github.com/goproxy0/go@v0.0.0-20171111080102-49cc0c489d2c/src/cmd/compile/internal/gc/subr.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package gc
     6  
     7  import (
     8  	"cmd/compile/internal/types"
     9  	"cmd/internal/objabi"
    10  	"cmd/internal/src"
    11  	"crypto/md5"
    12  	"encoding/binary"
    13  	"fmt"
    14  	"os"
    15  	"runtime/debug"
    16  	"sort"
    17  	"strconv"
    18  	"strings"
    19  	"sync"
    20  	"unicode"
    21  	"unicode/utf8"
    22  )
    23  
    24  type Error struct {
    25  	pos src.XPos
    26  	msg string
    27  }
    28  
    29  var errors []Error
    30  
    31  var (
    32  	largeStackFramesMu sync.Mutex // protects largeStackFrames
    33  	largeStackFrames   []src.XPos // positions of functions whose stack frames are too large (rare)
    34  )
    35  
    36  func errorexit() {
    37  	flusherrors()
    38  	if outfile != "" {
    39  		os.Remove(outfile)
    40  	}
    41  	os.Exit(2)
    42  }
    43  
    44  func adderrorname(n *Node) {
    45  	if n.Op != ODOT {
    46  		return
    47  	}
    48  	old := fmt.Sprintf("%v: undefined: %v\n", n.Line(), n.Left)
    49  	if len(errors) > 0 && errors[len(errors)-1].pos.Line() == n.Pos.Line() && errors[len(errors)-1].msg == old {
    50  		errors[len(errors)-1].msg = fmt.Sprintf("%v: undefined: %v in %v\n", n.Line(), n.Left, n)
    51  	}
    52  }
    53  
    54  func adderr(pos src.XPos, format string, args ...interface{}) {
    55  	errors = append(errors, Error{
    56  		pos: pos,
    57  		msg: fmt.Sprintf("%v: %s\n", linestr(pos), fmt.Sprintf(format, args...)),
    58  	})
    59  }
    60  
    61  // byPos sorts errors by source position.
    62  type byPos []Error
    63  
    64  func (x byPos) Len() int           { return len(x) }
    65  func (x byPos) Less(i, j int) bool { return x[i].pos.Before(x[j].pos) }
    66  func (x byPos) Swap(i, j int)      { x[i], x[j] = x[j], x[i] }
    67  
    68  // flusherrors sorts errors seen so far by line number, prints them to stdout,
    69  // and empties the errors array.
    70  func flusherrors() {
    71  	Ctxt.Bso.Flush()
    72  	if len(errors) == 0 {
    73  		return
    74  	}
    75  	sort.Stable(byPos(errors))
    76  	for i := 0; i < len(errors); i++ {
    77  		if i == 0 || errors[i].msg != errors[i-1].msg {
    78  			fmt.Printf("%s", errors[i].msg)
    79  		}
    80  	}
    81  	errors = errors[:0]
    82  }
    83  
    84  func hcrash() {
    85  	if Debug['h'] != 0 {
    86  		flusherrors()
    87  		if outfile != "" {
    88  			os.Remove(outfile)
    89  		}
    90  		var x *int
    91  		*x = 0
    92  	}
    93  }
    94  
    95  func linestr(pos src.XPos) string {
    96  	return Ctxt.OutermostPos(pos).Format(Debug['C'] == 0)
    97  }
    98  
    99  // lasterror keeps track of the most recently issued error.
   100  // It is used to avoid multiple error messages on the same
   101  // line.
   102  var lasterror struct {
   103  	syntax src.XPos // source position of last syntax error
   104  	other  src.XPos // source position of last non-syntax error
   105  	msg    string   // error message of last non-syntax error
   106  }
   107  
   108  // sameline reports whether two positions a, b are on the same line.
   109  func sameline(a, b src.XPos) bool {
   110  	p := Ctxt.PosTable.Pos(a)
   111  	q := Ctxt.PosTable.Pos(b)
   112  	return p.Base() == q.Base() && p.Line() == q.Line()
   113  }
   114  
   115  func yyerrorl(pos src.XPos, format string, args ...interface{}) {
   116  	msg := fmt.Sprintf(format, args...)
   117  
   118  	if strings.HasPrefix(msg, "syntax error") {
   119  		nsyntaxerrors++
   120  		// only one syntax error per line, no matter what error
   121  		if sameline(lasterror.syntax, pos) {
   122  			return
   123  		}
   124  		lasterror.syntax = pos
   125  	} else {
   126  		// only one of multiple equal non-syntax errors per line
   127  		// (flusherrors shows only one of them, so we filter them
   128  		// here as best as we can (they may not appear in order)
   129  		// so that we don't count them here and exit early, and
   130  		// then have nothing to show for.)
   131  		if sameline(lasterror.other, pos) && lasterror.msg == msg {
   132  			return
   133  		}
   134  		lasterror.other = pos
   135  		lasterror.msg = msg
   136  	}
   137  
   138  	adderr(pos, "%s", msg)
   139  
   140  	hcrash()
   141  	nerrors++
   142  	if nsavederrors+nerrors >= 10 && Debug['e'] == 0 {
   143  		flusherrors()
   144  		fmt.Printf("%v: too many errors\n", linestr(pos))
   145  		errorexit()
   146  	}
   147  }
   148  
   149  func yyerror(format string, args ...interface{}) {
   150  	yyerrorl(lineno, format, args...)
   151  }
   152  
   153  func Warn(fmt_ string, args ...interface{}) {
   154  	adderr(lineno, fmt_, args...)
   155  
   156  	hcrash()
   157  }
   158  
   159  func Warnl(line src.XPos, fmt_ string, args ...interface{}) {
   160  	adderr(line, fmt_, args...)
   161  	if Debug['m'] != 0 {
   162  		flusherrors()
   163  	}
   164  }
   165  
   166  func Fatalf(fmt_ string, args ...interface{}) {
   167  	flusherrors()
   168  
   169  	if Debug_panic != 0 || nsavederrors+nerrors == 0 {
   170  		fmt.Printf("%v: internal compiler error: ", linestr(lineno))
   171  		fmt.Printf(fmt_, args...)
   172  		fmt.Printf("\n")
   173  
   174  		// If this is a released compiler version, ask for a bug report.
   175  		if strings.HasPrefix(objabi.Version, "go") {
   176  			fmt.Printf("\n")
   177  			fmt.Printf("Please file a bug report including a short program that triggers the error.\n")
   178  			fmt.Printf("https://golang.org/issue/new\n")
   179  		} else {
   180  			// Not a release; dump a stack trace, too.
   181  			fmt.Println()
   182  			os.Stdout.Write(debug.Stack())
   183  			fmt.Println()
   184  		}
   185  	}
   186  
   187  	hcrash()
   188  	errorexit()
   189  }
   190  
   191  func setlineno(n *Node) src.XPos {
   192  	lno := lineno
   193  	if n != nil {
   194  		switch n.Op {
   195  		case ONAME, OPACK:
   196  			break
   197  
   198  		case OLITERAL, OTYPE:
   199  			if n.Sym != nil {
   200  				break
   201  			}
   202  			fallthrough
   203  
   204  		default:
   205  			lineno = n.Pos
   206  			if !lineno.IsKnown() {
   207  				if Debug['K'] != 0 {
   208  					Warn("setlineno: unknown position (line 0)")
   209  				}
   210  				lineno = lno
   211  			}
   212  		}
   213  	}
   214  
   215  	return lno
   216  }
   217  
   218  func lookup(name string) *types.Sym {
   219  	return localpkg.Lookup(name)
   220  }
   221  
   222  // lookupN looks up the symbol starting with prefix and ending with
   223  // the decimal n. If prefix is too long, lookupN panics.
