...)
  2788  	alias("runtime/internal/atomic", "Loaduintptr", "runtime/internal/atomic", "Load", p4...)
  2789  	alias("runtime/internal/atomic", "Loaduintptr", "runtime/internal/atomic", "Load64", p8...)
  2790  	alias("runtime/internal/atomic", "Storeuintptr", "runtime/internal/atomic", "Store", p4...)
  2791  	alias("runtime/internal/atomic", "Storeuintptr", "runtime/internal/atomic", "Store64", p8...)
  2792  	alias("runtime/internal/atomic", "Xchguintptr", "runtime/internal/atomic", "Xchg", p4...)
  2793  	alias("runtime/internal/atomic", "Xchguintptr", "runtime/internal/atomic", "Xchg64", p8...)
  2794  	alias("runtime/internal/atomic", "Xadduintptr", "runtime/internal/atomic", "Xadd", p4...)
  2795  	alias("runtime/internal/atomic", "Xadduintptr", "runtime/internal/atomic", "Xadd64", p8...)
  2796  	alias("runtime/internal/atomic", "Casuintptr", "runtime/internal/atomic", "Cas", p4...)
  2797  	alias("runtime/internal/atomic", "Casuintptr", "runtime/internal/atomic", "Cas64", p8...)
  2798  	alias("runtime/internal/atomic", "Casp1", "runtime/internal/atomic", "Cas", p4...)
  2799  	alias("runtime/internal/atomic", "Casp1", "runtime/internal/atomic", "Cas64", p8...)
  2800  
  2801  	/******** math ********/
  2802  	addF("math", "Sqrt",
  2803  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2804  			return s.newValue1(ssa.OpSqrt, types.Types[TFLOAT64], args[0])
  2805  		},
  2806  		sys.AMD64, sys.ARM, sys.ARM64, sys.MIPS, sys.PPC64, sys.S390X)
  2807  	addF("math", "Trunc",
  2808  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2809  			return s.newValue1(ssa.OpTrunc, types.Types[TFLOAT64], args[0])
  2810  		},
  2811  		sys.PPC64, sys.S390X)
  2812  	addF("math", "Ceil",
  2813  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2814  			return s.newValue1(ssa.OpCeil, types.Types[TFLOAT64], args[0])
  2815  		},
  2816  		sys.PPC64, sys.S390X)
  2817  	addF("math", "Floor",
  2818  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2819  			return s.newValue1(ssa.OpFloor, types.Types[TFLOAT64], args[0])
  2820  		},
  2821  		sys.PPC64, sys.S390X)
  2822  	addF("math", "Round",
  2823  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2824  			return s.newValue1(ssa.OpRound, types.Types[TFLOAT64], args[0])
  2825  		},
  2826  		sys.S390X)
  2827  	addF("math", "RoundToEven",
  2828  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2829  			return s.newValue1(ssa.OpRoundToEven, types.Types[TFLOAT64], args[0])
  2830  		},
  2831  		sys.S390X)
  2832  	addF("math", "Abs",
  2833  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2834  			return s.newValue1(ssa.OpAbs, types.Types[TFLOAT64], args[0])
  2835  		},
  2836  		sys.PPC64)
  2837  	addF("math", "Copysign",
  2838  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2839  			return s.newValue2(ssa.OpCopysign, types.Types[TFLOAT64], args[0], args[1])
  2840  		},
  2841  		sys.PPC64)
  2842  
  2843  	makeRoundAMD64 := func(op ssa.Op) func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2844  		return func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2845  			aux := syslook("support_sse41").Sym.Linksym()
  2846  			addr := s.entryNewValue1A(ssa.OpAddr, types.Types[TBOOL].PtrTo(), aux, s.sb)
  2847  			v := s.newValue2(ssa.OpLoad, types.Types[TBOOL], addr, s.mem())
  2848  			b := s.endBlock()
  2849  			b.Kind = ssa.BlockIf
  2850  			b.SetControl(v)
  2851  			bTrue := s.f.NewBlock(ssa.BlockPlain)
  2852  			bFalse := s.f.NewBlock(ssa.BlockPlain)
  2853  			bEnd := s.f.NewBlock(ssa.BlockPlain)
  2854  			b.AddEdgeTo(bTrue)
  2855  			b.AddEdgeTo(bFalse)
  2856  			b.Likely = ssa.BranchLikely // most machines have sse4.1 nowadays
  2857  
  2858  			// We have the intrinsic - use it directly.
  2859  			s.startBlock(bTrue)
  2860  			s.vars[n] = s.newValue1(op, types.Types[TFLOAT64], args[0])
  2861  			s.endBlock().AddEdgeTo(bEnd)
  2862  
  2863  			// Call the pure Go version.
  2864  			s.startBlock(bFalse)
  2865  			a := s.call(n, callNormal)
  2866  			s.vars[n] = s.newValue2(ssa.OpLoad, types.Types[TFLOAT64], a, s.mem())
  2867  			s.endBlock().AddEdgeTo(bEnd)
  2868  
  2869  			// Merge results.
  2870  			s.startBlock(bEnd)
  2871  			return s.variable(n, types.Types[TFLOAT64])
  2872  		}
  2873  	}
  2874  	addF("math", "RoundToEven",
  2875  		makeRoundAMD64(ssa.OpRoundToEven),
  2876  		sys.AMD64)
  2877  	addF("math", "Floor",
  2878  		makeRoundAMD64(ssa.OpFloor),
  2879  		sys.AMD64)
  2880  	addF("math", "Ceil",
  2881  		makeRoundAMD64(ssa.OpCeil),
  2882  		sys.AMD64)
  2883  	addF("math", "Trunc",
  2884  		makeRoundAMD64(ssa.OpTrunc),
  2885  		sys.AMD64)
  2886  
  2887  	/******** math/bits ********/
  2888  	addF("math/bits", "TrailingZeros64",
  2889  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2890  			return s.newValue1(ssa.OpCtz64, types.Types[TINT], args[0])
  2891  		},
  2892  		sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64)
  2893  	addF("math/bits", "TrailingZeros32",
  2894  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2895  			return s.newValue1(ssa.OpCtz32, types.Types[TINT], args[0])
  2896  		},
  2897  		sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64)
  2898  	addF("math/bits", "TrailingZeros16",
  2899  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2900  			x := s.newValue1(ssa.OpZeroExt16to32, types.Types[TUINT32], args[0])
  2901  			c := s.constInt32(types.Types[TUINT32], 1<<16)
  2902  			y := s.newValue2(ssa.OpOr32, types.Types[TUINT32], x, c)
  2903  			return s.newValue1(ssa.OpCtz32, types.Types[TINT], y)
  2904  		},
  2905  		sys.ARM, sys.MIPS)
  2906  	addF("math/bits", "TrailingZeros16",
  2907  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2908  			x := s.newValue1(ssa.OpZeroExt16to64, types.Types[TUINT64], args[0])
  2909  			c := s.constInt64(types.Types[TUINT64], 1<<16)
  2910  			y := s.newValue2(ssa.OpOr64, types.Types[TUINT64], x, c)
  2911  			return s.newValue1(ssa.OpCtz64, types.Types[TINT], y)
  2912  		},
  2913  		sys.AMD64, sys.ARM64, sys.S390X)
  2914  	addF("math/bits", "TrailingZeros8",
  2915  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2916  			x := s.newValue1(ssa.OpZeroExt8to32, types.Types[TUINT32], args[0])
  2917  			c := s.constInt32(types.Types[TUINT32], 1<<8)
  2918  			y := s.newValue2(ssa.OpOr32, types.Types[TUINT32], x, c)
  2919  			return s.newValue1(ssa.OpCtz32, types.Types[TINT], y)
  2920  		},
  2921  		sys.ARM, sys.MIPS)
  2922  	addF("math/bits", "TrailingZeros8",
  2923  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2924  			x := s.newValue1(ssa.OpZeroExt8to64, types.Types[TUINT64], args[0])
  2925  			c := s.constInt64(types.Types[TUINT64], 1<<8)
  2926  			y := s.newValue2(ssa.OpOr64, types.Types[TUINT64], x, c)
  2927  			return s.newValue1(ssa.OpCtz64, types.Types[TINT], y)
  2928  		},
  2929  		sys.AMD64, sys.ARM64, sys.S390X)
  2930  	alias("math/bits", "ReverseBytes64", "runtime/internal/sys", "Bswap64", all...)
  2931  	alias("math/bits", "ReverseBytes32", "runtime/internal/sys", "Bswap32", all...)
  2932  	// ReverseBytes inlines correctly, no need to intrinsify it.
  2933  	// ReverseBytes16 lowers to a rotate, no need for anything special here.
  2934  	addF("math/bits", "Len64",
  2935  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2936  			return s.newValue1(ssa.OpBitLen64, types.Types[TINT], args[0])
  2937  		},
  2938  		sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64)
  2939  	addF("math/bits", "Len32",
  2940  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2941  			if s.config.PtrSize == 4 {
  2942  				return s.newValue1(ssa.OpBitLen32, types.Types[TINT], args[0])
  2943  			}
  2944  			x := s.newValue1(ssa.OpZeroExt32to64, types.Types[TUINT64], args[0])
  2945  			return s.newValue1(ssa.OpBitLen64, types.Types[TINT], x)
  2946  		},
  2947  		sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64)
  2948  	addF("math/bits", "Len16",
  2949  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2950  			if s.config.PtrSize == 4 {
  2951  				x := s.newValue1(ssa.OpZeroExt16to32, types.Types[TUINT32], args[0])
  2952  				return s.newValue1(ssa.OpBitLen32, types.Types[TINT], x)
  2953  			}
  2954  			x := s.newValue1(ssa.OpZeroExt16to64, types.Types[TUINT64], args[0])
  2955  			return s.newValue1(ssa.OpBitLen64, types.Types[TINT], x)
  2956  		},
  2957  		sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64)
  2958  	// Note: disabled on AMD64 because the Go code is faster!
  2959  	addF("math/bits", "Len8",
  2960  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2961  			if s.config.PtrSize == 4 {
  2962  				x := s.newValue1(ssa.OpZeroExt8to32, types.Types[TUINT32], args[0])
  2963  				return s.newValue1(ssa.OpBitLen32, types.Types[TINT], x)
  2964  			}
  2965  			x := s.newValue1(ssa.OpZeroExt8to64, types.Types[TUINT64], args[0])
  2966  			return s.newValue1(ssa.OpBitLen64, types.Types[TINT], x)
  2967  		},
  2968  		sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64)
  2969  
  2970  	addF("math/bits", "Len",
  2971  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2972  			if s.config.PtrSize == 4 {
  2973  				return s.newValue1(ssa.OpBitLen32, types.Types[TINT], args[0])
  2974  			}
  2975  			return s.newValue1(ssa.OpBitLen64, types.Types[TINT], args[0])
  2976  		},
  2977  		sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64)
  2978  	// LeadingZeros is handled because it trivially calls Len.
  2979  	addF("math/bits", "Reverse64",
  2980  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2981  			return s.newValue1(ssa.OpBitRev64, types.Types[TINT], args[0])
  2982  		},
  2983  		sys.ARM64)
  2984  	addF("math/bits", "Reverse32",
  2985  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2986  			return s.newValue1(ssa.OpBitRev32, types.Types[TINT], args[0])
  2987  		},
  2988  		sys.ARM64)
  2989  	addF("math/bits", "Reverse16",
  2990  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2991  			return s.newValue1(ssa.OpBitRev16, types.Types[TINT], args[0])
  2992  		},
  2993  		sys.ARM64)
  2994  	addF("math/bits", "Reverse8",
  2995  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  2996  			return s.newValue1(ssa.OpBitRev8, types.Types[TINT], args[0])
  2997  		},
  2998  		sys.ARM64)
  2999  	addF("math/bits", "Reverse",
  3000  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3001  			if s.config.PtrSize == 4 {
  3002  				return s.newValue1(ssa.OpBitRev32, types.Types[TINT], args[0])
  3003  			}
  3004  			return s.newValue1(ssa.OpBitRev64, types.Types[TINT], args[0])
  3005  		},
  3006  		sys.ARM64)
  3007  	makeOnesCountAMD64 := func(op64 ssa.Op, op32 ssa.Op) func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3008  		return func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3009  			aux := syslook("support_popcnt").Sym.Linksym()
  3010  			addr := s.entryNewValue1A(ssa.OpAddr, types.Types[TBOOL].PtrTo(), aux, s.sb)
  3011  			v := s.newValue2(ssa.OpLoad, types.Types[TBOOL], addr, s.mem())
  3012  			b := s.endBlock()
  3013  			b.Kind = ssa.BlockIf
  3014  			b.SetControl(v)
  3015  			bTrue := s.f.NewBlock(ssa.BlockPlain)
  3016  			bFalse := s.f.NewBlock(ssa.BlockPlain)
  3017  			bEnd := s.f.NewBlock(ssa.BlockPlain)
  3018  			b.AddEdgeTo(bTrue)
  3019  			b.AddEdgeTo(bFalse)
  3020  			b.Likely = ssa.BranchLikely // most machines have popcnt nowadays
  3021  
  3022  			// We have the intrinsic - use it directly.
  3023  			s.startBlock(bTrue)
  3024  			op := op64
  3025  			if s.config.PtrSize == 4 {
  3026  				op = op32
  3027  			}
  3028  			s.vars[n] = s.newValue1(op, types.Types[TINT], args[0])
  3029  			s.endBlock().AddEdgeTo(bEnd)
  3030  
  3031  			// Call the pure Go version.
  3032  			s.startBlock(bFalse)
  3033  			a := s.call(n, callNormal)
  3034  			s.vars[n] = s.newValue2(ssa.OpLoad, types.Types[TINT], a, s.mem())
  3035  			s.endBlock().AddEdgeTo(bEnd)
  3036  
  3037  			// Merge results.
  3038  			s.startBlock(bEnd)
  3039  			return s.variable(n, types.Types[TINT])
  3040  		}
  3041  	}
  3042  	addF("math/bits", "OnesCount64",
  3043  		makeOnesCountAMD64(ssa.OpPopCount64, ssa.OpPopCount64),
  3044  		sys.AMD64)
  3045  	addF("math/bits", "OnesCount64",
  3046  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3047  			return s.newValue1(ssa.OpPopCount64, types.Types[TINT], args[0])
  3048  		},
  3049  		sys.PPC64)
  3050  	addF("math/bits", "OnesCount32",
  3051  		makeOnesCountAMD64(ssa.OpPopCount32, ssa.OpPopCount32),
  3052  		sys.AMD64)
  3053  	addF("math/bits", "OnesCount32",
  3054  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3055  			return s.newValue1(ssa.OpPopCount32, types.Types[TINT], args[0])
  3056  		},
  3057  		sys.PPC64)
  3058  	addF("math/bits", "OnesCount16",
  3059  		makeOnesCountAMD64(ssa.OpPopCount16, ssa.OpPopCount16),
  3060  		sys.AMD64)
  3061  	// Note: no OnesCount8, the Go implementation is faster - just a table load.
  3062  	addF("math/bits", "OnesCount",
  3063  		makeOnesCountAMD64(ssa.OpPopCount64, ssa.OpPopCount32),
  3064  		sys.AMD64)
  3065  
  3066  	/******** sync/atomic ********/
  3067  
  3068  	// Note: these are disabled by flag_race in findIntrinsic below.