   224  func lookupN(prefix string, n int) *types.Sym {
   225  	var buf [20]byte // plenty long enough for all current users
   226  	copy(buf[:], prefix)
   227  	b := strconv.AppendInt(buf[:len(prefix)], int64(n), 10)
   228  	return localpkg.LookupBytes(b)
   229  }
   230  
   231  // autolabel generates a new Name node for use with
   232  // an automatically generated label.
   233  // prefix is a short mnemonic (e.g. ".s" for switch)
   234  // to help with debugging.
   235  // It should begin with "." to avoid conflicts with
   236  // user labels.
   237  func autolabel(prefix string) *Node {
   238  	if prefix[0] != '.' {
   239  		Fatalf("autolabel prefix must start with '.', have %q", prefix)
   240  	}
   241  	fn := Curfn
   242  	if Curfn == nil {
   243  		Fatalf("autolabel outside function")
   244  	}
   245  	n := fn.Func.Label
   246  	fn.Func.Label++
   247  	return newname(lookupN(prefix, int(n)))
   248  }
   249  
   250  func restrictlookup(name string, pkg *types.Pkg) *types.Sym {
   251  	if !exportname(name) && pkg != localpkg {
   252  		yyerror("cannot refer to unexported name %s.%s", pkg.Name, name)
   253  	}
   254  	return pkg.Lookup(name)
   255  }
   256  
   257  // find all the exported symbols in package opkg
   258  // and make them available in the current package
   259  func importdot(opkg *types.Pkg, pack *Node) {
   260  	n := 0
   261  	for _, s := range opkg.Syms {
   262  		if s.Def == nil {
   263  			continue
   264  		}
   265  		if !exportname(s.Name) || strings.ContainsRune(s.Name, 0xb7) { // 0xb7 = center dot
   266  			continue
   267  		}
   268  		s1 := lookup(s.Name)
   269  		if s1.Def != nil {
   270  			pkgerror := fmt.Sprintf("during import %q", opkg.Path)
   271  			redeclare(s1, pkgerror)
   272  			continue
   273  		}
   274  
   275  		s1.Def = s.Def
   276  		s1.Block = s.Block
   277  		if asNode(s1.Def).Name == nil {
   278  			Dump("s1def", asNode(s1.Def))
   279  			Fatalf("missing Name")
   280  		}
   281  		asNode(s1.Def).Name.Pack = pack
   282  		s1.Origpkg = opkg
   283  		n++
   284  	}
   285  
   286  	if n == 0 {
   287  		// can't possibly be used - there were no symbols
   288  		yyerrorl(pack.Pos, "imported and not used: %q", opkg.Path)
   289  	}
   290  }
   291  
   292  func nod(op Op, nleft, nright *Node) *Node {
   293  	return nodl(lineno, op, nleft, nright)
   294  }
   295  
   296  func nodl(pos src.XPos, op Op, nleft, nright *Node) *Node {
   297  	var n *Node
   298  	switch op {
   299  	case OCLOSURE, ODCLFUNC:
   300  		var x struct {
   301  			Node
   302  			Func
   303  		}
   304  		n = &x.Node
   305  		n.Func = &x.Func
   306  	case ONAME:
   307  		Fatalf("use newname instead")
   308  	case OLABEL, OPACK:
   309  		var x struct {
   310  			Node
   311  			Name
   312  		}
   313  		n = &x.Node
   314  		n.Name = &x.Name
   315  	default:
   316  		n = new(Node)
   317  	}
   318  	n.Op = op
   319  	n.Left = nleft
   320  	n.Right = nright
   321  	n.Pos = pos
   322  	n.Xoffset = BADWIDTH
   323  	n.Orig = n
   324  	return n
   325  }
   326  
   327  // newname returns a new ONAME Node associated with symbol s.
   328  func newname(s *types.Sym) *Node {
   329  	n := newnamel(lineno, s)
   330  	n.Name.Curfn = Curfn
   331  	return n
   332  }
   333  
   334  // newname returns a new ONAME Node associated with symbol s at position pos.
   335  // The caller is responsible for setting n.Name.Curfn.
   336  func newnamel(pos src.XPos, s *types.Sym) *Node {
   337  	if s == nil {
   338  		Fatalf("newnamel nil")
   339  	}
   340  
   341  	var x struct {
   342  		Node
   343  		Name
   344  		Param
   345  	}
   346  	n := &x.Node
   347  	n.Name = &x.Name
   348  	n.Name.Param = &x.Param
   349  
   350  	n.Op = ONAME
   351  	n.Pos = pos
   352  	n.Orig = n
   353  
   354  	n.Sym = s
   355  	n.SetAddable(true)
   356  	return n
   357  }
   358  
   359  // nodSym makes a Node with Op op and with the Left field set to left
   360  // and the Sym field set to sym. This is for ODOT and friends.
   361  func nodSym(op Op, left *Node, sym *types.Sym) *Node {
   362  	n := nod(op, left, nil)
   363  	n.Sym = sym
   364  	return n
   365  }
   366  
   367  func saveorignode(n *Node) {
   368  	if n.Orig != nil {
   369  		return
   370  	}
   371  	norig := nod(n.Op, nil, nil)
   372  	*norig = *n
   373  	n.Orig = norig
   374  }
   375  
   376  // methcmp sorts by symbol, then by package path for unexported symbols.
   377  type methcmp []*types.Field
   378  
   379  func (x methcmp) Len() int      { return len(x) }
   380  func (x methcmp) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
   381  func (x methcmp) Less(i, j int) bool {
   382  	a := x[i]
   383  	b := x[j]
   384  	if a.Sym == nil && b.Sym == nil {
   385  		return false
   386  	}
   387  	if a.Sym == nil {
   388  		return true
   389  	}
   390  	if b.Sym == nil {
   391  		return false
   392  	}
   393  	if a.Sym.Name != b.Sym.Name {
   394  		return a.Sym.Name < b.Sym.Name
   395  	}
   396  	if !exportname(a.Sym.Name) {
   397  		if a.Sym.Pkg.Path != b.Sym.Pkg.Path {
   398  			return a.Sym.Pkg.Path < b.Sym.Pkg.Path
   399  		}
   400  	}
   401  
   402  	return false
   403  }
   404  
   405  func nodintconst(v int64) *Node {
   406  	c := nod(OLITERAL, nil, nil)
   407  	c.SetAddable(true)
   408  	c.SetVal(Val{new(Mpint)})
   409  	c.Val().U.(*Mpint).SetInt64(v)
   410  	c.Type = types.Types[TIDEAL]
   411  	return c
   412  }
   413  
   414  func nodfltconst(v *Mpflt) *Node {
   415  	c := nod(OLITERAL, nil, nil)
   416  	c.SetAddable(true)
   417  	c.SetVal(Val{newMpflt()})
   418  	c.Val().U.(*Mpflt).Set(v)
   419  	c.Type = types.Types[TIDEAL]
   420  	return c
   421  }
   422  
   423  func nodconst(n *Node, t *types.Type, v int64) {
   424  	*n = Node{}
   425  	n.Op = OLITERAL
   426  	n.SetAddable(true)
   427  	n.SetVal(Val{new(Mpint)})
   428  	n.Val().U.(*Mpint).SetInt64(v)
   429  	n.Type = t
   430  
   431  	if t.IsFloat() {
   432  		Fatalf("nodconst: bad type %v", t)
   433  	}
   434  }
   435  
   436  func nodnil() *Node {
   437  	c := nodintconst(0)
   438  	c.SetVal(Val{new(NilVal)})
   439  	c.Type = types.Types[TNIL]
   440  	return c
   441  }
   442  
   443  func nodbool(b bool) *Node {
   444  	c := nodintconst(0)
   445  	c.SetVal(Val{b})
   446  	c.Type = types.Idealbool
   447  	return c
   448  }
   449  
   450  func nodstr(s string) *Node {
   451  	return nodlit(Val{s})
   452  }
   453  
   454  // treecopy recursively copies n, with the exception of
   455  // ONAME, OLITERAL, OTYPE, and non-iota ONONAME leaves.
   456  // Copies of iota ONONAME nodes are assigned the current
   457  // value of iota_. If pos.IsKnown(), it sets the source
   458  // position of newly allocated nodes to pos.
   459  func treecopy(n *Node, pos src.XPos) *Node {
   460  	if n == nil {
   461  		return nil
   462  	}
   463  
   464  	switch n.Op {
   465  	default:
   466  		m := *n
   467  		m.Orig = &m
   468  		m.Left = treecopy(n.Left, pos)
   469  		m.Right = treecopy(n.Right, pos)
   470  		m.List.Set(listtreecopy(n.List.Slice(), pos))
   471  		if pos.IsKnown() {
   472  			m.Pos = pos
   473  		}
   474  		if m.Name != nil && n.Op != ODCLFIELD {
   475  			Dump("treecopy", n)
   476  			Fatalf("treecopy Name")
   477  		}
   478  		return &m
   479  
   480  	case OPACK:
   481  		// OPACK nodes are never valid in const value declarations,
   482  		// but allow them like any other declared symbol to avoid
   483  		// crashing (golang.org/issue/11361).
   484  		fallthrough
   485  
   486  	case ONAME, ONONAME, OLITERAL, OTYPE:
   487  		return n
   488  
   489  	}
   490  }
   491  
   492  // isnil reports whether n represents the universal untyped zero value "nil".
   493  func isnil(n *Node) bool {
   494  	// Check n.Orig because constant propagation may produce typed nil constants,
   495  	// which don't exist in the Go spec.
   496  	return Isconst(n.Orig, CTNIL)
   497  }
   498  
   499  func isptrto(t *types.Type, et types.EType) bool {
   500  	if t == nil {
   501  		return false
   502  	}
   503  	if !t.IsPtr() {
   504  		return false
   505  	}
   506  	t = t.Elem()
   507  	if t == nil {
   508  		return false
   509  	}
   510  	if t.Etype != et {
   511  		return false
   512  	}
   513  	return true
   514  }
   515  
   516  func isblank(n *Node) bool {
   517  	if n == nil {
   518  		return false
   519  	}
   520  	return n.Sym.IsBlank()
   521  }
   522  
   523  // methtype returns the underlying type, if any,
   524  // that owns methods with receiver parameter t.
   525  // The result is either a named type or an anonymous struct.
   526  func methtype(t *types.Type) *types.Type {
   527  	if t == nil {
   528  		return nil
   529  	}
   530  
   531  	// Strip away pointer if it's there.
   532  	if t.IsPtr() {
   533  		if t.Sym != nil {
   534  			return nil
   535  		}
   536  		t = t.Elem()
   537  		if t == nil {
   538  			return nil
   539  		}
   540  	}
   541  
   542  	// Must be a named type or anonymous struct.
   543  	if t.Sym == nil && !t.IsStruct() {
   544  		return nil
   545  	}
   546  
   547  	// Check types.
   548  	if issimple[t.Etype] {
   549  		return t
   550  	}
   551  	switch t.Etype {
   552  	case TARRAY, TCHAN, TFUNC, TMAP, TSLICE, TSTRING, TSTRUCT:
   553  		return t
   554  	}
   555  	return nil
   556  }
   557  
   558  // eqtype reports whether t1 and t2 are identical, following the spec rules.
   559  //
   560  // Any cyclic type must go through a named type, and if one is
   561  // named, it is only identical to the other if they are the same
   562  // pointer (t1 == t2), so there's no chance of chasing cycles
   563  // ad infinitum, so no need for a depth counter.
   564  func eqtype(t1, t2 *types.Type) bool {
   565  	return eqtype1(t1, t2, true, nil)
   566  }
   567  
   568  // eqtypeIgnoreTags is like eqtype but it ignores struct tags for struct identity.
   569  func eqtypeIgnoreTags(t1, t2 *types.Type) bool {
   570  	return eqtype1(t1, t2, false, nil)
   571  }
   572  
   573  type typePair struct {
   574  	t1 *types.Type
   575  	t2 *types.Type
   576  }
   577  
   578  func eqtype1(t1, t2 *types.Type, cmpTags bool, assumedEqual map[typePair]struct{}) bool {
   579  	if t1 == t2 {
   580  		return true
   581  	}
   582  	if t1 == nil || t2 == nil || t1.Etype != t2.Etype || t1.Broke() || t2.Broke() {
   583  		return false
   584  	}
   585  	if t1.Sym != nil || t2.Sym != nil {
   586  		// Special case: we keep byte/uint8 and rune/int32
   587  		// separate for error messages. Treat them as equal.
   588  		switch t1.Etype {
   589  		case TUINT8:
   590  			return (t1 == types.Types[TUINT8] || t1 == types.Bytetype) && (t2 == types.Types[TUINT8] || t2 == types.Bytetype)
   591  		case TINT32:
   592  			return (t1 == types.Types[TINT32] || t1 == types.Runetype) && (t2 == types.Types[TINT32] || t2 == types.Runetype)
   593  		default:
   594  			return false
   595  		}
   596  	}
   597  
   598  	if assumedEqual == nil {
   599  		assumedEqual = make(map[typePair]struct{})
   600  	} else if _, ok := assumedEqual[typePair{t1, t2}]; ok {
   601  		return true
   602  	}
   603  	assumedEqual[typePair{t1, t2}] = struct{}{}
   604  
   605  	switch t1.Etype {
   606  	case TINTER:
   607  		if t1.NumFields() != t2.NumFields() {
   608  			return false
   609  		}
   610  		for i, f1 := range t1.FieldSlice() {
   611  			f2 := t2.Field(i)
   612  			if f1.Sym != f2.Sym || !eqtype1(f1.Type, f2.Type, cmpTags, assumedEqual) {
   613  				return false
   614  			}
   615  		}
   616  		return true
   617  
   618  	case TSTRUCT:
   619  		if t1.NumFields() != t2.NumFields() {
   620  			return false
   621  		}
   622  		for i, f1 := range t1.FieldSlice() {
   623  			f2 := t2.Field(i)
   624  			if f1.Sym != f2.Sym || f1.Embedded != f2.Embedded || !eqtype1(f1.Type, f2.Type, cmpTags, assumedEqual) {
   625  				return false
   626  			}
   627  			if cmpTags && f1.Note != f2.Note {
   628  				return false
   629  			}
   630  		}
   631  		return true
   632  
   633  	case TFUNC:
   634  		// Check parameters and result parameters for type equality.
   635  		// We intentionally ignore receiver parameters for type
   636  		// equality, because they're never relevant.
   637  		for _, f := range types.ParamsResults {
   638  			// Loop over fields in structs, ignoring argument names.
   639  			fs1, fs2 := f(t1).FieldSlice(), f(t2).FieldSlice()
   640  			if len(fs1) != len(fs2) {
   641  				return false
   642  			}
   643  			for i, f1 := range fs1 {
   644  				f2 := fs2[i]
   645  				if f1.Isddd() != f2.Isddd() || !eqtype1(f1.Type, f2.Type, cmpTags, assumedEqual) {
   646  					return false
   647  				}
   648  			}
   649  		}
   650  		return true
   651  
   652  	case TARRAY:
   653  		if t1.NumElem() != t2.NumElem() {
   654  			return false
   655  		}
   656  
   657  	case TCHAN:
   658  		if t1.ChanDir() != t2.ChanDir() {
   659  			return false
   660  		}
   661  
   662  	case TMAP:
   663  		if !eqtype1(t1.Key(), t2.Key(), cmpTags, assumedEqual) {
   664  			return false
   665  		}
   666  		return eqtype1(t1.Val(), t2.Val(), cmpTags, assumedEqual)
   667  	}
   668  
   669  	return eqtype1(t1.Elem(), t2.Elem(), cmpTags, assumedEqual)
   670  }
   671  
   672  // Are t1 and t2 equal struct types when field names are ignored?