  3069  	alias("sync/atomic", "LoadInt32", "runtime/internal/atomic", "Load", all...)
  3070  	alias("sync/atomic", "LoadInt64", "runtime/internal/atomic", "Load64", all...)
  3071  	alias("sync/atomic", "LoadPointer", "runtime/internal/atomic", "Loadp", all...)
  3072  	alias("sync/atomic", "LoadUint32", "runtime/internal/atomic", "Load", all...)
  3073  	alias("sync/atomic", "LoadUint64", "runtime/internal/atomic", "Load64", all...)
  3074  	alias("sync/atomic", "LoadUintptr", "runtime/internal/atomic", "Load", p4...)
  3075  	alias("sync/atomic", "LoadUintptr", "runtime/internal/atomic", "Load64", p8...)
  3076  
  3077  	alias("sync/atomic", "StoreInt32", "runtime/internal/atomic", "Store", all...)
  3078  	alias("sync/atomic", "StoreInt64", "runtime/internal/atomic", "Store64", all...)
  3079  	// Note: not StorePointer, that needs a write barrier.  Same below for {CompareAnd}Swap.
  3080  	alias("sync/atomic", "StoreUint32", "runtime/internal/atomic", "Store", all...)
  3081  	alias("sync/atomic", "StoreUint64", "runtime/internal/atomic", "Store64", all...)
  3082  	alias("sync/atomic", "StoreUintptr", "runtime/internal/atomic", "Store", p4...)
  3083  	alias("sync/atomic", "StoreUintptr", "runtime/internal/atomic", "Store64", p8...)
  3084  
  3085  	alias("sync/atomic", "SwapInt32", "runtime/internal/atomic", "Xchg", all...)
  3086  	alias("sync/atomic", "SwapInt64", "runtime/internal/atomic", "Xchg64", all...)
  3087  	alias("sync/atomic", "SwapUint32", "runtime/internal/atomic", "Xchg", all...)
  3088  	alias("sync/atomic", "SwapUint64", "runtime/internal/atomic", "Xchg64", all...)
  3089  	alias("sync/atomic", "SwapUintptr", "runtime/internal/atomic", "Xchg", p4...)
  3090  	alias("sync/atomic", "SwapUintptr", "runtime/internal/atomic", "Xchg64", p8...)
  3091  
  3092  	alias("sync/atomic", "CompareAndSwapInt32", "runtime/internal/atomic", "Cas", all...)
  3093  	alias("sync/atomic", "CompareAndSwapInt64", "runtime/internal/atomic", "Cas64", all...)
  3094  	alias("sync/atomic", "CompareAndSwapUint32", "runtime/internal/atomic", "Cas", all...)
  3095  	alias("sync/atomic", "CompareAndSwapUint64", "runtime/internal/atomic", "Cas64", all...)
  3096  	alias("sync/atomic", "CompareAndSwapUintptr", "runtime/internal/atomic", "Cas", p4...)
  3097  	alias("sync/atomic", "CompareAndSwapUintptr", "runtime/internal/atomic", "Cas64", p8...)
  3098  
  3099  	alias("sync/atomic", "AddInt32", "runtime/internal/atomic", "Xadd", all...)
  3100  	alias("sync/atomic", "AddInt64", "runtime/internal/atomic", "Xadd64", all...)
  3101  	alias("sync/atomic", "AddUint32", "runtime/internal/atomic", "Xadd", all...)
  3102  	alias("sync/atomic", "AddUint64", "runtime/internal/atomic", "Xadd64", all...)
  3103  	alias("sync/atomic", "AddUintptr", "runtime/internal/atomic", "Xadd", p4...)
  3104  	alias("sync/atomic", "AddUintptr", "runtime/internal/atomic", "Xadd64", p8...)
  3105  
  3106  	/******** math/big ********/
  3107  	add("math/big", "mulWW",
  3108  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3109  			return s.newValue2(ssa.OpMul64uhilo, types.NewTuple(types.Types[TUINT64], types.Types[TUINT64]), args[0], args[1])
  3110  		},
  3111  		sys.ArchAMD64)
  3112  	add("math/big", "divWW",
  3113  		func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
  3114  			return s.newValue3(ssa.OpDiv128u, types.NewTuple(types.Types[TUINT64], types.Types[TUINT64]), args[0], args[1], args[2])
  3115  		},
  3116  		sys.ArchAMD64)
  3117  }
  3118  
  3119  // findIntrinsic returns a function which builds the SSA equivalent of the
  3120  // function identified by the symbol sym.  If sym is not an intrinsic call, returns nil.
  3121  func findIntrinsic(sym *types.Sym) intrinsicBuilder {
  3122  	if ssa.IntrinsicsDisable {
  3123  		return nil
  3124  	}
  3125  	if sym == nil || sym.Pkg == nil {
  3126  		return nil
  3127  	}
  3128  	pkg := sym.Pkg.Path
  3129  	if sym.Pkg == localpkg {
  3130  		pkg = myimportpath
  3131  	}
  3132  	if flag_race && pkg == "sync/atomic" {
  3133  		// The race detector needs to be able to intercept these calls.
  3134  		// We can't intrinsify them.
  3135  		return nil
  3136  	}
  3137  	fn := sym.Name
  3138  	return intrinsics[intrinsicKey{thearch.LinkArch.Arch, pkg, fn}]
  3139  }
  3140  
  3141  func isIntrinsicCall(n *Node) bool {
  3142  	if n == nil || n.Left == nil {
  3143  		return false
  3144  	}
  3145  	return findIntrinsic(n.Left.Sym) != nil
  3146  }
  3147  
  3148  // intrinsicCall converts a call to a recognized intrinsic function into the intrinsic SSA operation.
  3149  func (s *state) intrinsicCall(n *Node) *ssa.Value {
  3150  	v := findIntrinsic(n.Left.Sym)(s, n, s.intrinsicArgs(n))
  3151  	if ssa.IntrinsicsDebug > 0 {
  3152  		x := v
  3153  		if x == nil {
  3154  			x = s.mem()
  3155  		}
  3156  		if x.Op == ssa.OpSelect0 || x.Op == ssa.OpSelect1 {
  3157  			x = x.Args[0]
  3158  		}
  3159  		Warnl(n.Pos, "intrinsic substitution for %v with %s", n.Left.Sym.Name, x.LongString())
  3160  	}
  3161  	return v
  3162  }
  3163  
  3164  type callArg struct {
  3165  	offset int64
  3166  	v      *ssa.Value
  3167  }
  3168  type byOffset []callArg
  3169  
  3170  func (x byOffset) Len() int      { return len(x) }
  3171  func (x byOffset) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
  3172  func (x byOffset) Less(i, j int) bool {
  3173  	return x[i].offset < x[j].offset
  3174  }
  3175  
  3176  // intrinsicArgs extracts args from n, evaluates them to SSA values, and returns them.
  3177  func (s *state) intrinsicArgs(n *Node) []*ssa.Value {
  3178  	// This code is complicated because of how walk transforms calls. For a call node,
  3179  	// each entry in n.List is either an assignment to OINDREGSP which actually
  3180  	// stores an arg, or an assignment to a temporary which computes an arg
  3181  	// which is later assigned.
  3182  	// The args can also be out of order.
  3183  	// TODO: when walk goes away someday, this code can go away also.
  3184  	var args []callArg
  3185  	temps := map[*Node]*ssa.Value{}
  3186  	for _, a := range n.List.Slice() {
  3187  		if a.Op != OAS {
  3188  			s.Fatalf("non-assignment as a function argument %v", a.Op)
  3189  		}
  3190  		l, r := a.Left, a.Right
  3191  		switch l.Op {
  3192  		case ONAME:
  3193  			// Evaluate and store to "temporary".
  3194  			// Walk ensures these temporaries are dead outside of n.
  3195  			temps[l] = s.expr(r)
  3196  		case OINDREGSP:
  3197  			// Store a value to an argument slot.
  3198  			var v *ssa.Value
  3199  			if x, ok := temps[r]; ok {
  3200  				// This is a previously computed temporary.
  3201  				v = x
  3202  			} else {
  3203  				// This is an explicit value; evaluate it.
  3204  				v = s.expr(r)
  3205  			}
  3206  			args = append(args, callArg{l.Xoffset, v})
  3207  		default:
  3208  			s.Fatalf("function argument assignment target not allowed: %v", l.Op)
  3209  		}
  3210  	}
  3211  	sort.Sort(byOffset(args))
  3212  	res := make([]*ssa.Value, len(args))
  3213  	for i, a := range args {
  3214  		res[i] = a.v
  3215  	}
  3216  	return res
  3217  }
  3218  
  3219  // Calls the function n using the specified call type.
  3220  // Returns the address of the return value (or nil if none).
  3221  func (s *state) call(n *Node, k callKind) *ssa.Value {
  3222  	var sym *types.Sym     // target symbol (if static)
  3223  	var closure *ssa.Value // ptr to closure to run (if dynamic)
  3224  	var codeptr *ssa.Value // ptr to target code (if dynamic)
  3225  	var rcvr *ssa.Value    // receiver to set
  3226  	fn := n.Left
  3227  	switch n.Op {
  3228  	case OCALLFUNC:
  3229  		if k == callNormal && fn.Op == ONAME && fn.Class() == PFUNC {
  3230  			sym = fn.Sym
  3231  			break
  3232  		}
  3233  		closure = s.expr(fn)
  3234  	case OCALLMETH:
  3235  		if fn.Op != ODOTMETH {
  3236  			Fatalf("OCALLMETH: n.Left not an ODOTMETH: %v", fn)
  3237  		}
  3238  		if k == callNormal {
  3239  			sym = fn.Sym
  3240  			break
  3241  		}
  3242  		// Make a name n2 for the function.
  3243  		// fn.Sym might be sync.(*Mutex).Unlock.
  3244  		// Make a PFUNC node out of that, then evaluate it.
  3245  		// We get back an SSA value representing &sync.(*Mutex).Unlock·f.
  3246  		// We can then pass that to defer or go.
  3247  		n2 := newnamel(fn.Pos, fn.Sym)
  3248  		n2.Name.Curfn = s.curfn
  3249  		n2.SetClass(PFUNC)
  3250  		n2.Pos = fn.Pos
  3251  		n2.Type = types.Types[TUINT8] // dummy type for a static closure. Could use runtime.funcval if we had it.
  3252  		closure = s.expr(n2)
  3253  		// Note: receiver is already assigned in n.List, so we don't
  3254  		// want to set it here.
  3255  	case OCALLINTER:
  3256  		if fn.Op != ODOTINTER {
  3257  			Fatalf("OCALLINTER: n.Left not an ODOTINTER: %v", fn.Op)
  3258  		}
  3259  		i := s.expr(fn.Left)
  3260  		itab := s.newValue1(ssa.OpITab, types.Types[TUINTPTR], i)
  3261  		if k != callNormal {
  3262  			s.nilCheck(itab)
  3263  		}
  3264  		itabidx := fn.Xoffset + 2*int64(Widthptr) + 8 // offset of fun field in runtime.itab
  3265  		itab = s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.UintptrPtr, itabidx, itab)
  3266  		if k == callNormal {
  3267  			codeptr = s.newValue2(ssa.OpLoad, types.Types[TUINTPTR], itab, s.mem())
  3268  		} else {
  3269  			closure = itab
  3270  		}
  3271  		rcvr = s.newValue1(ssa.OpIData, types.Types[TUINTPTR], i)
  3272  	}
  3273  	dowidth(fn.Type)
  3274  	stksize := fn.Type.ArgWidth() // includes receiver
  3275  
  3276  	// Run all argument assignments. The arg slots have already
  3277  	// been offset by the appropriate amount (+2*widthptr for go/defer,
  3278  	// +widthptr for interface calls).
  3279  	// For OCALLMETH, the receiver is set in these statements.
  3280  	s.stmtList(n.List)
  3281  
  3282  	// Set receiver (for interface calls)
  3283  	if rcvr != nil {
  3284  		argStart := Ctxt.FixedFrameSize()
  3285  		if k != callNormal {
  3286  			argStart += int64(2 * Widthptr)
  3287  		}
  3288  		addr := s.constOffPtrSP(s.f.Config.Types.UintptrPtr, argStart)
  3289  		s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, types.Types[TUINTPTR], addr, rcvr, s.mem())
  3290  	}
  3291  
  3292  	// Defer/go args
  3293  	if k != callNormal {
  3294  		// Write argsize and closure (args to Newproc/Deferproc).
  3295  		argStart := Ctxt.FixedFrameSize()
  3296  		argsize := s.constInt32(types.Types[TUINT32], int32(stksize))
  3297  		addr := s.constOffPtrSP(s.f.Config.Types.UInt32Ptr, argStart)
  3298  		s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, types.Types[TUINT32], addr, argsize, s.mem())
  3299  		addr = s.constOffPtrSP(s.f.Config.Types.UintptrPtr, argStart+int64(Widthptr))
  3300  		s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, types.Types[TUINTPTR], addr, closure, s.mem())
  3301  		stksize += 2 * int64(Widthptr)
  3302  	}
  3303  
  3304  	// call target
  3305  	var call *ssa.Value
  3306  	switch {
  3307  	case k == callDefer:
  3308  		call = s.newValue1A(ssa.OpStaticCall, types.TypeMem, Deferproc, s.mem())
  3309  	case k == callGo:
  3310  		call = s.newValue1A(ssa.OpStaticCall, types.TypeMem, Newproc, s.mem())
  3311  	case closure != nil:
  3312  		codeptr = s.newValue2(ssa.OpLoad, types.Types[TUINTPTR], closure, s.mem())
  3313  		call = s.newValue3(ssa.OpClosureCall, types.TypeMem, codeptr, closure, s.mem())
  3314  	case codeptr != nil:
  3315  		call = s.newValue2(ssa.OpInterCall, types.TypeMem, codeptr, s.mem())
  3316  	case sym != nil:
  3317  		call = s.newValue1A(ssa.OpStaticCall, types.TypeMem, sym.Linksym(), s.mem())
  3318  	default:
  3319  		Fatalf("bad call type %v %v", n.Op, n)
  3320  	}
  3321  	call.AuxInt = stksize // Call operations carry the argsize of the callee along with them
  3322  	s.vars[&memVar] = call
  3323  
  3324  	// Finish block for defers
  3325  	if k == callDefer {
  3326  		b := s.endBlock()
  3327  		b.Kind = ssa.BlockDefer
  3328  		b.SetControl(call)
  3329  		bNext := s.f.NewBlock(ssa.BlockPlain)
  3330  		b.AddEdgeTo(bNext)
  3331  		// Add recover edge to exit code.
  3332  		r := s.f.NewBlock(ssa.BlockPlain)
  3333  		s.startBlock(r)
  3334  		s.exit()
  3335  		b.AddEdgeTo(r)
  3336  		b.Likely = ssa.BranchLikely
  3337  		s.startBlock(bNext)
  3338  	}
  3339  
  3340  	res := n.Left.Type.Results()
  3341  	if res.NumFields() == 0 || k != callNormal {
  3342  		// call has no return value. Continue with the next statement.
  3343  		return nil
  3344  	}
  3345  	fp := res.Field(0)
  3346  	return s.constOffPtrSP(types.NewPtr(fp.Type), fp.Offset+Ctxt.FixedFrameSize())
  3347  }
  3348  
  3349  // etypesign returns the signed-ness of e, for integer/pointer etypes.