   673  // For deciding whether the result struct from g can be copied
   674  // directly when compiling f(g()).
   675  func eqtypenoname(t1 *types.Type, t2 *types.Type) bool {
   676  	if t1 == nil || t2 == nil || !t1.IsStruct() || !t2.IsStruct() {
   677  		return false
   678  	}
   679  
   680  	if t1.NumFields() != t2.NumFields() {
   681  		return false
   682  	}
   683  	for i, f1 := range t1.FieldSlice() {
   684  		f2 := t2.Field(i)
   685  		if !eqtype(f1.Type, f2.Type) {
   686  			return false
   687  		}
   688  	}
   689  	return true
   690  }
   691  
   692  // Is type src assignment compatible to type dst?
   693  // If so, return op code to use in conversion.
   694  // If not, return 0.
   695  func assignop(src *types.Type, dst *types.Type, why *string) Op {
   696  	if why != nil {
   697  		*why = ""
   698  	}
   699  
   700  	// TODO(rsc,lvd): This behaves poorly in the presence of inlining.
   701  	// https://golang.org/issue/2795
   702  	if safemode && !inimport && src != nil && src.Etype == TUNSAFEPTR {
   703  		yyerror("cannot use unsafe.Pointer")
   704  		errorexit()
   705  	}
   706  
   707  	if src == dst {
   708  		return OCONVNOP
   709  	}
   710  	if src == nil || dst == nil || src.Etype == TFORW || dst.Etype == TFORW || src.Orig == nil || dst.Orig == nil {
   711  		return 0
   712  	}
   713  
   714  	// 1. src type is identical to dst.
   715  	if eqtype(src, dst) {
   716  		return OCONVNOP
   717  	}
   718  
   719  	// 2. src and dst have identical underlying types
   720  	// and either src or dst is not a named type or
   721  	// both are empty interface types.
   722  	// For assignable but different non-empty interface types,
   723  	// we want to recompute the itab. Recomputing the itab ensures
   724  	// that itabs are unique (thus an interface with a compile-time
   725  	// type I has an itab with interface type I).
   726  	if eqtype(src.Orig, dst.Orig) {
   727  		if src.IsEmptyInterface() {
   728  			// Conversion between two empty interfaces
   729  			// requires no code.
   730  			return OCONVNOP
   731  		}
   732  		if (src.Sym == nil || dst.Sym == nil) && !src.IsInterface() {
   733  			// Conversion between two types, at least one unnamed,
   734  			// needs no conversion. The exception is nonempty interfaces
   735  			// which need to have their itab updated.
   736  			return OCONVNOP
   737  		}
   738  	}
   739  
   740  	// 3. dst is an interface type and src implements dst.
   741  	if dst.IsInterface() && src.Etype != TNIL {
   742  		var missing, have *types.Field
   743  		var ptr int
   744  		if implements(src, dst, &missing, &have, &ptr) {
   745  			return OCONVIFACE
   746  		}
   747  
   748  		// we'll have complained about this method anyway, suppress spurious messages.
   749  		if have != nil && have.Sym == missing.Sym && (have.Type.Broke() || missing.Type.Broke()) {
   750  			return OCONVIFACE
   751  		}
   752  
   753  		if why != nil {
   754  			if isptrto(src, TINTER) {
   755  				*why = fmt.Sprintf(":\n\t%v is pointer to interface, not interface", src)
   756  			} else if have != nil && have.Sym == missing.Sym && have.Nointerface() {
   757  				*why = fmt.Sprintf(":\n\t%v does not implement %v (%v method is marked 'nointerface')", src, dst, missing.Sym)
   758  			} else if have != nil && have.Sym == missing.Sym {
   759  				*why = fmt.Sprintf(":\n\t%v does not implement %v (wrong type for %v method)\n"+
   760  					"\t\thave %v%0S\n\t\twant %v%0S", src, dst, missing.Sym, have.Sym, have.Type, missing.Sym, missing.Type)
   761  			} else if ptr != 0 {
   762  				*why = fmt.Sprintf(":\n\t%v does not implement %v (%v method has pointer receiver)", src, dst, missing.Sym)
   763  			} else if have != nil {
   764  				*why = fmt.Sprintf(":\n\t%v does not implement %v (missing %v method)\n"+
   765  					"\t\thave %v%0S\n\t\twant %v%0S", src, dst, missing.Sym, have.Sym, have.Type, missing.Sym, missing.Type)
   766  			} else {
   767  				*why = fmt.Sprintf(":\n\t%v does not implement %v (missing %v method)", src, dst, missing.Sym)
   768  			}
   769  		}
   770  
   771  		return 0
   772  	}
   773  
   774  	if isptrto(dst, TINTER) {
   775  		if why != nil {
   776  			*why = fmt.Sprintf(":\n\t%v is pointer to interface, not interface", dst)
   777  		}
   778  		return 0
   779  	}
   780  
   781  	if src.IsInterface() && dst.Etype != TBLANK {
   782  		var missing, have *types.Field
   783  		var ptr int
   784  		if why != nil && implements(dst, src, &missing, &have, &ptr) {
   785  			*why = ": need type assertion"
   786  		}
   787  		return 0
   788  	}
   789  
   790  	// 4. src is a bidirectional channel value, dst is a channel type,
   791  	// src and dst have identical element types, and
   792  	// either src or dst is not a named type.
   793  	if src.IsChan() && src.ChanDir() == types.Cboth && dst.IsChan() {
   794  		if eqtype(src.Elem(), dst.Elem()) && (src.Sym == nil || dst.Sym == nil) {
   795  			return OCONVNOP
   796  		}
   797  	}
   798  
   799  	// 5. src is the predeclared identifier nil and dst is a nillable type.
   800  	if src.Etype == TNIL {
   801  		switch dst.Etype {
   802  		case TPTR32,
   803  			TPTR64,
   804  			TFUNC,
   805  			TMAP,
   806  			TCHAN,
   807  			TINTER,
   808  			TSLICE:
   809  			return OCONVNOP
   810  		}
   811  	}
   812  
   813  	// 6. rule about untyped constants - already converted by defaultlit.
   814  
   815  	// 7. Any typed value can be assigned to the blank identifier.
   816  	if dst.Etype == TBLANK {
   817  		return OCONVNOP
   818  	}
   819  
   820  	return 0
   821  }
   822  
   823  // Can we convert a value of type src to a value of type dst?
   824  // If so, return op code to use in conversion (maybe OCONVNOP).
   825  // If not, return 0.
   826  func convertop(src *types.Type, dst *types.Type, why *string) Op {
   827  	if why != nil {
   828  		*why = ""
   829  	}
   830  
   831  	if src == dst {
   832  		return OCONVNOP
   833  	}
   834  	if src == nil || dst == nil {
   835  		return 0
   836  	}
   837  
   838  	// Conversions from regular to go:notinheap are not allowed
   839  	// (unless it's unsafe.Pointer). This is a runtime-specific
   840  	// rule.
   841  	if src.IsPtr() && dst.IsPtr() && dst.Elem().NotInHeap() && !src.Elem().NotInHeap() {
   842  		if why != nil {
   843  			*why = fmt.Sprintf(":\n\t%v is go:notinheap, but %v is not", dst.Elem(), src.Elem())
   844  		}
   845  		return 0
   846  	}
   847  
   848  	// 1. src can be assigned to dst.
   849  	op := assignop(src, dst, why)
   850  	if op != 0 {
   851  		return op
   852  	}
   853  
   854  	// The rules for interfaces are no different in conversions
   855  	// than assignments. If interfaces are involved, stop now
   856  	// with the good message from assignop.
   857  	// Otherwise clear the error.
   858  	if src.IsInterface() || dst.IsInterface() {
   859  		return 0
   860  	}
   861  	if why != nil {
   862  		*why = ""
   863  	}
   864  
   865  	// 2. Ignoring struct tags, src and dst have identical underlying types.
   866  	if eqtypeIgnoreTags(src.Orig, dst.Orig) {
   867  		return OCONVNOP
   868  	}
   869  
   870  	// 3. src and dst are unnamed pointer types and, ignoring struct tags,
   871  	// their base types have identical underlying types.
   872  	if src.IsPtr() && dst.IsPtr() && src.Sym == nil && dst.Sym == nil {
   873  		if eqtypeIgnoreTags(src.Elem().Orig, dst.Elem().Orig) {
   874  			return OCONVNOP
   875  		}
   876  	}
   877  
   878  	// 4. src and dst are both integer or floating point types.
   879  	if (src.IsInteger() || src.IsFloat()) && (dst.IsInteger() || dst.IsFloat()) {
   880  		if simtype[src.Etype] == simtype[dst.Etype] {
   881  			return OCONVNOP
   882  		}
   883  		return OCONV
   884  	}
   885  
   886  	// 5. src and dst are both complex types.
   887  	if src.IsComplex() && dst.IsComplex() {
   888  		if simtype[src.Etype] == simtype[dst.Etype] {
   889  			return OCONVNOP
   890  		}
   891  		return OCONV
   892  	}
   893  
   894  	// 6. src is an integer or has type []byte or []rune
   895  	// and dst is a string type.
   896  	if src.IsInteger() && dst.IsString() {
   897  		return ORUNESTR
   898  	}
   899  
   900  	if src.IsSlice() && dst.IsString() {
   901  		if src.Elem().Etype == types.Bytetype.Etype {
   902  			return OARRAYBYTESTR
   903  		}
   904  		if src.Elem().Etype == types.Runetype.Etype {
   905  			return OARRAYRUNESTR
   906  		}
   907  	}
   908  
   909  	// 7. src is a string and dst is []byte or []rune.
   910  	// String to slice.
   911  	if src.IsString() && dst.IsSlice() {
   912  		if dst.Elem().Etype == types.Bytetype.Etype {
   913  			return OSTRARRAYBYTE
   914  		}
   915  		if dst.Elem().Etype == types.Runetype.Etype {
   916  			return OSTRARRAYRUNE
   917  		}
   918  	}
   919  
   920  	// 8. src is a pointer or uintptr and dst is unsafe.Pointer.
   921  	if (src.IsPtr() || src.Etype == TUINTPTR) && dst.Etype == TUNSAFEPTR {
   922  		return OCONVNOP
   923  	}
   924  
   925  	// 9. src is unsafe.Pointer and dst is a pointer or uintptr.
   926  	if src.Etype == TUNSAFEPTR && (dst.IsPtr() || dst.Etype == TUINTPTR) {
   927  		return OCONVNOP
   928  	}
   929  
   930  	// src is map and dst is a pointer to corresponding hmap.
   931  	// This rule is needed for the implementation detail that
   932  	// go gc maps are implemented as a pointer to a hmap struct.
   933  	if src.Etype == TMAP && dst.IsPtr() &&
   934  		src.MapType().Hmap == dst.Elem() {
   935  		return OCONVNOP
   936  	}
   937  
   938  	return 0
   939  }
   940  
   941  func assignconv(n *Node, t *types.Type, context string) *Node {
   942  	return assignconvfn(n, t, func() string { return context })
   943  }
   944  
   945  // Convert node n for assignment to type t.
   946  func assignconvfn(n *Node, t *types.Type, context func() string) *Node {
   947  	if n == nil || n.Type == nil || n.Type.Broke() {
   948  		return n
   949  	}
   950  
   951  	if t.Etype == TBLANK && n.Type.Etype == TNIL {
   952  		yyerror("use of untyped nil")
   953  	}
   954  
   955  	old := n
   956  	od := old.Diag()
   957  	old.SetDiag(true) // silence errors about n; we'll issue one below
   958  	n = defaultlit(n, t)
   959  	old.SetDiag(od)
   960  	if t.Etype == TBLANK {
   961  		return n
   962  	}
   963  
   964  	// Convert ideal bool from comparison to plain bool
   965  	// if the next step is non-bool (like interface{}).
   966  	if n.Type == types.Idealbool && !t.IsBoolean() {
   967  		if n.Op == ONAME || n.Op == OLITERAL {
   968  			r := nod(OCONVNOP, n, nil)
   969  			r.Type = types.Types[TBOOL]
   970  			r.SetTypecheck(1)
   971  			r.SetImplicit(true)
   972  			n = r
   973  		}
   974  	}
   975  
   976  	if eqtype(n.Type, t) {
   977  		return n
   978  	}
   979  
   980  	var why string
   981  	op := assignop(n.Type, t, &why)
   982  	if op == 0 {
   983  		if !old.Diag() {
   984  			yyerror("cannot use %L as type %v in %s%s", n, t, context(), why)
   985  		}
   986  		op = OCONV
   987  	}
   988  
   989  	r := nod(op, n, nil)
   990  	r.Type = t
   991  	r.SetTypecheck(1)
   992  	r.SetImplicit(true)
   993  	r.Orig = n.Orig
   994  	return r
   995  }
   996  
   997  // IsMethod reports whether n is a method.
   998  // n must be a function or a method.
   999  func (n *Node) IsMethod() bool {
  1000  	return n.Type.Recv() != nil
  1001  }
  1002  
  1003  // SliceBounds returns n's slice bounds: low, high, and max in expr[low:high:max].
  1004  // n must be a slice expression. max is nil if n is a simple slice expression.
  1005  func (n *Node) SliceBounds() (low, high, max *Node) {
  1006  	if n.List.Len() == 0 {
  1007  		return nil, nil, nil
  1008  	}
  1009  
  1010  	switch n.Op {
  1011  	case OSLICE, OSLICEARR, OSLICESTR:
  1012  		s := n.List.Slice()
  1013  		return s[0], s[1], nil
  1014  	case OSLICE3, OSLICE3ARR:
  1015  		s := n.List.Slice()
  1016  		return s[0], s[1], s[2]
  1017  	}
  1018  	Fatalf("SliceBounds op %v: %v", n.Op, n)
  1019  	return nil, nil, nil
  1020  }
  1021  
  1022  // SetSliceBounds sets n's slice bounds, where n is a slice expression.
  1023  // n must be a slice expression. If max is non-nil, n must be a full slice expression.
  1024  func (n *Node) SetSliceBounds(low, high, max *Node) {
  1025  	switch n.Op {
  1026  	case OSLICE, OSLICEARR, OSLICESTR:
  1027  		if max != nil {
  1028  			Fatalf("SetSliceBounds %v given three bounds", n.Op)
  1029  		}
  1030  		s := n.List.Slice()
  1031  		if s == nil {
  1032  			if low == nil && high == nil {
  1033  				return
  1034  			}
  1035  			n.List.Set2(low, high)
  1036  			return
  1037  		}
  1038  		s[0] = low
  1039  		s[1] = high
  1040  		return
  1041  	case OSLICE3, OSLICE3ARR:
  1042  		s := n.List.Slice()
  1043  		if s == nil {
  1044  			if low == nil && high == nil && max == nil {
  1045  				return
  1046  			}
  1047  			n.List.Set3(low, high, max)
  1048  			return
  1049  		}
  1050  		s[0] = low
  1051  		s[1] = high
  1052  		s[2] = max
  1053  		return
  1054  	}
  1055  	Fatalf("SetSliceBounds op %v: %v", n.Op, n)
  1056  }
  1057  
  1058  // IsSlice3 reports whether o is a slice3 op (OSLICE3, OSLICE3ARR).