  3350  // -1 means signed, +1 means unsigned, 0 means non-integer/non-pointer.
  3351  func etypesign(e types.EType) int8 {
  3352  	switch e {
  3353  	case TINT8, TINT16, TINT32, TINT64, TINT:
  3354  		return -1
  3355  	case TUINT8, TUINT16, TUINT32, TUINT64, TUINT, TUINTPTR, TUNSAFEPTR:
  3356  		return +1
  3357  	}
  3358  	return 0
  3359  }
  3360  
  3361  // addr converts the address of the expression n to SSA, adds it to s and returns the SSA result.
  3362  // The value that the returned Value represents is guaranteed to be non-nil.
  3363  // If bounded is true then this address does not require a nil check for its operand
  3364  // even if that would otherwise be implied.
  3365  func (s *state) addr(n *Node, bounded bool) *ssa.Value {
  3366  	t := types.NewPtr(n.Type)
  3367  	switch n.Op {
  3368  	case ONAME:
  3369  		switch n.Class() {
  3370  		case PEXTERN:
  3371  			// global variable
  3372  			v := s.entryNewValue1A(ssa.OpAddr, t, n.Sym.Linksym(), s.sb)
  3373  			// TODO: Make OpAddr use AuxInt as well as Aux.
  3374  			if n.Xoffset != 0 {
  3375  				v = s.entryNewValue1I(ssa.OpOffPtr, v.Type, n.Xoffset, v)
  3376  			}
  3377  			return v
  3378  		case PPARAM:
  3379  			// parameter slot
  3380  			v := s.decladdrs[n]
  3381  			if v != nil {
  3382  				return v
  3383  			}
  3384  			if n == nodfp {
  3385  				// Special arg that points to the frame pointer (Used by ORECOVER).
  3386  				return s.entryNewValue1A(ssa.OpAddr, t, n, s.sp)
  3387  			}
  3388  			s.Fatalf("addr of undeclared ONAME %v. declared: %v", n, s.decladdrs)
  3389  			return nil
  3390  		case PAUTO:
  3391  			return s.newValue1A(ssa.OpAddr, t, n, s.sp)
  3392  		case PPARAMOUT: // Same as PAUTO -- cannot generate LEA early.
  3393  			// ensure that we reuse symbols for out parameters so
  3394  			// that cse works on their addresses
  3395  			return s.newValue1A(ssa.OpAddr, t, n, s.sp)
  3396  		default:
  3397  			s.Fatalf("variable address class %v not implemented", classnames[n.Class()])
  3398  			return nil
  3399  		}
  3400  	case OINDREGSP:
  3401  		// indirect off REGSP
  3402  		// used for storing/loading arguments/returns to/from callees
  3403  		return s.constOffPtrSP(t, n.Xoffset)
  3404  	case OINDEX:
  3405  		if n.Left.Type.IsSlice() {
  3406  			a := s.expr(n.Left)
  3407  			i := s.expr(n.Right)
  3408  			i = s.extendIndex(i, panicindex)
  3409  			len := s.newValue1(ssa.OpSliceLen, types.Types[TINT], a)
  3410  			if !n.Bounded() {
  3411  				s.boundsCheck(i, len)
  3412  			}
  3413  			p := s.newValue1(ssa.OpSlicePtr, t, a)
  3414  			return s.newValue2(ssa.OpPtrIndex, t, p, i)
  3415  		} else { // array
  3416  			a := s.addr(n.Left, bounded)
  3417  			i := s.expr(n.Right)
  3418  			i = s.extendIndex(i, panicindex)
  3419  			len := s.constInt(types.Types[TINT], n.Left.Type.NumElem())
  3420  			if !n.Bounded() {
  3421  				s.boundsCheck(i, len)
  3422  			}
  3423  			return s.newValue2(ssa.OpPtrIndex, types.NewPtr(n.Left.Type.Elem()), a, i)
  3424  		}
  3425  	case OIND:
  3426  		return s.exprPtr(n.Left, bounded, n.Pos)
  3427  	case ODOT:
  3428  		p := s.addr(n.Left, bounded)
  3429  		return s.newValue1I(ssa.OpOffPtr, t, n.Xoffset, p)
  3430  	case ODOTPTR:
  3431  		p := s.exprPtr(n.Left, bounded, n.Pos)
  3432  		return s.newValue1I(ssa.OpOffPtr, t, n.Xoffset, p)
  3433  	case OCLOSUREVAR:
  3434  		return s.newValue1I(ssa.OpOffPtr, t, n.Xoffset,
  3435  			s.entryNewValue0(ssa.OpGetClosurePtr, s.f.Config.Types.BytePtr))
  3436  	case OCONVNOP:
  3437  		addr := s.addr(n.Left, bounded)
  3438  		return s.newValue1(ssa.OpCopy, t, addr) // ensure that addr has the right type
  3439  	case OCALLFUNC, OCALLINTER, OCALLMETH:
  3440  		return s.call(n, callNormal)
  3441  	case ODOTTYPE:
  3442  		v, _ := s.dottype(n, false)
  3443  		if v.Op != ssa.OpLoad {
  3444  			s.Fatalf("dottype of non-load")
  3445  		}
  3446  		if v.Args[1] != s.mem() {
  3447  			s.Fatalf("memory no longer live from dottype load")
  3448  		}
  3449  		return v.Args[0]
  3450  	default:
  3451  		s.Fatalf("unhandled addr %v", n.Op)
  3452  		return nil
  3453  	}
  3454  }
  3455  
  3456  // canSSA reports whether n is SSA-able.
  3457  // n must be an ONAME (or an ODOT sequence with an ONAME base).
  3458  func (s *state) canSSA(n *Node) bool {
  3459  	if Debug['N'] != 0 {
  3460  		return false
  3461  	}
  3462  	for n.Op == ODOT || (n.Op == OINDEX && n.Left.Type.IsArray()) {
  3463  		n = n.Left
  3464  	}
  3465  	if n.Op != ONAME {
  3466  		return false
  3467  	}
  3468  	if n.Addrtaken() {
  3469  		return false
  3470  	}
  3471  	if n.isParamHeapCopy() {
  3472  		return false
  3473  	}
  3474  	if n.Class() == PAUTOHEAP {
  3475  		Fatalf("canSSA of PAUTOHEAP %v", n)
  3476  	}
  3477  	switch n.Class() {
  3478  	case PEXTERN:
  3479  		return false
  3480  	case PPARAMOUT:
  3481  		if s.hasdefer {
  3482  			// TODO: handle this case? Named return values must be
  3483  			// in memory so that the deferred function can see them.
  3484  			// Maybe do: if !strings.HasPrefix(n.String(), "~") { return false }
  3485  			// Or maybe not, see issue 18860.  Even unnamed return values
  3486  			// must be written back so if a defer recovers, the caller can see them.
  3487  			return false
  3488  		}
  3489  		if s.cgoUnsafeArgs {
  3490  			// Cgo effectively takes the address of all result args,
  3491  			// but the compiler can't see that.
  3492  			return false
  3493  		}
  3494  	}
  3495  	if n.Class() == PPARAM && n.Sym != nil && n.Sym.Name == ".this" {
  3496  		// wrappers generated by genwrapper need to update
  3497  		// the .this pointer in place.
  3498  		// TODO: treat as a PPARMOUT?
  3499  		return false
  3500  	}
  3501  	return canSSAType(n.Type)
  3502  	// TODO: try to make more variables SSAable?
  3503  }
  3504  
  3505  // canSSA reports whether variables of type t are SSA-able.
  3506  func canSSAType(t *types.Type) bool {
  3507  	dowidth(t)
  3508  	if t.Width > int64(4*Widthptr) {
  3509  		// 4*Widthptr is an arbitrary constant. We want it
  3510  		// to be at least 3*Widthptr so slices can be registerized.
  3511  		// Too big and we'll introduce too much register pressure.
  3512  		return false
  3513  	}
  3514  	switch t.Etype {
  3515  	case TARRAY:
  3516  		// We can't do larger arrays because dynamic indexing is
  3517  		// not supported on SSA variables.
  3518  		// TODO: allow if all indexes are constant.
  3519  		if t.NumElem() <= 1 {
  3520  			return canSSAType(t.Elem())
  3521  		}
  3522  		return false
  3523  	case TSTRUCT:
  3524  		if t.NumFields() > ssa.MaxStruct {
  3525  			return false
  3526  		}
  3527  		for _, t1 := range t.Fields().Slice() {
  3528  			if !canSSAType(t1.Type) {
  3529  				return false
  3530  			}
  3531  		}
  3532  		return true
  3533  	default:
  3534  		return true
  3535  	}
  3536  }
  3537  
  3538  // exprPtr evaluates n to a pointer and nil-checks it.
  3539  func (s *state) exprPtr(n *Node, bounded bool, lineno src.XPos) *ssa.Value {
  3540  	p := s.expr(n)
  3541  	if bounded || n.NonNil() {
  3542  		if s.f.Frontend().Debug_checknil() && lineno.Line() > 1 {
  3543  			s.f.Warnl(lineno, "removed nil check")
  3544  		}
  3545  		return p
  3546  	}
  3547  	s.nilCheck(p)
  3548  	return p
  3549  }
  3550  
  3551  // nilCheck generates nil pointer checking code.
  3552  // Used only for automatically inserted nil checks,
  3553  // not for user code like 'x != nil'.
  3554  func (s *state) nilCheck(ptr *ssa.Value) {
  3555  	if disable_checknil != 0 || s.curfn.Func.NilCheckDisabled() {
  3556  		return
  3557  	}
  3558  	s.newValue2(ssa.OpNilCheck, types.TypeVoid, ptr, s.mem())
  3559  }
  3560  
  3561  // boundsCheck generates bounds checking code. Checks if 0 <= idx < len, branches to exit if not.
  3562  // Starts a new block on return.
  3563  // idx is already converted to full int width.
  3564  func (s *state) boundsCheck(idx, len *ssa.Value) {
  3565  	if Debug['B'] != 0 {
  3566  		return
  3567  	}
  3568  
  3569  	// bounds check
  3570  	cmp := s.newValue2(ssa.OpIsInBounds, types.Types[TBOOL], idx, len)
  3571  	s.check(cmp, panicindex)
  3572  }
  3573  
  3574  // sliceBoundsCheck generates slice bounds checking code. Checks if 0 <= idx <= len, branches to exit if not.
  3575  // Starts a new block on return.
  3576  // idx and len are already converted to full int width.
  3577  func (s *state) sliceBoundsCheck(idx, len *ssa.Value) {
  3578  	if Debug['B'] != 0 {
  3579  		return
  3580  	}
  3581  
  3582  	// bounds check
  3583  	cmp := s.newValue2(ssa.OpIsSliceInBounds, types.Types[TBOOL], idx, len)
  3584  	s.check(cmp, panicslice)
  3585  }
  3586  
  3587  // If cmp (a bool) is false, panic using the given function.
  3588  func (s *state) check(cmp *ssa.Value, fn *obj.LSym) {
  3589  	b := s.endBlock()
  3590  	b.Kind = ssa.BlockIf
  3591  	b.SetControl(cmp)
  3592  	b.Likely = ssa.BranchLikely
  3593  	bNext := s.f.NewBlock(ssa.BlockPlain)
  3594  	line := s.peekPos()
  3595  	pos := Ctxt.PosTable.Pos(line)
  3596  	fl := funcLine{f: fn, base: pos.Base(), line: pos.Line()}
  3597  	bPanic := s.panics[fl]
  3598  	if bPanic == nil {
  3599  		bPanic = s.f.NewBlock(ssa.BlockPlain)
  3600  		s.panics[fl] = bPanic
  3601  		s.startBlock(bPanic)
  3602  		// The panic call takes/returns memory to ensure that the right
  3603  		// memory state is observed if the panic happens.
  3604  		s.rtcall(fn, false, nil)
  3605  	}
  3606  	b.AddEdgeTo(bNext)
  3607  	b.AddEdgeTo(bPanic)
  3608  	s.startBlock(bNext)
  3609  }
  3610  
  3611  func (s *state) intDivide(n *Node, a, b *ssa.Value) *ssa.Value {
  3612  	needcheck := true
  3613  	switch b.Op {
  3614  	case ssa.OpConst8, ssa.OpConst16, ssa.OpConst32, ssa.OpConst64:
  3615  		if b.AuxInt != 0 {
  3616  			needcheck = false
  3617  		}
  3618  	}
  3619  	if needcheck {
  3620  		// do a size-appropriate check for zero
  3621  		cmp := s.newValue2(s.ssaOp(ONE, n.Type), types.Types[TBOOL], b, s.zeroVal(n.Type))
  3622  		s.check(cmp, panicdivide)
  3623  	}
  3624  	return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b)
  3625  }
  3626  
  3627  // rtcall issues a call to the given runtime function fn with the listed args.
  3628  // Returns a slice of results of the given result types.
  3629  // The call is added to the end of the current block.
  3630  // If returns is false, the block is marked as an exit block.
  3631  func (s *state) rtcall(fn *obj.LSym, returns bool, results []*types.Type, args ...*ssa.Value) []*ssa.Value {
  3632  	// Write args to the stack
  3633  	off := Ctxt.FixedFrameSize()
  3634  	for _, arg := range args {
  3635  		t := arg.Type
  3636  		off = Rnd(off, t.Alignment())
  3637  		ptr := s.constOffPtrSP(t.PtrTo(), off)
  3638  		size := t.Size()
  3639  		s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, t, ptr, arg, s.mem())
  3640  		off += size
  3641  	}
  3642  	off = Rnd(off, int64(Widthreg))
  3643  
  3644  	// Issue call
  3645  	call := s.newValue1A(ssa.OpStaticCall, types.TypeMem, fn, s.mem())
  3646  	s.vars[&memVar] = call
  3647  
  3648  	if !returns {
  3649  		// Finish block
  3650  		b := s.endBlock()
  3651  		b.Kind = ssa.BlockExit
  3652  		b.SetControl(call)
  3653  		call.AuxInt = off - Ctxt.FixedFrameSize()
  3654  		if len(results) > 0 {
  3655  			Fatalf("panic call can't have results")
  3656  		}
  3657  		return nil
  3658  	}
  3659  
  3660  	// Load results
  3661  	res := make([]*ssa.Value, len(results))
  3662  	for i, t := range results {
  3663  		off = Rnd(off, t.Alignment())
  3664  		ptr := s.constOffPtrSP(types.NewPtr(t), off)
  3665  		res[i] = s.newValue2(ssa.OpLoad, t, ptr, s.mem())
  3666  		off += t.Size()
  3667  	}
  3668  	off = Rnd(off, int64(Widthptr))
  3669  
  3670  	// Remember how much callee stack space we needed.
  3671  	call.AuxInt = off
  3672  
  3673  	return res
  3674  }
  3675  
  3676  // do *left = right for type t.
  3677  func (s *state) storeType(t *types.Type, left, right *ssa.Value, skip skipMask) {
  3678  	if skip == 0 && (!types.Haspointers(t) || ssa.IsStackAddr(left)) {
  3679  		// Known to not have write barrier. Store the whole type.
  3680  		s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, t, left, right, s.mem())
  3681  		return
  3682  	}
  3683  
  3684  	// store scalar fields first, so write barrier stores for
  3685  	// pointer fields can be grouped together, and scalar values
  3686  	// don't need to be live across the write barrier call.