  1059  // o must be a slicing op.
  1060  func (o Op) IsSlice3() bool {
  1061  	switch o {
  1062  	case OSLICE, OSLICEARR, OSLICESTR:
  1063  		return false
  1064  	case OSLICE3, OSLICE3ARR:
  1065  		return true
  1066  	}
  1067  	Fatalf("IsSlice3 op %v", o)
  1068  	return false
  1069  }
  1070  
  1071  // labeledControl returns the control flow Node (for, switch, select)
  1072  // associated with the label n, if any.
  1073  func (n *Node) labeledControl() *Node {
  1074  	if n.Op != OLABEL {
  1075  		Fatalf("labeledControl %v", n.Op)
  1076  	}
  1077  	ctl := n.Name.Defn
  1078  	if ctl == nil {
  1079  		return nil
  1080  	}
  1081  	switch ctl.Op {
  1082  	case OFOR, OFORUNTIL, OSWITCH, OSELECT:
  1083  		return ctl
  1084  	}
  1085  	return nil
  1086  }
  1087  
  1088  func syslook(name string) *Node {
  1089  	s := Runtimepkg.Lookup(name)
  1090  	if s == nil || s.Def == nil {
  1091  		Fatalf("syslook: can't find runtime.%s", name)
  1092  	}
  1093  	return asNode(s.Def)
  1094  }
  1095  
  1096  // typehash computes a hash value for type t to use in type switch statements.
  1097  func typehash(t *types.Type) uint32 {
  1098  	p := t.LongString()
  1099  
  1100  	// Using MD5 is overkill, but reduces accidental collisions.
  1101  	h := md5.Sum([]byte(p))
  1102  	return binary.LittleEndian.Uint32(h[:4])
  1103  }
  1104  
  1105  func frame(context int) {
  1106  	if context != 0 {
  1107  		fmt.Printf("--- external frame ---\n")
  1108  		for _, n := range externdcl {
  1109  			printframenode(n)
  1110  		}
  1111  		return
  1112  	}
  1113  
  1114  	if Curfn != nil {
  1115  		fmt.Printf("--- %v frame ---\n", Curfn.Func.Nname.Sym)
  1116  		for _, ln := range Curfn.Func.Dcl {
  1117  			printframenode(ln)
  1118  		}
  1119  	}
  1120  }
  1121  
  1122  func printframenode(n *Node) {
  1123  	w := int64(-1)
  1124  	if n.Type != nil {
  1125  		w = n.Type.Width
  1126  	}
  1127  	switch n.Op {
  1128  	case ONAME:
  1129  		fmt.Printf("%v %v G%d %v width=%d\n", n.Op, n.Sym, n.Name.Vargen, n.Type, w)
  1130  	case OTYPE:
  1131  		fmt.Printf("%v %v width=%d\n", n.Op, n.Type, w)
  1132  	}
  1133  }
  1134  
  1135  // updateHasCall checks whether expression n contains any function
  1136  // calls and sets the n.HasCall flag if so.
  1137  func updateHasCall(n *Node) {
  1138  	if n == nil {
  1139  		return
  1140  	}
  1141  	n.SetHasCall(calcHasCall(n))
  1142  }
  1143  
  1144  func calcHasCall(n *Node) bool {
  1145  	if n.Ninit.Len() != 0 {
  1146  		// TODO(mdempsky): This seems overly conservative.
  1147  		return true
  1148  	}
  1149  
  1150  	switch n.Op {
  1151  	case OLITERAL, ONAME, OTYPE:
  1152  		if n.HasCall() {
  1153  			Fatalf("OLITERAL/ONAME/OTYPE should never have calls: %+v", n)
  1154  		}
  1155  		return false
  1156  	case OCALL, OCALLFUNC, OCALLMETH, OCALLINTER:
  1157  		return true
  1158  	case OANDAND, OOROR:
  1159  		// hard with instrumented code
  1160  		if instrumenting {
  1161  			return true
  1162  		}
  1163  	case OINDEX, OSLICE, OSLICEARR, OSLICE3, OSLICE3ARR, OSLICESTR,
  1164  		OIND, ODOTPTR, ODOTTYPE, ODIV, OMOD:
  1165  		// These ops might panic, make sure they are done
  1166  		// before we start marshaling args for a call. See issue 16760.
  1167  		return true
  1168  	}
  1169  
  1170  	if n.Left != nil && n.Left.HasCall() {
  1171  		return true
  1172  	}
  1173  	if n.Right != nil && n.Right.HasCall() {
  1174  		return true
  1175  	}
  1176  	return false
  1177  }
  1178  
  1179  func badtype(op Op, tl *types.Type, tr *types.Type) {
  1180  	fmt_ := ""
  1181  	if tl != nil {
  1182  		fmt_ += fmt.Sprintf("\n\t%v", tl)
  1183  	}
  1184  	if tr != nil {
  1185  		fmt_ += fmt.Sprintf("\n\t%v", tr)
  1186  	}
  1187  
  1188  	// common mistake: *struct and *interface.
  1189  	if tl != nil && tr != nil && tl.IsPtr() && tr.IsPtr() {
  1190  		if tl.Elem().IsStruct() && tr.Elem().IsInterface() {
  1191  			fmt_ += "\n\t(*struct vs *interface)"
  1192  		} else if tl.Elem().IsInterface() && tr.Elem().IsStruct() {
  1193  			fmt_ += "\n\t(*interface vs *struct)"
  1194  		}
  1195  	}
  1196  
  1197  	s := fmt_
  1198  	yyerror("illegal types for operand: %v%s", op, s)
  1199  }
  1200  
  1201  // brcom returns !(op).
  1202  // For example, brcom(==) is !=.
  1203  func brcom(op Op) Op {
  1204  	switch op {
  1205  	case OEQ:
  1206  		return ONE
  1207  	case ONE:
  1208  		return OEQ
  1209  	case OLT:
  1210  		return OGE
  1211  	case OGT:
  1212  		return OLE
  1213  	case OLE:
  1214  		return OGT
  1215  	case OGE:
  1216  		return OLT
  1217  	}
  1218  	Fatalf("brcom: no com for %v\n", op)
  1219  	return op
  1220  }
  1221  
  1222  // brrev returns reverse(op).
  1223  // For example, Brrev(<) is >.
  1224  func brrev(op Op) Op {
  1225  	switch op {
  1226  	case OEQ:
  1227  		return OEQ
  1228  	case ONE:
  1229  		return ONE
  1230  	case OLT:
  1231  		return OGT
  1232  	case OGT:
  1233  		return OLT
  1234  	case OLE:
  1235  		return OGE
  1236  	case OGE:
  1237  		return OLE
  1238  	}
  1239  	Fatalf("brrev: no rev for %v\n", op)
  1240  	return op
  1241  }
  1242  
  1243  // return side effect-free n, appending side effects to init.
  1244  // result is assignable if n is.