  3687  	// TODO: if the writebarrier pass knows how to reorder stores,
  3688  	// we can do a single store here as long as skip==0.
  3689  	s.storeTypeScalars(t, left, right, skip)
  3690  	if skip&skipPtr == 0 && types.Haspointers(t) {
  3691  		s.storeTypePtrs(t, left, right)
  3692  	}
  3693  }
  3694  
  3695  // do *left = right for all scalar (non-pointer) parts of t.
  3696  func (s *state) storeTypeScalars(t *types.Type, left, right *ssa.Value, skip skipMask) {
  3697  	switch {
  3698  	case t.IsBoolean() || t.IsInteger() || t.IsFloat() || t.IsComplex():
  3699  		s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, t, left, right, s.mem())
  3700  	case t.IsPtrShaped():
  3701  		// no scalar fields.
  3702  	case t.IsString():
  3703  		if skip&skipLen != 0 {
  3704  			return
  3705  		}
  3706  		len := s.newValue1(ssa.OpStringLen, types.Types[TINT], right)
  3707  		lenAddr := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.IntPtr, s.config.PtrSize, left)
  3708  		s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, types.Types[TINT], lenAddr, len, s.mem())
  3709  	case t.IsSlice():
  3710  		if skip&skipLen == 0 {
  3711  			len := s.newValue1(ssa.OpSliceLen, types.Types[TINT], right)
  3712  			lenAddr := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.IntPtr, s.config.PtrSize, left)
  3713  			s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, types.Types[TINT], lenAddr, len, s.mem())
  3714  		}
  3715  		if skip&skipCap == 0 {
  3716  			cap := s.newValue1(ssa.OpSliceCap, types.Types[TINT], right)
  3717  			capAddr := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.IntPtr, 2*s.config.PtrSize, left)
  3718  			s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, types.Types[TINT], capAddr, cap, s.mem())
  3719  		}
  3720  	case t.IsInterface():
  3721  		// itab field doesn't need a write barrier (even though it is a pointer).
  3722  		itab := s.newValue1(ssa.OpITab, s.f.Config.Types.BytePtr, right)
  3723  		s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, types.Types[TUINTPTR], left, itab, s.mem())
  3724  	case t.IsStruct():
  3725  		n := t.NumFields()
  3726  		for i := 0; i < n; i++ {
  3727  			ft := t.FieldType(i)
  3728  			addr := s.newValue1I(ssa.OpOffPtr, ft.PtrTo(), t.FieldOff(i), left)
  3729  			val := s.newValue1I(ssa.OpStructSelect, ft, int64(i), right)
  3730  			s.storeTypeScalars(ft, addr, val, 0)
  3731  		}
  3732  	case t.IsArray() && t.NumElem() == 0:
  3733  		// nothing
  3734  	case t.IsArray() && t.NumElem() == 1:
  3735  		s.storeTypeScalars(t.Elem(), left, s.newValue1I(ssa.OpArraySelect, t.Elem(), 0, right), 0)
  3736  	default:
  3737  		s.Fatalf("bad write barrier type %v", t)
  3738  	}
  3739  }
  3740  
  3741  // do *left = right for all pointer parts of t.
  3742  func (s *state) storeTypePtrs(t *types.Type, left, right *ssa.Value) {
  3743  	switch {
  3744  	case t.IsPtrShaped():
  3745  		s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, t, left, right, s.mem())
  3746  	case t.IsString():
  3747  		ptr := s.newValue1(ssa.OpStringPtr, s.f.Config.Types.BytePtr, right)
  3748  		s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, s.f.Config.Types.BytePtr, left, ptr, s.mem())
  3749  	case t.IsSlice():
  3750  		elType := types.NewPtr(t.Elem())
  3751  		ptr := s.newValue1(ssa.OpSlicePtr, elType, right)
  3752  		s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, elType, left, ptr, s.mem())
  3753  	case t.IsInterface():
  3754  		// itab field is treated as a scalar.
  3755  		idata := s.newValue1(ssa.OpIData, s.f.Config.Types.BytePtr, right)
  3756  		idataAddr := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.BytePtrPtr, s.config.PtrSize, left)
  3757  		s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, s.f.Config.Types.BytePtr, idataAddr, idata, s.mem())
  3758  	case t.IsStruct():
  3759  		n := t.NumFields()
  3760  		for i := 0; i < n; i++ {
  3761  			ft := t.FieldType(i)
  3762  			if !types.Haspointers(ft) {
  3763  				continue
  3764  			}
  3765  			addr := s.newValue1I(ssa.OpOffPtr, ft.PtrTo(), t.FieldOff(i), left)
  3766  			val := s.newValue1I(ssa.OpStructSelect, ft, int64(i), right)
  3767  			s.storeTypePtrs(ft, addr, val)
  3768  		}
  3769  	case t.IsArray() && t.NumElem() == 0:
  3770  		// nothing
  3771  	case t.IsArray() && t.NumElem() == 1:
  3772  		s.storeTypePtrs(t.Elem(), left, s.newValue1I(ssa.OpArraySelect, t.Elem(), 0, right))
  3773  	default:
  3774  		s.Fatalf("bad write barrier type %v", t)
  3775  	}
  3776  }
  3777  
  3778  // slice computes the slice v[i:j:k] and returns ptr, len, and cap of result.
  3779  // i,j,k may be nil, in which case they are set to their default value.
  3780  // t is a slice, ptr to array, or string type.
  3781  func (s *state) slice(t *types.Type, v, i, j, k *ssa.Value) (p, l, c *ssa.Value) {
  3782  	var elemtype *types.Type
  3783  	var ptrtype *types.Type
  3784  	var ptr *ssa.Value
  3785  	var len *ssa.Value
  3786  	var cap *ssa.Value
  3787  	zero := s.constInt(types.Types[TINT], 0)
  3788  	switch {
  3789  	case t.IsSlice():
  3790  		elemtype = t.Elem()
  3791  		ptrtype = types.NewPtr(elemtype)
  3792  		ptr = s.newValue1(ssa.OpSlicePtr, ptrtype, v)
  3793  		len = s.newValue1(ssa.OpSliceLen, types.Types[TINT], v)
  3794  		cap = s.newValue1(ssa.OpSliceCap, types.Types[TINT], v)
  3795  	case t.IsString():
  3796  		elemtype = types.Types[TUINT8]
  3797  		ptrtype = types.NewPtr(elemtype)
  3798  		ptr = s.newValue1(ssa.OpStringPtr, ptrtype, v)
  3799  		len = s.newValue1(ssa.OpStringLen, types.Types[TINT], v)
  3800  		cap = len
  3801  	case t.IsPtr():
  3802  		if !t.Elem().IsArray() {
  3803  			s.Fatalf("bad ptr to array in slice %v\n", t)
  3804  		}
  3805  		elemtype = t.Elem().Elem()
  3806  		ptrtype = types.NewPtr(elemtype)
  3807  		s.nilCheck(v)
  3808  		ptr = v
  3809  		len = s.constInt(types.Types[TINT], t.Elem().NumElem())
  3810  		cap = len
  3811  	default:
  3812  		s.Fatalf("bad type in slice %v\n", t)
  3813  	}
  3814  
  3815  	// Set default values
  3816  	if i == nil {
  3817  		i = zero
  3818  	}
  3819  	if j == nil {
  3820  		j = len
  3821  	}
  3822  	if k == nil {
  3823  		k = cap
  3824  	}
  3825  
  3826  	// Panic if slice indices are not in bounds.
  3827  	s.sliceBoundsCheck(i, j)
  3828  	if j != k {
  3829  		s.sliceBoundsCheck(j, k)
  3830  	}
  3831  	if k != cap {
  3832  		s.sliceBoundsCheck(k, cap)
  3833  	}
  3834  
  3835  	// Generate the following code assuming that indexes are in bounds.
  3836  	// The masking is to make sure that we don't generate a slice
  3837  	// that points to the next object in memory.
  3838  	// rlen = j - i
  3839  	// rcap = k - i
  3840  	// delta = i * elemsize
  3841  	// rptr = p + delta&mask(rcap)
  3842  	// result = (SliceMake rptr rlen rcap)
  3843  	// where mask(x) is 0 if x==0 and -1 if x>0.
  3844  	subOp := s.ssaOp(OSUB, types.Types[TINT])
  3845  	mulOp := s.ssaOp(OMUL, types.Types[TINT])
  3846  	andOp := s.ssaOp(OAND, types.Types[TINT])
  3847  	rlen := s.newValue2(subOp, types.Types[TINT], j, i)
  3848  	var rcap *ssa.Value
  3849  	switch {
  3850  	case t.IsString():
  3851  		// Capacity of the result is unimportant. However, we use
  3852  		// rcap to test if we've generated a zero-length slice.
  3853  		// Use length of strings for that.
  3854  		rcap = rlen
  3855  	case j == k:
  3856  		rcap = rlen
  3857  	default:
  3858  		rcap = s.newValue2(subOp, types.Types[TINT], k, i)
  3859  	}
  3860  
  3861  	var rptr *ssa.Value
  3862  	if (i.Op == ssa.OpConst64 || i.Op == ssa.OpConst32) && i.AuxInt == 0 {
  3863  		// No pointer arithmetic necessary.
  3864  		rptr = ptr
  3865  	} else {
  3866  		// delta = # of bytes to offset pointer by.
  3867  		delta := s.newValue2(mulOp, types.Types[TINT], i, s.constInt(types.Types[TINT], elemtype.Width))
  3868  		// If we're slicing to the point where the capacity is zero,
  3869  		// zero out the delta.
  3870  		mask := s.newValue1(ssa.OpSlicemask, types.Types[TINT], rcap)
  3871  		delta = s.newValue2(andOp, types.Types[TINT], delta, mask)
  3872  		// Compute rptr = ptr + delta
  3873  		rptr = s.newValue2(ssa.OpAddPtr, ptrtype, ptr, delta)
  3874  	}
  3875  
  3876  	return rptr, rlen, rcap
  3877  }
  3878  
  3879  type u642fcvtTab struct {
  3880  	geq, cvt2F, and, rsh, or, add ssa.Op
  3881  	one                           func(*state, *types.Type, int64) *ssa.Value
  3882  }
  3883  
  3884  var u64_f64 = u642fcvtTab{
  3885  	geq:   ssa.OpGeq64,
  3886  	cvt2F: ssa.OpCvt64to64F,
  3887  	and:   ssa.OpAnd64,
  3888  	rsh:   ssa.OpRsh64Ux64,
  3889  	or:    ssa.OpOr64,
  3890  	add:   ssa.OpAdd64F,
  3891  	one:   (*state).constInt64,
  3892  }
  3893  
  3894  var u64_f32 = u642fcvtTab{
  3895  	geq:   ssa.OpGeq64,
  3896  	cvt2F: ssa.OpCvt64to32F,
  3897  	and:   ssa.OpAnd64,
  3898  	rsh:   ssa.OpRsh64Ux64,
  3899  	or:    ssa.OpOr64,
  3900  	add:   ssa.OpAdd32F,
  3901  	one:   (*state).constInt64,
  3902  }
  3903  
  3904  func (s *state) uint64Tofloat64(n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
  3905  	return s.uint64Tofloat(&u64_f64, n, x, ft, tt)
  3906  }
  3907  
  3908  func (s *state) uint64Tofloat32(n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
  3909  	return s.uint64Tofloat(&u64_f32, n, x, ft, tt)
  3910  }
  3911  
  3912  func (s *state) uint64Tofloat(cvttab *u642fcvtTab, n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
  3913  	// if x >= 0 {
  3914  	//    result = (floatY) x
  3915  	// } else {
  3916  	// 	  y = uintX(x) ; y = x & 1
  3917  	// 	  z = uintX(x) ; z = z >> 1
  3918  	// 	  z = z >> 1
  3919  	// 	  z = z | y
  3920  	// 	  result = floatY(z)
  3921  	// 	  result = result + result
  3922  	// }
  3923  	//
  3924  	// Code borrowed from old code generator.
  3925  	// What's going on: large 64-bit "unsigned" looks like
  3926  	// negative number to hardware's integer-to-float
  3927  	// conversion. However, because the mantissa is only
  3928  	// 63 bits, we don't need the LSB, so instead we do an
  3929  	// unsigned right shift (divide by two), convert, and
  3930  	// double. However, before we do that, we need to be
  3931  	// sure that we do not lose a "1" if that made the
  3932  	// difference in the resulting rounding. Therefore, we
  3933  	// preserve it, and OR (not ADD) it back in. The case
  3934  	// that matters is when the eleven discarded bits are
  3935  	// equal to 10000000001; that rounds up, and the 1 cannot
  3936  	// be lost else it would round down if the LSB of the
  3937  	// candidate mantissa is 0.
  3938  	cmp := s.newValue2(cvttab.geq, types.Types[TBOOL], x, s.zeroVal(ft))
  3939  	b := s.endBlock()
  3940  	b.Kind = ssa.BlockIf
  3941  	b.SetControl(cmp)
  3942  	b.Likely = ssa.BranchLikely
  3943  
  3944  	bThen := s.f.NewBlock(ssa.BlockPlain)
  3945  	bElse := s.f.NewBlock(ssa.BlockPlain)
  3946  	bAfter := s.f.NewBlock(ssa.BlockPlain)
  3947  
  3948  	b.AddEdgeTo(bThen)
  3949  	s.startBlock(bThen)
  3950  	a0 := s.newValue1(cvttab.cvt2F, tt, x)
  3951  	s.vars[n] = a0
  3952  	s.endBlock()
  3953  	bThen.AddEdgeTo(bAfter)
  3954  
  3955  	b.AddEdgeTo(bElse)
  3956  	s.startBlock(bElse)
  3957  	one := cvttab.one(s, ft, 1)
  3958  	y := s.newValue2(cvttab.and, ft, x, one)
  3959  	z := s.newValue2(cvttab.rsh, ft, x, one)
  3960  	z = s.newValue2(cvttab.or, ft, z, y)
  3961  	a := s.newValue1(cvttab.cvt2F, tt, z)
  3962  	a1 := s.newValue2(cvttab.add, tt, a, a)
  3963  	s.vars[n] = a1
  3964  	s.endBlock()
  3965  	bElse.AddEdgeTo(bAfter)
  3966  
  3967  	s.startBlock(bAfter)
  3968  	return s.variable(n, n.Type)
  3969  }
  3970  
  3971  type u322fcvtTab struct {
  3972  	cvtI2F, cvtF2F ssa.Op
  3973  }
  3974  
  3975  var u32_f64 = u322fcvtTab{
  3976  	cvtI2F: ssa.OpCvt32to64F,
  3977  	cvtF2F: ssa.OpCopy,
  3978  }
  3979  
  3980  var u32_f32 = u322fcvtTab{
  3981  	cvtI2F: ssa.OpCvt32to32F,
  3982  	cvtF2F: ssa.OpCvt64Fto32F,
  3983  }
  3984  
  3985  func (s *state) uint32Tofloat64(n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
  3986  	return s.uint32Tofloat(&u32_f64, n, x, ft, tt)
  3987  }
  3988  
  3989  func (s *state) uint32Tofloat32(n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
  3990  	return s.uint32Tofloat(&u32_f32, n, x, ft, tt)
  3991  }
  3992  
  3993  func (s *state) uint32Tofloat(cvttab *u322fcvtTab, n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
  3994  	// if x >= 0 {
  3995  	// 	result = floatY(x)
  3996  	// } else {
  3997  	// 	result = floatY(float64(x) + (1<<32))
  3998  	// }
  3999  	cmp := s.newValue2(ssa.OpGeq32, types.Types[TBOOL], x, s.zeroVal(ft))
  4000  	b := s.endBlock()
  4001  	b.Kind = ssa.BlockIf
  4002  	b.SetControl(cmp)
  4003  	b.Likely = ssa.BranchLikely
  4004  
  4005  	bThen := s.f.NewBlock(ssa.BlockPlain)
  4006  	bElse := s.f.NewBlock(ssa.BlockPlain)
  4007  	bAfter := s.f.NewBlock(ssa.BlockPlain)
  4008  
  4009  	b.AddEdgeTo(bThen)
  4010  	s.startBlock(bThen)
  4011  	a0 := s.newValue1(cvttab.cvtI2F, tt, x)
  4012  	s.vars[n] = a0
  4013  	s.endBlock()
  4014  	bThen.AddEdgeTo(bAfter)
  4015  
  4016  	b.AddEdgeTo(bElse)
  4017  	s.startBlock(bElse)
  4018  	a1 := s.newValue1(ssa.OpCvt32to64F, types.Types[TFLOAT64], x)
  4019  	twoToThe32 := s.constFloat64(types.Types[TFLOAT64], float64(1<<32))
  4020  	a2 := s.newValue2(ssa.OpAdd64F, types.Types[TFLOAT64], a1, twoToThe32)
  4021  	a3 := s.newValue1(cvttab.cvtF2F, tt, a2)
  4022  
  4023  	s.vars[n] = a3
  4024  	s.endBlock()
  4025  	bElse.AddEdgeTo(bAfter)
  4026  
  4027  	s.startBlock(bAfter)
  4028  	return s.variable(n, n.Type)
  4029  }
  4030  
  4031  // referenceTypeBuiltin generates code for the len/cap builtins for maps and channels.
  4032  func (s *state) referenceTypeBuiltin(n *Node, x *ssa.Value) *ssa.Value {
  4033  	if !n.Left.Type.IsMap() && !n.Left.Type.IsChan() {
  4034  		s.Fatalf("node must be a map or a channel")
  4035  	}
  4036  	// if n == nil {
  4037  	//   return 0
  4038  	// } else {
  4039  	//   // len
  4040  	//   return *((*int)n)
  4041  	//   // cap
  4042  	//   return *(((*int)n)+1)
  4043  	// }
  4044  	lenType := n.Type
  4045  	nilValue := s.constNil(types.Types[TUINTPTR])
  4046  	cmp := s.newValue2(ssa.OpEqPtr, types.Types[TBOOL], x, nilValue)
  4047  	b := s.endBlock()
  4048  	b.Kind = ssa.BlockIf
  4049  	b.SetControl(cmp)
  4050  	b.Likely = ssa.BranchUnlikely
  4051  
  4052  	bThen := s.f.NewBlock(ssa.BlockPlain)
  4053  	bElse := s.f.NewBlock(ssa.BlockPlain)
  4054  	bAfter := s.f.NewBlock(ssa.BlockPlain)
  4055  
  4056  	// length/capacity of a nil map/chan is zero
  4057  	b.AddEdgeTo(bThen)
  4058  	s.startBlock(bThen)
  4059  	s.vars[n] = s.zeroVal(lenType)
  4060  	s.endBlock()
  4061  	bThen.AddEdgeTo(bAfter)
  4062  
  4063  	b.AddEdgeTo(bElse)
  4064  	s.startBlock(bElse)
  4065  	switch n.Op {
  4066  	case OLEN:
  4067  		// length is stored in the first word for map/chan
  4068  		s.vars[n] = s.newValue2(ssa.OpLoad, lenType, x, s.mem())
  4069  	case OCAP:
  4070  		// capacity is stored in the second word for chan
  4071  		sw := s.newValue1I(ssa.OpOffPtr, lenType.PtrTo(), lenType.Width, x)
  4072  		s.vars[n] = s.newValue2(ssa.OpLoad, lenType, sw, s.mem())
  4073  	default:
  4074  		s.Fatalf("op must be OLEN or OCAP")
  4075  	}
  4076  	s.endBlock()
  4077  	bElse.AddEdgeTo(bAfter)
  4078  
  4079  	s.startBlock(bAfter)
  4080  	return s.variable(n, lenType)
  4081  }
  4082  
  4083  type f2uCvtTab struct {
  4084  	ltf, cvt2U, subf, or ssa.Op
  4085  	floatValue           func(*state, *types.Type, float64) *ssa.Value
  4086  	intValue             func(*state, *types.Type, int64) *ssa.Value
  4087  	cutoff               uint64
  4088  }
  4089  
  4090  var f32_u64 = f2uCvtTab{
  4091  	ltf:        ssa.OpLess32F,
  4092  	cvt2U:      ssa.OpCvt32Fto64,
  4093  	subf:       ssa.OpSub32F,
  4094  	or:         ssa.OpOr64,
  4095  	floatValue: (*state).constFloat32,
  4096  	intValue:   (*state).constInt64,
  4097  	cutoff:     9223372036854775808,
  4098  }
  4099  
  4100  var f64_u64 = f2uCvtTab{
  4101  	ltf:        ssa.OpLess64F,
  4102  	cvt2U:      ssa.OpCvt64Fto64,
  4103  	subf:       ssa.OpSub64F,
  4104  	or:         ssa.OpOr64,
  4105  	floatValue: (*state).constFloat64,
  4106  	intValue:   (*state).constInt64,
  4107  	cutoff:     9223372036854775808,
  4108  }
  4109  
  4110  var f32_u32 = f2uCvtTab{
  4111  	ltf:        ssa.OpLess32F,
  4112  	cvt2U:      ssa.OpCvt32Fto32,
  4113  	subf:       ssa.OpSub32F,
  4114  	or:         ssa.OpOr32,
  4115  	floatValue: (*state).constFloat32,
  4116  	intValue:   func(s *state, t *types.Type, v int64) *ssa.Value { return s.constInt32(t, int32(v)) },
  4117  	cutoff:     2147483648,
  4118  }
  4119  
  4120  var f64_u32 = f2uCvtTab{
  4121  	ltf:        ssa.OpLess64F,
  4122  	cvt2U:      ssa.OpCvt64Fto32,
  4123  	subf:       ssa.OpSub64F,
  4124  	or:         ssa.OpOr32,
  4125  	floatValue: (*state).constFloat64,
  4126  	intValue:   func(s *state, t *types.Type, v int64) *ssa.Value { return s.constInt32(t, int32(v)) },
  4127  	cutoff:     2147483648,
  4128  }
  4129  
  4130  func (s *state) float32ToUint64(n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
  4131  	return s.floatToUint(&f32_u64, n, x, ft, tt)
  4132  }
  4133  func (s *state) float64ToUint64(n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
  4134  	return s.floatToUint(&f64_u64, n, x, ft, tt)
  4135  }
  4136  
  4137  func (s *state) float32ToUint32(n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
  4138  	return s.floatToUint(&f32_u32, n, x, ft, tt)
  4139  }
  4140  
  4141  func (s *state) float64ToUint32(n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
  4142  	return s.floatToUint(&f64_u32, n, x, ft, tt)
  4143  }
  4144  
  4145  func (s *state) floatToUint(cvttab *f2uCvtTab, n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
  4146  	// cutoff:=1<<(intY_Size-1)
  4147  	// if x < floatX(cutoff) {
  4148  	// 	result = uintY(x)
  4149  	// } else {
  4150  	// 	y = x - floatX(cutoff)
  4151  	// 	z = uintY(y)
  4152  	// 	result = z | -(cutoff)
  4153  	// }
  4154  	cutoff := cvttab.floatValue(s, ft, float64(cvttab.cutoff))
  4155  	cmp := s.newValue2(cvttab.ltf, types.Types[TBOOL], x, cutoff)
  4156  	b := s.endBlock()
  4157  	b.Kind = ssa.BlockIf
  4158  	b.SetControl(cmp)
  4159  	b.Likely = ssa.BranchLikely
  4160  
  4161  	bThen := s.f.NewBlock(ssa.BlockPlain)
  4162  	bElse := s.f.NewBlock(ssa.BlockPlain)
  4163  	bAfter := s.f.NewBlock(ssa.BlockPlain)
  4164  
  4165  	b.AddEdgeTo(bThen)
  4166  	s.startBlock(bThen)
  4167  	a0 := s.newValue1(cvttab.cvt2U, tt, x)
  4168  	s.vars[n] = a0
  4169  	s.endBlock()
  4170  	bThen.AddEdgeTo(bAfter)
  4171  
  4172  	b.AddEdgeTo(bElse)
  4173  	s.startBlock(bElse)
  4174  	y := s.newValue2(cvttab.subf, ft, x, cutoff)
  4175  	y = s.newValue1(cvttab.cvt2U, tt, y)
  4176  	z := cvttab.intValue(s, tt, int64(-cvttab.cutoff))
  4177  	a1 := s.newValue2(cvttab.or, tt, y, z)
  4178  	s.vars[n] = a1
  4179  	s.endBlock()
  4180  	bElse.AddEdgeTo(bAfter)
  4181  
  4182  	s.startBlock(bAfter)
  4183  	return s.variable(n, n.Type)
  4184  }
  4185  
  4186  // dottype generates SSA for a type assertion node.
  4187  // commaok indicates whether to panic or return a bool.
  4188  // If commaok is false, resok will be nil.
  4189  func (s *state) dottype(n *Node, commaok bool) (res, resok *ssa.Value) {
  4190  	iface := s.expr(n.Left)   // input interface
  4191  	target := s.expr(n.Right) // target type
  4192  	byteptr := s.f.Config.Types.BytePtr
  4193  
  4194  	if n.Type.IsInterface() {
  4195  		if n.Type.IsEmptyInterface() {
  4196  			// Converting to an empty interface.
  4197  			// Input could be an empty or nonempty interface.
  4198  			if Debug_typeassert > 0 {
  4199  				Warnl(n.Pos, "type assertion inlined")
  4200  			}
  4201  
  4202  			// Get itab/type field from input.
  4203  			itab := s.newValue1(ssa.OpITab, byteptr, iface)
  4204  			// Conversion succeeds iff that field is not nil.
  4205  			cond := s.newValue2(ssa.OpNeqPtr, types.Types[TBOOL], itab, s.constNil(byteptr))
  4206  
  4207  			if n.Left.Type.IsEmptyInterface() && commaok {
  4208  				// Converting empty interface to empty interface with ,ok is just a nil check.
  4209  				return iface, cond
  4210  			}
  4211  
  4212  			// Branch on nilness.
  4213  			b := s.endBlock()
  4214  			b.Kind = ssa.BlockIf
  4215  			b.SetControl(cond)
  4216  			b.Likely = ssa.BranchLikely
  4217  			bOk := s.f.NewBlock(ssa.BlockPlain)
  4218  			bFail := s.f.NewBlock(ssa.BlockPlain)
  4219  			b.AddEdgeTo(bOk)
  4220  			b.AddEdgeTo(bFail)
  4221  
  4222  			if !commaok {
  4223  				// On failure, panic by calling panicnildottype.
  4224  				s.startBlock(bFail)
  4225  				s.rtcall(panicnildottype, false, nil, target)
  4226  
  4227  				// On success, return (perhaps modified) input interface.
  4228  				s.startBlock(bOk)
  4229  				if n.Left.Type.IsEmptyInterface() {
  4230  					res = iface // Use input interface unchanged.
  4231  					return
  4232  				}
  4233  				// Load type out of itab, build interface with existing idata.
  4234  				off := s.newValue1I(ssa.OpOffPtr, byteptr, int64(Widthptr), itab)
  4235  				typ := s.newValue2(ssa.OpLoad, byteptr, off, s.mem())
  4236  				idata := s.newValue1(ssa.OpIData, n.Type, iface)
  4237  				res = s.newValue2(ssa.OpIMake, n.Type, typ, idata)
  4238  				return
  4239  			}
  4240  
  4241  			s.startBlock(bOk)
  4242  			// nonempty -> empty
  4243  			// Need to load type from itab
  4244  			off := s.newValue1I(ssa.OpOffPtr, byteptr, int64(Widthptr), itab)
  4245  			s.vars[&typVar] = s.newValue2(ssa.OpLoad, byteptr, off, s.mem())
  4246  			s.endBlock()
  4247  
  4248  			// itab is nil, might as well use that as the nil result.
  4249  			s.startBlock(bFail)
  4250  			s.vars[&typVar] = itab
  4251  			s.endBlock()
  4252  
  4253  			// Merge point.
  4254  			bEnd := s.f.NewBlock(ssa.BlockPlain)
  4255  			bOk.AddEdgeTo(bEnd)
  4256  			bFail.AddEdgeTo(bEnd)
  4257  			s.startBlock(bEnd)
  4258  			idata := s.newValue1(ssa.OpIData, n.Type, iface)
  4259  			res = s.newValue2(ssa.OpIMake, n.Type, s.variable(&typVar, byteptr), idata)
  4260  			resok = cond
  4261  			delete(s.vars, &typVar)
  4262  			return
  4263  		}
  4264  		// converting to a nonempty interface needs a runtime call.
  4265  		if Debug_typeassert > 0 {
  4266  			Warnl(n.Pos, "type assertion not inlined")
  4267  		}
  4268  		if n.Left.Type.IsEmptyInterface() {
  4269  			if commaok {
  4270  				call := s.rtcall(assertE2I2, true, []*types.Type{n.Type, types.Types[TBOOL]}, target, iface)
  4271  				return call[0], call[1]
  4272  			}
  4273  			return s.rtcall(assertE2I, true, []*types.Type{n.Type}, target, iface)[0], nil
  4274  		}
  4275  		if commaok {
  4276  			call := s.rtcall(assertI2I2, true, []*types.Type{n.Type, types.Types[TBOOL]}, target, iface)
  4277  			return call[0], call[1]
  4278  		}
  4279  		return s.rtcall(assertI2I, true, []*types.Type{n.Type}, target, iface)[0], nil
  4280  	}
  4281  
  4282  	if Debug_typeassert > 0 {
  4283  		Warnl(n.Pos, "type assertion inlined")
  4284  	}
  4285  
  4286  	// Converting to a concrete type.
  4287  	direct := isdirectiface(n.Type)
  4288  	itab := s.newValue1(ssa.OpITab, byteptr, iface) // type word of interface
  4289  	if Debug_typeassert > 0 {
  4290  		Warnl(n.Pos, "type assertion inlined")
  4291  	}
  4292  	var targetITab *ssa.Value
  4293  	if n.Left.Type.IsEmptyInterface() {
  4294  		// Looking for pointer to target type.
  4295  		targetITab = target
  4296  	} else {
  4297  		// Looking for pointer to itab for target type and source interface.
  4298  		targetITab = s.expr(n.List.First())
  4299  	}
  4300  
  4301  	var tmp *Node       // temporary for use with large types
  4302  	var addr *ssa.Value // address of tmp
  4303  	if commaok && !canSSAType(n.Type) {
  4304  		// unSSAable type, use temporary.
  4305  		// TODO: get rid of some of these temporaries.