  1245  func safeexpr(n *Node, init *Nodes) *Node {
  1246  	if n == nil {
  1247  		return nil
  1248  	}
  1249  
  1250  	if n.Ninit.Len() != 0 {
  1251  		walkstmtlist(n.Ninit.Slice())
  1252  		init.AppendNodes(&n.Ninit)
  1253  	}
  1254  
  1255  	switch n.Op {
  1256  	case ONAME, OLITERAL:
  1257  		return n
  1258  
  1259  	case ODOT, OLEN, OCAP:
  1260  		l := safeexpr(n.Left, init)
  1261  		if l == n.Left {
  1262  			return n
  1263  		}
  1264  		r := nod(OXXX, nil, nil)
  1265  		*r = *n
  1266  		r.Left = l
  1267  		r = typecheck(r, Erv)
  1268  		r = walkexpr(r, init)
  1269  		return r
  1270  
  1271  	case ODOTPTR, OIND:
  1272  		l := safeexpr(n.Left, init)
  1273  		if l == n.Left {
  1274  			return n
  1275  		}
  1276  		a := nod(OXXX, nil, nil)
  1277  		*a = *n
  1278  		a.Left = l
  1279  		a = walkexpr(a, init)
  1280  		return a
  1281  
  1282  	case OINDEX, OINDEXMAP:
  1283  		l := safeexpr(n.Left, init)
  1284  		r := safeexpr(n.Right, init)
  1285  		if l == n.Left && r == n.Right {
  1286  			return n
  1287  		}
  1288  		a := nod(OXXX, nil, nil)
  1289  		*a = *n
  1290  		a.Left = l
  1291  		a.Right = r
  1292  		a = walkexpr(a, init)
  1293  		return a
  1294  
  1295  	case OSTRUCTLIT, OARRAYLIT, OSLICELIT:
  1296  		if isStaticCompositeLiteral(n) {
  1297  			return n
  1298  		}
  1299  	}
  1300  
  1301  	// make a copy; must not be used as an lvalue
  1302  	if islvalue(n) {
  1303  		Fatalf("missing lvalue case in safeexpr: %v", n)
  1304  	}
  1305  	return cheapexpr(n, init)
  1306  }
  1307  
  1308  func copyexpr(n *Node, t *types.Type, init *Nodes) *Node {
  1309  	l := temp(t)
  1310  	a := nod(OAS, l, n)
  1311  	a = typecheck(a, Etop)
  1312  	a = walkexpr(a, init)
  1313  	init.Append(a)
  1314  	return l
  1315  }
  1316  
  1317  // return side-effect free and cheap n, appending side effects to init.
  1318  // result may not be assignable.
  1319  func cheapexpr(n *Node, init *Nodes) *Node {
  1320  	switch n.Op {
  1321  	case ONAME, OLITERAL:
  1322  		return n
  1323  	}
  1324  
  1325  	return copyexpr(n, n.Type, init)
  1326  }
  1327  
  1328  // Code to resolve elided DOTs in embedded types.
  1329  
  1330  // A Dlist stores a pointer to a TFIELD Type embedded within
  1331  // a TSTRUCT or TINTER Type.
  1332  type Dlist struct {
  1333  	field *types.Field
  1334  }
  1335  
  1336  // dotlist is used by adddot1 to record the path of embedded fields
  1337  // used to access a target field or method.
  1338  // Must be non-nil so that dotpath returns a non-nil slice even if d is zero.
  1339  var dotlist = make([]Dlist, 10)
  1340  
  1341  // lookdot0 returns the number of fields or methods named s associated
  1342  // with Type t. If exactly one exists, it will be returned in *save
  1343  // (if save is not nil).
  1344  func lookdot0(s *types.Sym, t *types.Type, save **types.Field, ignorecase bool) int {
  1345  	u := t
  1346  	if u.IsPtr() {
  1347  		u = u.Elem()
  1348  	}
  1349  
  1350  	c := 0
  1351  	if u.IsStruct() || u.IsInterface() {
  1352  		for _, f := range u.Fields().Slice() {
  1353  			if f.Sym == s || (ignorecase && f.Type.Etype == TFUNC && f.Type.Recv() != nil && strings.EqualFold(f.Sym.Name, s.Name)) {
  1354  				if save != nil {
  1355  					*save = f
  1356  				}
  1357  				c++
  1358  			}
  1359  		}
  1360  	}
  1361  
  1362  	u = methtype(t)
  1363  	if u != nil {
  1364  		for _, f := range u.Methods().Slice() {
  1365  			if f.Embedded == 0 && (f.Sym == s || (ignorecase && strings.EqualFold(f.Sym.Name, s.Name))) {
  1366  				if save != nil {
  1367  					*save = f
  1368  				}
  1369  				c++
  1370  			}
  1371  		}
  1372  	}
  1373  
  1374  	return c
  1375  }
  1376  
  1377  // adddot1 returns the number of fields or methods named s at depth d in Type t.
  1378  // If exactly one exists, it will be returned in *save (if save is not nil),
  1379  // and dotlist will contain the path of embedded fields traversed to find it,
  1380  // in reverse order. If none exist, more will indicate whether t contains any
  1381  // embedded fields at depth d, so callers can decide whether to retry at
  1382  // a greater depth.
  1383  func adddot1(s *types.Sym, t *types.Type, d int, save **types.Field, ignorecase bool) (c int, more bool) {
  1384  	if t.Recur() {
  1385  		return
  1386  	}
  1387  	t.SetRecur(true)
  1388  	defer t.SetRecur(false)
  1389  
  1390  	var u *types.Type
  1391  	d--
  1392  	if d < 0 {
  1393  		// We've reached our target depth. If t has any fields/methods
  1394  		// named s, then we're done. Otherwise, we still need to check
  1395  		// below for embedded fields.
  1396  		c = lookdot0(s, t, save, ignorecase)
  1397  		if c != 0 {
  1398  			return c, false
  1399  		}
  1400  	}
  1401  
  1402  	u = t
  1403  	if u.IsPtr() {
  1404  		u = u.Elem()
  1405  	}
  1406  	if !u.IsStruct() && !u.IsInterface() {
  1407  		return c, false
  1408  	}
  1409  
  1410  	for _, f := range u.Fields().Slice() {
  1411  		if f.Embedded == 0 || f.Sym == nil {
  1412  			continue
  1413  		}
  1414  		if d < 0 {
  1415  			// Found an embedded field at target depth.
  1416  			return c, true
  1417  		}
  1418  		a, more1 := adddot1(s, f.Type, d, save, ignorecase)
  1419  		if a != 0 && c == 0 {
  1420  			dotlist[d].field = f
  1421  		}
  1422  		c += a
  1423  		if more1 {
  1424  			more = true
  1425  		}
  1426  	}
  1427  
  1428  	return c, more
  1429  }
  1430  
  1431  // dotpath computes the unique shortest explicit selector path to fully qualify
  1432  // a selection expression x.f, where x is of type t and f is the symbol s.
  1433  // If no such path exists, dotpath returns nil.
  1434  // If there are multiple shortest paths to the same depth, ambig is true.
  1435  func dotpath(s *types.Sym, t *types.Type, save **types.Field, ignorecase bool) (path []Dlist, ambig bool) {
  1436  	// The embedding of types within structs imposes a tree structure onto
  1437  	// types: structs parent the types they embed, and types parent their
  1438  	// fields or methods. Our goal here is to find the shortest path to
  1439  	// a field or method named s in the subtree rooted at t. To accomplish
  1440  	// that, we iteratively perform depth-first searches of increasing depth
  1441  	// until we either find the named field/method or exhaust the tree.
  1442  	for d := 0; ; d++ {
  1443  		if d > len(dotlist) {
  1444  			dotlist = append(dotlist, Dlist{})
  1445  		}
  1446  		if c, more := adddot1(s, t, d, save, ignorecase); c == 1 {
  1447  			return dotlist[:d], false
  1448  		} else if c > 1 {
  1449  			return nil, true
  1450  		} else if !more {
  1451  			return nil, false
  1452  		}
  1453  	}
  1454  }
  1455  
  1456  // in T.field
  1457  // find missing fields that
  1458  // will give shortest unique addressing.