  4306  		tmp = tempAt(n.Pos, s.curfn, n.Type)
  4307  		addr = s.addr(tmp, false)
  4308  		s.vars[&memVar] = s.newValue1A(ssa.OpVarDef, types.TypeMem, tmp, s.mem())
  4309  	}
  4310  
  4311  	cond := s.newValue2(ssa.OpEqPtr, types.Types[TBOOL], itab, targetITab)
  4312  	b := s.endBlock()
  4313  	b.Kind = ssa.BlockIf
  4314  	b.SetControl(cond)
  4315  	b.Likely = ssa.BranchLikely
  4316  
  4317  	bOk := s.f.NewBlock(ssa.BlockPlain)
  4318  	bFail := s.f.NewBlock(ssa.BlockPlain)
  4319  	b.AddEdgeTo(bOk)
  4320  	b.AddEdgeTo(bFail)
  4321  
  4322  	if !commaok {
  4323  		// on failure, panic by calling panicdottype
  4324  		s.startBlock(bFail)
  4325  		taddr := s.expr(n.Right.Right)
  4326  		if n.Left.Type.IsEmptyInterface() {
  4327  			s.rtcall(panicdottypeE, false, nil, itab, target, taddr)
  4328  		} else {
  4329  			s.rtcall(panicdottypeI, false, nil, itab, target, taddr)
  4330  		}
  4331  
  4332  		// on success, return data from interface
  4333  		s.startBlock(bOk)
  4334  		if direct {
  4335  			return s.newValue1(ssa.OpIData, n.Type, iface), nil
  4336  		}
  4337  		p := s.newValue1(ssa.OpIData, types.NewPtr(n.Type), iface)
  4338  		return s.newValue2(ssa.OpLoad, n.Type, p, s.mem()), nil
  4339  	}
  4340  
  4341  	// commaok is the more complicated case because we have
  4342  	// a control flow merge point.
  4343  	bEnd := s.f.NewBlock(ssa.BlockPlain)
  4344  	// Note that we need a new valVar each time (unlike okVar where we can
  4345  	// reuse the variable) because it might have a different type every time.
  4346  	valVar := &Node{Op: ONAME, Sym: &types.Sym{Name: "val"}}
  4347  
  4348  	// type assertion succeeded
  4349  	s.startBlock(bOk)
  4350  	if tmp == nil {
  4351  		if direct {
  4352  			s.vars[valVar] = s.newValue1(ssa.OpIData, n.Type, iface)
  4353  		} else {
  4354  			p := s.newValue1(ssa.OpIData, types.NewPtr(n.Type), iface)
  4355  			s.vars[valVar] = s.newValue2(ssa.OpLoad, n.Type, p, s.mem())
  4356  		}
  4357  	} else {
  4358  		p := s.newValue1(ssa.OpIData, types.NewPtr(n.Type), iface)
  4359  		store := s.newValue3I(ssa.OpMove, types.TypeMem, n.Type.Size(), addr, p, s.mem())
  4360  		store.Aux = n.Type
  4361  		s.vars[&memVar] = store
  4362  	}
  4363  	s.vars[&okVar] = s.constBool(true)
  4364  	s.endBlock()
  4365  	bOk.AddEdgeTo(bEnd)
  4366  
  4367  	// type assertion failed
  4368  	s.startBlock(bFail)
  4369  	if tmp == nil {
  4370  		s.vars[valVar] = s.zeroVal(n.Type)
  4371  	} else {
  4372  		store := s.newValue2I(ssa.OpZero, types.TypeMem, n.Type.Size(), addr, s.mem())
  4373  		store.Aux = n.Type
  4374  		s.vars[&memVar] = store
  4375  	}
  4376  	s.vars[&okVar] = s.constBool(false)
  4377  	s.endBlock()
  4378  	bFail.AddEdgeTo(bEnd)
  4379  
  4380  	// merge point
  4381  	s.startBlock(bEnd)
  4382  	if tmp == nil {
  4383  		res = s.variable(valVar, n.Type)
  4384  		delete(s.vars, valVar)
  4385  	} else {
  4386  		res = s.newValue2(ssa.OpLoad, n.Type, addr, s.mem())
  4387  		s.vars[&memVar] = s.newValue1A(ssa.OpVarKill, types.TypeMem, tmp, s.mem())
  4388  	}
  4389  	resok = s.variable(&okVar, types.Types[TBOOL])
  4390  	delete(s.vars, &okVar)
  4391  	return res, resok
  4392  }
  4393  
  4394  // variable returns the value of a variable at the current location.
  4395  func (s *state) variable(name *Node, t *types.Type) *ssa.Value {
  4396  	v := s.vars[name]
  4397  	if v != nil {
  4398  		return v
  4399  	}
  4400  	v = s.fwdVars[name]
  4401  	if v != nil {
  4402  		return v
  4403  	}
  4404  
  4405  	if s.curBlock == s.f.Entry {
  4406  		// No variable should be live at entry.
  4407  		s.Fatalf("Value live at entry. It shouldn't be. func %s, node %v, value %v", s.f.Name, name, v)
  4408  	}
  4409  	// Make a FwdRef, which records a value that's live on block input.
  4410  	// We'll find the matching definition as part of insertPhis.
  4411  	v = s.newValue0A(ssa.OpFwdRef, t, name)
  4412  	s.fwdVars[name] = v
  4413  	s.addNamedValue(name, v)
  4414  	return v
  4415  }
  4416  
  4417  func (s *state) mem() *ssa.Value {
  4418  	return s.variable(&memVar, types.TypeMem)
  4419  }
  4420  
  4421  func (s *state) addNamedValue(n *Node, v *ssa.Value) {
  4422  	if n.Class() == Pxxx {
  4423  		// Don't track our dummy nodes (&memVar etc.).
  4424  		return
  4425  	}
  4426  	if n.IsAutoTmp() {
  4427  		// Don't track temporary variables.
  4428  		return
  4429  	}
  4430  	if n.Class() == PPARAMOUT {
  4431  		// Don't track named output values.  This prevents return values
  4432  		// from being assigned too early. See #14591 and #14762. TODO: allow this.
  4433  		return
  4434  	}
  4435  	if n.Class() == PAUTO && n.Xoffset != 0 {
  4436  		s.Fatalf("AUTO var with offset %v %d", n, n.Xoffset)
  4437  	}
  4438  	loc := ssa.LocalSlot{N: n, Type: n.Type, Off: 0}
  4439  	values, ok := s.f.NamedValues[loc]
  4440  	if !ok {
  4441  		s.f.Names = append(s.f.Names, loc)
  4442  	}
  4443  	s.f.NamedValues[loc] = append(values, v)
  4444  }
  4445  
  4446  // Branch is an unresolved branch.
  4447  type Branch struct {
  4448  	P *obj.Prog  // branch instruction
  4449  	B *ssa.Block // target
  4450  }
  4451  
  4452  // SSAGenState contains state needed during Prog generation.
  4453  type SSAGenState struct {
  4454  	pp *Progs
  4455  
  4456  	// Branches remembers all the branch instructions we've seen
  4457  	// and where they would like to go.
  4458  	Branches []Branch
  4459  
  4460  	// bstart remembers where each block starts (indexed by block ID)
  4461  	bstart []*obj.Prog
  4462  
  4463  	// 387 port: maps from SSE registers (REG_X?) to 387 registers (REG_F?)
  4464  	SSEto387 map[int16]int16
  4465  	// Some architectures require a 64-bit temporary for FP-related register shuffling. Examples include x86-387, PPC, and Sparc V8.
  4466  	ScratchFpMem *Node
  4467  
  4468  	maxarg int64 // largest frame size for arguments to calls made by the function
  4469  
  4470  	// Map from GC safe points to stack map index, generated by
  4471  	// liveness analysis.
  4472  	stackMapIndex map[*ssa.Value]int
  4473  }
  4474  
  4475  // Prog appends a new Prog.
  4476  func (s *SSAGenState) Prog(as obj.As) *obj.Prog {
  4477  	return s.pp.Prog(as)
  4478  }
  4479  
  4480  // Pc returns the current Prog.
  4481  func (s *SSAGenState) Pc() *obj.Prog {
  4482  	return s.pp.next
  4483  }
  4484  
  4485  // SetPos sets the current source position.
  4486  func (s *SSAGenState) SetPos(pos src.XPos) {
  4487  	s.pp.pos = pos
  4488  }
  4489  
  4490  // DebugFriendlySetPos sets the position subject to heuristics
  4491  // that reduce "jumpy" line number churn when debugging.
  4492  // Spill/fill/copy instructions from the register allocator,
  4493  // phi functions, and instructions with a no-pos position
  4494  // are examples of instructions that can cause churn.
  4495  func (s *SSAGenState) DebugFriendlySetPosFrom(v *ssa.Value) {
  4496  	// The two choices here are either to leave lineno unchanged,
  4497  	// or to explicitly set it to src.NoXPos.  Leaving it unchanged
  4498  	// (reusing the preceding line number) produces slightly better-
  4499  	// looking assembly language output from the compiler, and is
  4500  	// expected by some already-existing tests.
  4501  	// The debug information appears to be the same in either case
  4502  	switch v.Op {
  4503  	case ssa.OpPhi, ssa.OpCopy, ssa.OpLoadReg, ssa.OpStoreReg:
  4504  		// leave the position unchanged from beginning of block
  4505  		// or previous line number.
  4506  	default:
  4507  		if v.Pos != src.NoXPos {
  4508  			s.SetPos(v.Pos)
  4509  		}
  4510  	}
  4511  }
  4512  
  4513  // genssa appends entries to pp for each instruction in f.
  4514  func genssa(f *ssa.Func, pp *Progs) {
  4515  	var s SSAGenState
  4516  
  4517  	e := f.Frontend().(*ssafn)
  4518  
  4519  	s.stackMapIndex = liveness(e, f)
  4520  
  4521  	// Remember where each block starts.
  4522  	s.bstart = make([]*obj.Prog, f.NumBlocks())
  4523  	s.pp = pp
  4524  	var progToValue map[*obj.Prog]*ssa.Value
  4525  	var progToBlock map[*obj.Prog]*ssa.Block
  4526  	var valueToProgAfter []*obj.Prog // The first Prog following computation of a value v; v is visible at this point.
  4527  	var logProgs = e.log
  4528  	if logProgs {
  4529  		progToValue = make(map[*obj.Prog]*ssa.Value, f.NumValues())
  4530  		progToBlock = make(map[*obj.Prog]*ssa.Block, f.NumBlocks())
  4531  		f.Logf("genssa %s\n", f.Name)
  4532  		progToBlock[s.pp.next] = f.Blocks[0]
  4533  	}
  4534  
  4535  	if thearch.Use387 {
  4536  		s.SSEto387 = map[int16]int16{}
  4537  	}
  4538  
  4539  	s.ScratchFpMem = e.scratchFpMem
  4540  
  4541  	logLocationLists := Debug_locationlist != 0
  4542  	if Ctxt.Flag_locationlists {
  4543  		e.curfn.Func.DebugInfo = ssa.BuildFuncDebug(f, logLocationLists)
  4544  		valueToProgAfter = make([]*obj.Prog, f.NumValues())
  4545  	}
  4546  
  4547  	// Emit basic blocks
  4548  	for i, b := range f.Blocks {
  4549  		s.bstart[b.ID] = s.pp.next
  4550  		// Emit values in block
  4551  		thearch.SSAMarkMoves(&s, b)
  4552  		for _, v := range b.Values {
  4553  			x := s.pp.next
  4554  			s.DebugFriendlySetPosFrom(v)
  4555  			switch v.Op {
  4556  			case ssa.OpInitMem:
  4557  				// memory arg needs no code
  4558  			case ssa.OpArg:
  4559  				// input args need no code
  4560  			case ssa.OpSP, ssa.OpSB:
  4561  				// nothing to do
  4562  			case ssa.OpSelect0, ssa.OpSelect1:
  4563  				// nothing to do
  4564  			case ssa.OpGetG:
  4565  				// nothing to do when there's a g register,
  4566  				// and checkLower complains if there's not
  4567  			case ssa.OpVarDef, ssa.OpVarLive, ssa.OpKeepAlive:
  4568  				// nothing to do; already used by liveness
  4569  			case ssa.OpVarKill:
  4570  				// Zero variable if it is ambiguously live.
  4571  				// After the VARKILL anything this variable references
  4572  				// might be collected. If it were to become live again later,
  4573  				// the GC will see references to already-collected objects.
  4574  				// See issue 20029.
  4575  				n := v.Aux.(*Node)
  4576  				if n.Name.Needzero() {
  4577  					if n.Class() != PAUTO {
  4578  						v.Fatalf("zero of variable which isn't PAUTO %v", n)
  4579  					}
  4580  					if n.Type.Size()%int64(Widthptr) != 0 {
  4581  						v.Fatalf("zero of variable not a multiple of ptr size %v", n)
  4582  					}
  4583  					thearch.ZeroAuto(s.pp, n)
  4584  				}
  4585  			case ssa.OpPhi:
  4586  				CheckLoweredPhi(v)
  4587  			case ssa.OpRegKill:
  4588  				// nothing to do
  4589  			default:
  4590  				// let the backend handle it
  4591  				thearch.SSAGenValue(&s, v)
  4592  			}
  4593  
  4594  			if Ctxt.Flag_locationlists {
  4595  				valueToProgAfter[v.ID] = s.pp.next
  4596  			}
  4597  			if logProgs {
  4598  				for ; x != s.pp.next; x = x.Link {
  4599  					progToValue[x] = v
  4600  				}
  4601  			}
  4602  		}
  4603  		// Emit control flow instructions for block
  4604  		var next *ssa.Block
  4605  		if i < len(f.Blocks)-1 && Debug['N'] == 0 {
  4606  			// If -N, leave next==nil so every block with successors
  4607  			// ends in a JMP (except call blocks - plive doesn't like
  4608  			// select{send,recv} followed by a JMP call).  Helps keep
  4609  			// line numbers for otherwise empty blocks.
  4610  			next = f.Blocks[i+1]
  4611  		}
  4612  		x := s.pp.next
  4613  		s.SetPos(b.Pos)
  4614  		thearch.SSAGenBlock(&s, b, next)
  4615  		if logProgs {
  4616  			for ; x != s.pp.next; x = x.Link {
  4617  				progToBlock[x] = b
  4618  			}
  4619  		}
  4620  	}
  4621  
  4622  	if Ctxt.Flag_locationlists {
  4623  		for i := range f.Blocks {
  4624  			blockDebug := e.curfn.Func.DebugInfo.Blocks[i]
  4625  			for _, locList := range blockDebug.Variables {
  4626  				for _, loc := range locList.Locations {
  4627  					if loc.Start == ssa.BlockStart {
  4628  						loc.StartProg = s.bstart[f.Blocks[i].ID]
  4629  					} else {
  4630  						loc.StartProg = valueToProgAfter[loc.Start.ID]
  4631  					}
  4632  					if loc.End == nil {
  4633  						Fatalf("empty loc %v compiling %v", loc, f.Name)
  4634  					}
  4635  
  4636  					if loc.End == ssa.BlockEnd {
  4637  						// If this variable was live at the end of the block, it should be
  4638  						// live over the control flow instructions. Extend it up to the
  4639  						// beginning of the next block.
  4640  						// If this is the last block, then there's no Prog to use for it, and
  4641  						// EndProg is unset.
  4642  						if i < len(f.Blocks)-1 {
  4643  							loc.EndProg = s.bstart[f.Blocks[i+1].ID]
  4644  						}
  4645  					} else {
  4646  						// Advance the "end" forward by one; the end-of-range doesn't take effect
  4647  						// until the instruction actually executes.
  4648  						loc.EndProg = valueToProgAfter[loc.End.ID].Link
  4649  						if loc.EndProg == nil {
  4650  							Fatalf("nil loc.EndProg compiling %v, loc=%v", f.Name, loc)
  4651  						}
  4652  					}
  4653  					if !logLocationLists {
  4654  						loc.Start = nil
  4655  						loc.End = nil
  4656  					}
  4657  				}
  4658  			}
  4659  		}
  4660  	}
  4661  
  4662  	// Resolve branches
  4663  	for _, br := range s.Branches {
  4664  		br.P.To.Val = s.bstart[br.B.ID]
  4665  	}
  4666  
  4667  	if logProgs {
  4668  		for p := pp.Text; p != nil; p = p.Link {
  4669  			var s string
  4670  			if v, ok := progToValue[p]; ok {
  4671  				s = v.String()
  4672  			} else if b, ok := progToBlock[p]; ok {
  4673  				s = b.String()
  4674  			} else {
  4675  				s = "   " // most value and branch strings are 2-3 characters long
  4676  			}
  4677  			f.Logf("%s\t%s\n", s, p)
  4678  		}
  4679  		if f.HTMLWriter != nil {
  4680  			// LineHist is defunct now - this code won't do
  4681  			// anything.
  4682  			// TODO: fix this (ideally without a global variable)
  4683  			// saved := pp.Text.Ctxt.LineHist.PrintFilenameOnly
  4684  			// pp.Text.Ctxt.LineHist.PrintFilenameOnly = true
  4685  			var buf bytes.Buffer
  4686  			buf.WriteString("<code>")
  4687  			buf.WriteString("<dl class=\"ssa-gen\">")
  4688  			filename := ""
  4689  			for p := pp.Text; p != nil; p = p.Link {
  4690  				// Don't spam every line with the file name, which is often huge.
  4691  				// Only print changes.
  4692  				if f := p.FileName(); f != filename {
  4693  					filename = f
  4694  					buf.WriteString("<dt class=\"ssa-prog-src\"></dt><dd class=\"ssa-prog\">")
  4695  					buf.WriteString(html.EscapeString("# " + filename))
  4696  					buf.WriteString("</dd>")
  4697  				}
  4698  
  4699  				buf.WriteString("<dt class=\"ssa-prog-src\">")
  4700  				if v, ok := progToValue[p]; ok {
  4701  					buf.WriteString(v.HTML())
  4702  				} else if b, ok := progToBlock[p]; ok {
  4703  					buf.WriteString("<b>" + b.HTML() + "</b>")
  4704  				}
  4705  				buf.WriteString("</dt>")
  4706  				buf.WriteString("<dd class=\"ssa-prog\">")
  4707  				buf.WriteString(fmt.Sprintf("%.5d <span class=\"line-number\">(%s)</span> %s", p.Pc, p.LineNumber(), html.EscapeString(p.InstructionString())))
  4708  				buf.WriteString("</dd>")
  4709  			}
  4710  			buf.WriteString("</dl>")
  4711  			buf.WriteString("</code>")
  4712  			f.HTMLWriter.WriteColumn("genssa", "ssa-prog", buf.String())
  4713  			// pp.Text.Ctxt.LineHist.PrintFilenameOnly = saved
  4714  		}
  4715  	}
  4716  
  4717  	defframe(&s, e)
  4718  	if Debug['f'] != 0 {
  4719  		frame(0)
  4720  	}
  4721  
  4722  	f.HTMLWriter.Close()
  4723  	f.HTMLWriter = nil
  4724  }
  4725  
  4726  func defframe(s *SSAGenState, e *ssafn) {
  4727  	pp := s.pp
  4728  
  4729  	frame := Rnd(s.maxarg+e.stksize, int64(Widthreg))
  4730  	if thearch.PadFrame != nil {
  4731  		frame = thearch.PadFrame(frame)
  4732  	}
  4733  
  4734  	// Fill in argument and frame size.
  4735  	pp.Text.To.Type = obj.TYPE_TEXTSIZE
  4736  	pp.Text.To.Val = int32(Rnd(e.curfn.Type.ArgWidth(), int64(Widthreg)))
  4737  	pp.Text.To.Offset = frame
  4738  
  4739  	// Insert code to zero ambiguously live variables so that the
  4740  	// garbage collector only sees initialized values when it
  4741  	// looks for pointers.
  4742  	p := pp.Text
  4743  	var lo, hi int64
  4744  
  4745  	// Opaque state for backend to use. Current backends use it to
  4746  	// keep track of which helper registers have been zeroed.
  4747  	var state uint32
  4748  
  4749  	// Iterate through declarations. They are sorted in decreasing Xoffset order.
  4750  	for _, n := range e.curfn.Func.Dcl {
  4751  		if !n.Name.Needzero() {
  4752  			continue
  4753  		}
  4754  		if n.Class() != PAUTO {
  4755  			Fatalf("needzero class %d", n.Class())
  4756  		}
  4757  		if n.Type.Size()%int64(Widthptr) != 0 || n.Xoffset%int64(Widthptr) != 0 || n.Type.Size() == 0 {
  4758  			Fatalf("var %L has size %d offset %d", n, n.Type.Size(), n.Xoffset)
  4759  		}
  4760  
  4761  		if lo != hi && n.Xoffset+n.Type.Size() >= lo-int64(2*Widthreg) {
  4762  			// Merge with range we already have.
  4763  			lo = n.Xoffset
  4764  			continue
  4765  		}
  4766  
  4767  		// Zero old range
  4768  		p = thearch.ZeroRange(pp, p, frame+lo, hi-lo, &state)
  4769  
  4770  		// Set new range.
  4771  		lo = n.Xoffset
  4772  		hi = lo + n.Type.Size()
  4773  	}
  4774  
  4775  	// Zero final range.
  4776  	thearch.ZeroRange(pp, p, frame+lo, hi-lo, &state)
  4777  }
  4778  
  4779  type FloatingEQNEJump struct {
  4780  	Jump  obj.As
  4781  	Index int
  4782  }
  4783  
  4784  func (s *SSAGenState) oneFPJump(b *ssa.Block, jumps *FloatingEQNEJump) {
  4785  	p := s.Prog(jumps.Jump)
  4786  	p.To.Type = obj.TYPE_BRANCH
  4787  	p.Pos = b.Pos
  4788  	to := jumps.Index
  4789  	s.Branches = append(s.Branches, Branch{p, b.Succs[to].Block()})
  4790  }
  4791  
  4792  func (s *SSAGenState) FPJump(b, next *ssa.Block, jumps *[2][2]FloatingEQNEJump) {
  4793  	switch next {
  4794  	case b.Succs[0].Block():
  4795  		s.oneFPJump(b, &jumps[0][0])
  4796  		s.oneFPJump(b, &jumps[0][1])
  4797  	case b.Succs[1].Block():
  4798  		s.oneFPJump(b, &jumps[1][0])
  4799  		s.oneFPJump(b, &jumps[1][1])
  4800  	default:
  4801  		s.oneFPJump(b, &jumps[1][0])
  4802  		s.oneFPJump(b, &jumps[1][1])
  4803  		q := s.Prog(obj.AJMP)
  4804  		q.Pos = b.Pos
  4805  		q.To.Type = obj.TYPE_BRANCH
  4806  		s.Branches = append(s.Branches, Branch{q, b.Succs[1].Block()})
  4807  	}
  4808  }
  4809  
  4810  func AuxOffset(v *ssa.Value) (offset int64) {
  4811  	if v.Aux == nil {
  4812  		return 0
  4813  	}
  4814  	n, ok := v.Aux.(*Node)
  4815  	if !ok {
  4816  		v.Fatalf("bad aux type in %s\n", v.LongString())
  4817  	}
  4818  	if n.Class() == PAUTO {
  4819  		return n.Xoffset
  4820  	}
  4821  	return 0
  4822  }
  4823  
  4824  // AddAux adds the offset in the aux fields (AuxInt and Aux) of v to a.
  4825  func AddAux(a *obj.Addr, v *ssa.Value) {
  4826  	AddAux2(a, v, v.AuxInt)
  4827  }
  4828  func AddAux2(a *obj.Addr, v *ssa.Value, offset int64) {
  4829  	if a.Type != obj.TYPE_MEM && a.Type != obj.TYPE_ADDR {
  4830  		v.Fatalf("bad AddAux addr %v", a)
  4831  	}
  4832  	// add integer offset
  4833  	a.Offset += offset
  4834  
  4835  	// If no additional symbol offset, we're done.
  4836  	if v.Aux == nil {
  4837  		return
  4838  	}
  4839  	// Add symbol's offset from its base register.
  4840  	switch n := v.Aux.(type) {
  4841  	case *obj.LSym:
  4842  		a.Name = obj.NAME_EXTERN
  4843  		a.Sym = n
  4844  	case *Node:
  4845  		if n.Class() == PPARAM || n.Class() == PPARAMOUT {
  4846  			a.Name = obj.NAME_PARAM
  4847  			a.Sym = n.Orig.Sym.Linksym()
  4848  			a.Offset += n.Xoffset
  4849  			break
  4850  		}
  4851  		a.Name = obj.NAME_AUTO
  4852  		a.Sym = n.Sym.Linksym()
  4853  		a.Offset += n.Xoffset
  4854  	default:
  4855  		v.Fatalf("aux in %s not implemented %#v", v, v.Aux)
  4856  	}
  4857  }
  4858  
  4859  // extendIndex extends v to a full int width.
  4860  // panic using the given function if v does not fit in an int (only on 32-bit archs).
  4861  func (s *state) extendIndex(v *ssa.Value, panicfn *obj.LSym) *ssa.Value {
  4862  	size := v.Type.Size()
  4863  	if size == s.config.PtrSize {
  4864  		return v
  4865  	}
  4866  	if size > s.config.PtrSize {
  4867  		// truncate 64-bit indexes on 32-bit pointer archs. Test the
  4868  		// high word and branch to out-of-bounds failure if it is not 0.
  4869  		if Debug['B'] == 0 {
  4870  			hi := s.newValue1(ssa.OpInt64Hi, types.Types[TUINT32], v)
  4871  			cmp := s.newValue2(ssa.OpEq32, types.Types[TBOOL], hi, s.constInt32(types.Types[TUINT32], 0))
  4872  			s.check(cmp, panicfn)
  4873  		}
  4874  		return s.newValue1(ssa.OpTrunc64to32, types.Types[TINT], v)
  4875  	}
  4876  
  4877  	// Extend value to the required size
  4878  	var op ssa.Op
  4879  	if v.Type.IsSigned() {
  4880  		switch 10*size + s.config.PtrSize {
  4881  		case 14:
  4882  			op = ssa.OpSignExt8to32
  4883  		case 18:
  4884  			op = ssa.OpSignExt8to64
  4885  		case 24:
  4886  			op = ssa.OpSignExt16to32
  4887  		case 28:
  4888  			op = ssa.OpSignExt16to64
  4889  		case 48:
  4890  			op = ssa.OpSignExt32to64
  4891  		default:
  4892  			s.Fatalf("bad signed index extension %s", v.Type)
  4893  		}
  4894  	} else {
  4895  		switch 10*size + s.config.PtrSize {
  4896  		case 14:
  4897  			op = ssa.OpZeroExt8to32
  4898  		case 18:
  4899  			op = ssa.OpZeroExt8to64
  4900  		case 24:
  4901  			op = ssa.OpZeroExt16to32
  4902  		case 28:
  4903  			op = ssa.OpZeroExt16to64
  4904  		case 48:
  4905  			op = ssa.OpZeroExt32to64
  4906  		default:
  4907  			s.Fatalf("bad unsigned index extension %s", v.Type)
  4908  		}
  4909  	}
  4910  	return s.newValue1(op, types.Types[TINT], v)
  4911  }
  4912  
  4913  // CheckLoweredPhi checks that regalloc and stackalloc correctly handled phi values.
  4914  // Called during ssaGenValue.
  4915  func CheckLoweredPhi(v *ssa.Value) {
  4916  	if v.Op != ssa.OpPhi {
  4917  		v.Fatalf("CheckLoweredPhi called with non-phi value: %v", v.LongString())
  4918  	}
  4919  	if v.Type.IsMemory() {
  4920  		return
  4921  	}
  4922  	f := v.Block.Func
  4923  	loc := f.RegAlloc[v.ID]
  4924  	for _, a := range v.Args {
  4925  		if aloc := f.RegAlloc[a.ID]; aloc != loc { // TODO: .Equal() instead?
  4926  			v.Fatalf("phi arg at different location than phi: %v @ %s, but arg %v @ %s\n%s\n", v, loc, a, aloc, v.Block.Func)
  4927  		}
  4928  	}
  4929  }
  4930  
  4931  // CheckLoweredGetClosurePtr checks that v is the first instruction in the function's entry block.
  4932  // The output of LoweredGetClosurePtr is generally hardwired to the correct register.
  4933  // That register contains the closure pointer on closure entry.
  4934  func CheckLoweredGetClosurePtr(v *ssa.Value) {
  4935  	entry := v.Block.Func.Entry
  4936  	if entry != v.Block || entry.Values[0] != v {
  4937  		Fatalf("in %s, badly placed LoweredGetClosurePtr: %v %v", v.Block.Func.Name, v.Block, v)
  4938  	}
  4939  }
  4940  
  4941  // AutoVar returns a *Node and int64 representing the auto variable and offset within it
  4942  // where v should be spilled.
  4943  func AutoVar(v *ssa.Value) (*Node, int64) {
  4944  	loc := v.Block.Func.RegAlloc[v.ID].(ssa.LocalSlot)
  4945  	if v.Type.Size() > loc.Type.Size() {
  4946  		v.Fatalf("spill/restore type %s doesn't fit in slot type %s", v.Type, loc.Type)
  4947  	}
  4948  	return loc.N.(*Node), loc.Off
  4949  }
  4950  
  4951  func AddrAuto(a *obj.Addr, v *ssa.Value) {
  4952  	n, off := AutoVar(v)
  4953  	a.Type = obj.TYPE_MEM
  4954  	a.Sym = n.Sym.Linksym()
  4955  	a.Reg = int16(thearch.REGSP)
  4956  	a.Offset = n.Xoffset + off
  4957  	if n.Class() == PPARAM || n.Class() == PPARAMOUT {
  4958  		a.Name = obj.NAME_PARAM
  4959  	} else {
  4960  		a.Name = obj.NAME_AUTO
  4961  	}
  4962  }
  4963  
  4964  func (s *SSAGenState) AddrScratch(a *obj.Addr) {
  4965  	if s.ScratchFpMem == nil {
  4966  		panic("no scratch memory available; forgot to declare usesScratch for Op?")
  4967  	}
  4968  	a.Type = obj.TYPE_MEM
  4969  	a.Name = obj.NAME_AUTO
  4970  	a.Sym = s.ScratchFpMem.Sym.Linksym()
  4971  	a.Reg = int16(thearch.REGSP)
  4972  	a.Offset = s.ScratchFpMem.Xoffset
  4973  }
  4974  
  4975  func (s *SSAGenState) Call(v *ssa.Value) *obj.Prog {
  4976  	idx, ok := s.stackMapIndex[v]
  4977  	if !ok {
  4978  		Fatalf("missing stack map index for %v", v.LongString())
  4979  	}
  4980  	p := s.Prog(obj.APCDATA)
  4981  	Addrconst(&p.From, objabi.PCDATA_StackMapIndex)
  4982  	Addrconst(&p.To, int64(idx))
  4983  
  4984  	if sym, _ := v.Aux.(*obj.LSym); sym == Deferreturn {
  4985  		// Deferred calls will appear to be returning to
  4986  		// the CALL deferreturn(SB) that we are about to emit.
  4987  		// However, the stack trace code will show the line
  4988  		// of the instruction byte before the return PC.
  4989  		// To avoid that being an unrelated instruction,
  4990  		// insert an actual hardware NOP that will have the right line number.
  4991  		// This is different from obj.ANOP, which is a virtual no-op
  4992  		// that doesn't make it into the instruction stream.
  4993  		thearch.Ginsnop(s.pp)
  4994  	}
  4995  
  4996  	p = s.Prog(obj.ACALL)
  4997  	if sym, ok := v.Aux.(*obj.LSym); ok {
  4998  		p.To.Type = obj.TYPE_MEM
  4999  		p.To.Name = obj.NAME_EXTERN
  5000  		p.To.Sym = sym
  5001  
  5002  		// Record call graph information for nowritebarrierrec
  5003  		// analysis.
  5004  		if nowritebarrierrecCheck != nil {
  5005  			nowritebarrierrecCheck.recordCall(s.pp.curfn, sym, v.Pos)
  5006  		}
  5007  	} else {
  5008  		// TODO(mdempsky): Can these differences be eliminated?
  5009  		switch thearch.LinkArch.Family {
  5010  		case sys.AMD64, sys.I386, sys.PPC64, sys.S390X:
  5011  			p.To.Type = obj.TYPE_REG
  5012  		case sys.ARM, sys.ARM64, sys.MIPS, sys.MIPS64:
  5013  			p.To.Type = obj.TYPE_MEM
  5014  		default:
  5015  			Fatalf("unknown indirect call family")
  5016  		}
  5017  		p.To.Reg = v.Args[0].Reg()
  5018  	}
  5019  	if s.maxarg < v.AuxInt {
  5020  		s.maxarg = v.AuxInt
  5021  	}
  5022  	return p
  5023  }
  5024  
  5025  // fieldIdx finds the index of the field referred to by the ODOT node n.
  5026  func fieldIdx(n *Node) int {
  5027  	t := n.Left.Type
  5028  	f := n.Sym
  5029  	if !t.IsStruct() {
  5030  		panic("ODOT's LHS is not a struct")
  5031  	}
  5032  
  5033  	var i int
  5034  	for _, t1 := range t.Fields().Slice() {
  5035  		if t1.Sym != f {
  5036  			i++
  5037  			continue
  5038  		}
  5039  		if t1.Offset != n.Xoffset {
  5040  			panic("field offset doesn't match")
  5041  		}
  5042  		return i
  5043  	}
  5044  	panic(fmt.Sprintf("can't find field in expr %v\n", n))
  5045  
  5046  	// TODO: keep the result of this function somewhere in the ODOT Node
  5047  	// so we don't have to recompute it each time we need it.
  5048  }
  5049  
  5050  // ssafn holds frontend information about a function that the backend is processing.
  5051  // It also exports a bunch of compiler services for the ssa backend.
  5052  type ssafn struct {
  5053  	curfn        *Node
  5054  	strings      map[string]interface{} // map from constant string to data symbols
  5055  	scratchFpMem *Node                  // temp for floating point register / memory moves on some architectures
  5056  	stksize      int64                  // stack size for current frame
  5057  	stkptrsize   int64                  // prefix of stack containing pointers
  5058  	log          bool
  5059  }
  5060  
  5061  // StringData returns a symbol (a *types.Sym wrapped in an interface) which
  5062  // is the data component of a global string constant containing s.
  5063  func (e *ssafn) StringData(s string) interface{} {
  5064  	if aux, ok := e.strings[s]; ok {
  5065  		return aux
  5066  	}
  5067  	if e.strings == nil {
  5068  		e.strings = make(map[string]interface{})
  5069  	}
  5070  	data := stringsym(e.curfn.Pos, s)
  5071  	e.strings[s] = data
  5072  	return data
  5073  }
  5074  
  5075  func (e *ssafn) Auto(pos src.XPos, t *types.Type) ssa.GCNode {
  5076  	n := tempAt(pos, e.curfn, t) // Note: adds new auto to e.curfn.Func.Dcl list
  5077  	return n
  5078  }
  5079  
  5080  func (e *ssafn) SplitString(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot) {
  5081  	n := name.N.(*Node)
  5082  	ptrType := types.NewPtr(types.Types[TUINT8])
  5083  	lenType := types.Types[TINT]
  5084  	if n.Class() == PAUTO && !n.Addrtaken() {
  5085  		// Split this string up into two separate variables.
  5086  		p := e.splitSlot(&name, ".ptr", 0, ptrType)
  5087  		l := e.splitSlot(&name, ".len", ptrType.Size(), lenType)
  5088  		return p, l
  5089  	}
  5090  	// Return the two parts of the larger variable.
  5091  	return ssa.LocalSlot{N: n, Type: ptrType, Off: name.Off}, ssa.LocalSlot{N: n, Type: lenType, Off: name.Off + int64(Widthptr)}
  5092  }
  5093  
  5094  func (e *ssafn) SplitInterface(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot) {
  5095  	n := name.N.(*Node)
  5096  	t := types.NewPtr(types.Types[TUINT8])
  5097  	if n.Class() == PAUTO && !n.Addrtaken() {
  5098  		// Split this interface up into two separate variables.
  5099  		f := ".itab"
  5100  		if n.Type.IsEmptyInterface() {
  5101  			f = ".type"
  5102  		}
  5103  		c := e.splitSlot(&name, f, 0, t)
  5104  		d := e.splitSlot(&name, ".data", t.Size(), t)
  5105  		return c, d
  5106  	}
  5107  	// Return the two parts of the larger variable.
  5108  	return ssa.LocalSlot{N: n, Type: t, Off: name.Off}, ssa.LocalSlot{N: n, Type: t, Off: name.Off + int64(Widthptr)}
  5109  }
  5110  
  5111  func (e *ssafn) SplitSlice(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot, ssa.LocalSlot) {
  5112  	n := name.N.(*Node)
  5113  	ptrType := types.NewPtr(name.Type.ElemType())
  5114  	lenType := types.Types[TINT]
  5115  	if n.Class() == PAUTO && !n.Addrtaken() {
  5116  		// Split this slice up into three separate variables.
  5117  		p := e.splitSlot(&name, ".ptr", 0, ptrType)
  5118  		l := e.splitSlot(&name, ".len", ptrType.Size(), lenType)
  5119  		c := e.splitSlot(&name, ".cap", ptrType.Size()+lenType.Size(), lenType)
  5120  		return p, l, c
  5121  	}
  5122  	// Return the three parts of the larger variable.
  5123  	return ssa.LocalSlot{N: n, Type: ptrType, Off: name.Off},
  5124  		ssa.LocalSlot{N: n, Type: lenType, Off: name.Off + int64(Widthptr)},
  5125  		ssa.LocalSlot{N: n, Type: lenType, Off: name.Off + int64(2*Widthptr)}
  5126  }
  5127  
  5128  func (e *ssafn) SplitComplex(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot) {
  5129  	n := name.N.(*Node)
  5130  	s := name.Type.Size() / 2
  5131  	var t *types.Type
  5132  	if s == 8 {
  5133  		t = types.Types[TFLOAT64]
  5134  	} else {
  5135  		t = types.Types[TFLOAT32]
  5136  	}
  5137  	if n.Class() == PAUTO && !n.Addrtaken() {
  5138  		// Split this complex up into two separate variables.
  5139  		r := e.splitSlot(&name, ".real", 0, t)
  5140  		i := e.splitSlot(&name, ".imag", t.Size(), t)
  5141  		return r, i
  5142  	}
  5143  	// Return the two parts of the larger variable.
  5144  	return ssa.LocalSlot{N: n, Type: t, Off: name.Off}, ssa.LocalSlot{N: n, Type: t, Off: name.Off + s}
  5145  }
  5146  
  5147  func (e *ssafn) SplitInt64(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot) {
  5148  	n := name.N.(*Node)
  5149  	var t *types.Type
  5150  	if name.Type.IsSigned() {
  5151  		t = types.Types[TINT32]
  5152  	} else {
  5153  		t = types.Types[TUINT32]
  5154  	}
  5155  	if n.Class() == PAUTO && !n.Addrtaken() {
  5156  		// Split this int64 up into two separate variables.
  5157  		if thearch.LinkArch.ByteOrder == binary.BigEndian {
  5158  			return e.splitSlot(&name, ".hi", 0, t), e.splitSlot(&name, ".lo", t.Size(), types.Types[TUINT32])
  5159  		}
  5160  		return e.splitSlot(&name, ".hi", t.Size(), t), e.splitSlot(&name, ".lo", 0, types.Types[TUINT32])
  5161  	}
  5162  	// Return the two parts of the larger variable.
  5163  	if thearch.LinkArch.ByteOrder == binary.BigEndian {
  5164  		return ssa.LocalSlot{N: n, Type: t, Off: name.Off}, ssa.LocalSlot{N: n, Type: types.Types[TUINT32], Off: name.Off + 4}
  5165  	}
  5166  	return ssa.LocalSlot{N: n, Type: t, Off: name.Off + 4}, ssa.LocalSlot{N: n, Type: types.Types[TUINT32], Off: name.Off}
  5167  }
  5168  
  5169  func (e *ssafn) SplitStruct(name ssa.LocalSlot, i int) ssa.LocalSlot {
  5170  	n := name.N.(*Node)
  5171  	st := name.Type
  5172  	ft := st.FieldType(i)
  5173  	var offset int64
  5174  	for f := 0; f < i; f++ {
  5175  		offset += st.FieldType(f).Size()
  5176  	}
  5177  	if n.Class() == PAUTO && !n.Addrtaken() {
  5178  		// Note: the _ field may appear several times.  But
  5179  		// have no fear, identically-named but distinct Autos are
  5180  		// ok, albeit maybe confusing for a debugger.
  5181  		return e.splitSlot(&name, "."+st.FieldName(i), offset, ft)
  5182  	}
  5183  	return ssa.LocalSlot{N: n, Type: ft, Off: name.Off + st.FieldOff(i)}
  5184  }
  5185  
  5186  func (e *ssafn) SplitArray(name ssa.LocalSlot) ssa.LocalSlot {
  5187  	n := name.N.(*Node)
  5188  	at := name.Type
  5189  	if at.NumElem() != 1 {
  5190  		Fatalf("bad array size")
  5191  	}
  5192  	et := at.ElemType()
  5193  	if n.Class() == PAUTO && !n.Addrtaken() {
  5194  		return e.splitSlot(&name, "[0]", 0, et)
  5195  	}
  5196  	return ssa.LocalSlot{N: n, Type: et, Off: name.Off}
  5197  }
  5198  
  5199  func (e *ssafn) DerefItab(it *obj.LSym, offset int64) *obj.LSym {
  5200  	return itabsym(it, offset)
  5201  }
  5202  
  5203  // splitSlot returns a slot representing the data of parent starting at offset.
  5204  func (e *ssafn) splitSlot(parent *ssa.LocalSlot, suffix string, offset int64, t *types.Type) ssa.LocalSlot {
  5205  	s := &types.Sym{Name: parent.N.(*Node).Sym.Name + suffix, Pkg: localpkg}
  5206  
  5207  	n := &Node{
  5208  		Name: new(Name),
  5209  		Op:   ONAME,
  5210  		Pos:  parent.N.(*Node).Pos,
  5211  	}
  5212  	n.Orig = n
  5213  
  5214  	s.Def = asTypesNode(n)
  5215  	asNode(s.Def).Name.SetUsed(true)
  5216  	n.Sym = s
  5217  	n.Type = t
  5218  	n.SetClass(PAUTO)
  5219  	n.SetAddable(true)
  5220  	n.Esc = EscNever
  5221  	n.Name.Curfn = e.curfn
  5222  	e.curfn.Func.Dcl = append(e.curfn.Func.Dcl, n)
  5223  	dowidth(t)
  5224  	return ssa.LocalSlot{N: n, Type: t, Off: 0, SplitOf: parent, SplitOffset: offset}
  5225  }
  5226  
  5227  func (e *ssafn) CanSSA(t *types.Type) bool {
  5228  	return canSSAType(t)
  5229  }
  5230  
  5231  func (e *ssafn) Line(pos src.XPos) string {
  5232  	return linestr(pos)
  5233  }
  5234  
  5235  // Log logs a message from the compiler.
  5236  func (e *ssafn) Logf(msg string, args ...interface{}) {
  5237  	if e.log {
  5238  		fmt.Printf(msg, args...)
  5239  	}
  5240  }
  5241  
  5242  func (e *ssafn) Log() bool {
  5243  	return e.log
  5244  }
  5245  
  5246  // Fatal reports a compiler error and exits.
  5247  func (e *ssafn) Fatalf(pos src.XPos, msg string, args ...interface{}) {
  5248  	lineno = pos
  5249  	Fatalf(msg, args...)
  5250  }
  5251  
  5252  // Warnl reports a "warning", which is usually flag-triggered
  5253  // logging output for the benefit of tests.
  5254  func (e *ssafn) Warnl(pos src.XPos, fmt_ string, args ...interface{}) {
  5255  	Warnl(pos, fmt_, args...)
  5256  }
  5257  
  5258  func (e *ssafn) Debug_checknil() bool {
  5259  	return Debug_checknil != 0
  5260  }
  5261  
  5262  func (e *ssafn) Debug_eagerwb() bool {
  5263  	return Debug_eagerwb != 0
  5264  }
  5265  
  5266  func (e *ssafn) UseWriteBarrier() bool {
  5267  	return use_writebarrier
  5268  }
  5269  
  5270  func (e *ssafn) Syslook(name string) *obj.LSym {
  5271  	switch name {
  5272  	case "goschedguarded":
  5273  		return goschedguarded
  5274  	case "writeBarrier":
  5275  		return writeBarrier
  5276  	case "writebarrierptr":
  5277  		return writebarrierptr
  5278  	case "gcWriteBarrier":
  5279  		return gcWriteBarrier
  5280  	case "typedmemmove":
  5281  		return typedmemmove
  5282  	case "typedmemclr":
  5283  		return typedmemclr
  5284  	}
  5285  	Fatalf("unknown Syslook func %v", name)
  5286  	return nil
  5287  }
  5288  
  5289  func (e *ssafn) SetWBPos(pos src.XPos) {
  5290  	e.curfn.Func.setWBPos(pos)
  5291  }
  5292  
  5293  func (n *Node) Typ() *types.Type {
  5294  	return n.Type
  5295  }
  5296  func (n *Node) StorageClass() ssa.StorageClass {
  5297  	switch n.Class() {
  5298  	case PPARAM:
  5299  		return ssa.ClassParam
  5300  	case PPARAMOUT:
  5301  		return ssa.ClassParamOut
  5302  	case PAUTO:
  5303  		return ssa.ClassAuto
  5304  	default:
  5305  		Fatalf("untranslateable storage class for %v: %s", n, n.Class())
  5306  		return 0
  5307  	}
  5308  }