  1459  // modify the tree with missing type names.
  1460  func adddot(n *Node) *Node {
  1461  	n.Left = typecheck(n.Left, Etype|Erv)
  1462  	if n.Left.Diag() {
  1463  		n.SetDiag(true)
  1464  	}
  1465  	t := n.Left.Type
  1466  	if t == nil {
  1467  		return n
  1468  	}
  1469  
  1470  	if n.Left.Op == OTYPE {
  1471  		return n
  1472  	}
  1473  
  1474  	s := n.Sym
  1475  	if s == nil {
  1476  		return n
  1477  	}
  1478  
  1479  	switch path, ambig := dotpath(s, t, nil, false); {
  1480  	case path != nil:
  1481  		// rebuild elided dots
  1482  		for c := len(path) - 1; c >= 0; c-- {
  1483  			n.Left = nodSym(ODOT, n.Left, path[c].field.Sym)
  1484  			n.Left.SetImplicit(true)
  1485  		}
  1486  	case ambig:
  1487  		yyerror("ambiguous selector %v", n)
  1488  		n.Left = nil
  1489  	}
  1490  
  1491  	return n
  1492  }
  1493  
  1494  // code to help generate trampoline
  1495  // functions for methods on embedded
  1496  // subtypes.
  1497  // these are approx the same as
  1498  // the corresponding adddot routines
  1499  // except that they expect to be called
  1500  // with unique tasks and they return
  1501  // the actual methods.
  1502  type Symlink struct {
  1503  	field     *types.Field
  1504  	followptr bool
  1505  }
  1506  
  1507  var slist []Symlink
  1508  
  1509  func expand0(t *types.Type, followptr bool) {
  1510  	u := t
  1511  	if u.IsPtr() {
  1512  		followptr = true
  1513  		u = u.Elem()
  1514  	}
  1515  
  1516  	if u.IsInterface() {
  1517  		for _, f := range u.Fields().Slice() {
  1518  			if f.Sym.Uniq() {
  1519  				continue
  1520  			}
  1521  			f.Sym.SetUniq(true)
  1522  			slist = append(slist, Symlink{field: f, followptr: followptr})
  1523  		}
  1524  
  1525  		return
  1526  	}
  1527  
  1528  	u = methtype(t)
  1529  	if u != nil {
  1530  		for _, f := range u.Methods().Slice() {
  1531  			if f.Sym.Uniq() {
  1532  				continue
  1533  			}
  1534  			f.Sym.SetUniq(true)
  1535  			slist = append(slist, Symlink{field: f, followptr: followptr})
  1536  		}
  1537  	}
  1538  }
  1539  
  1540  func expand1(t *types.Type, top, followptr bool) {
  1541  	if t.Recur() {
  1542  		return
  1543  	}
  1544  	t.SetRecur(true)
  1545  
  1546  	if !top {
  1547  		expand0(t, followptr)
  1548  	}
  1549  
  1550  	u := t
  1551  	if u.IsPtr() {
  1552  		followptr = true
  1553  		u = u.Elem()
  1554  	}
  1555  
  1556  	if u.IsStruct() || u.IsInterface() {
  1557  		for _, f := range u.Fields().Slice() {
  1558  			if f.Embedded == 0 {
  1559  				continue
  1560  			}
  1561  			if f.Sym == nil {
  1562  				continue
  1563  			}
  1564  			expand1(f.Type, false, followptr)
  1565  		}
  1566  	}
  1567  
  1568  	t.SetRecur(false)
  1569  }
  1570  
  1571  func expandmeth(t *types.Type) {
  1572  	if t == nil || t.AllMethods().Len() != 0 {
  1573  		return
  1574  	}
  1575  
  1576  	// mark top-level method symbols
  1577  	// so that expand1 doesn't consider them.
  1578  	for _, f := range t.Methods().Slice() {
  1579  		f.Sym.SetUniq(true)
  1580  	}
  1581  
  1582  	// generate all reachable methods
  1583  	slist = slist[:0]
  1584  	expand1(t, true, false)
  1585  
  1586  	// check each method to be uniquely reachable
  1587  	var ms []*types.Field
  1588  	for i, sl := range slist {
  1589  		slist[i].field = nil
  1590  		sl.field.Sym.SetUniq(false)
  1591  
  1592  		var f *types.Field
  1593  		if path, _ := dotpath(sl.field.Sym, t, &f, false); path == nil {
  1594  			continue
  1595  		}
  1596  
  1597  		// dotpath may have dug out arbitrary fields, we only want methods.
  1598  		if f.Type.Etype != TFUNC || f.Type.Recv() == nil {
  1599  			continue
  1600  		}
  1601  
  1602  		// add it to the base type method list
  1603  		f = f.Copy()
  1604  		f.Embedded = 1 // needs a trampoline
  1605  		if sl.followptr {
  1606  			f.Embedded = 2
  1607  		}
  1608  		ms = append(ms, f)
  1609  	}
  1610  
  1611  	for _, f := range t.Methods().Slice() {
  1612  		f.Sym.SetUniq(false)
  1613  	}
  1614  
  1615  	ms = append(ms, t.Methods().Slice()...)
  1616  	t.AllMethods().Set(ms)
  1617  }
  1618  
  1619  // Given funarg struct list, return list of ODCLFIELD Node fn args.
  1620  func structargs(tl *types.Type, mustname bool) []*Node {
  1621  	var args []*Node
  1622  	gen := 0
  1623  	for _, t := range tl.Fields().Slice() {
  1624  		var n *Node
  1625  		if mustname && (t.Sym == nil || t.Sym.Name == "_") {
  1626  			// invent a name so that we can refer to it in the trampoline
  1627  			buf := fmt.Sprintf(".anon%d", gen)
  1628  			gen++
  1629  			n = newname(lookup(buf))
  1630  		} else if t.Sym != nil {
  1631  			n = newname(t.Sym)
  1632  		}
  1633  		a := nod(ODCLFIELD, n, typenod(t.Type))
  1634  		a.SetIsddd(t.Isddd())
  1635  		if n != nil {
  1636  			n.SetIsddd(t.Isddd())
  1637  		}
  1638  		args = append(args, a)
  1639  	}
  1640  
  1641  	return args
  1642  }
  1643  
  1644  // Generate a wrapper function to convert from
  1645  // a receiver of type T to a receiver of type U.
  1646  // That is,
  1647  //
  1648  //	func (t T) M() {
  1649  //		...
  1650  //	}
  1651  //
  1652  // already exists; this function generates
  1653  //
  1654  //	func (u U) M() {
  1655  //		u.M()
  1656  //	}
  1657  //
  1658  // where the types T and U are such that u.M() is valid
  1659  // and calls the T.M method.
  1660  // The resulting function is for use in method tables.
  1661  //
  1662  //	rcvr - U
  1663  //	method - M func (t T)(), a TFIELD type struct
  1664  //	newnam - the eventual mangled name of this function
  1665  func genwrapper(rcvr *types.Type, method *types.Field, newnam *types.Sym, iface bool) {
  1666  	if false && Debug['r'] != 0 {
  1667  		fmt.Printf("genwrapper rcvrtype=%v method=%v newnam=%v\n", rcvr, method, newnam)
  1668  	}
  1669  
  1670  	// Only generate (*T).M wrappers for T.M in T's own package.
  1671  	if rcvr.IsPtr() && rcvr.Elem() == method.Type.Recv().Type &&
  1672  		rcvr.Elem().Sym != nil && rcvr.Elem().Sym.Pkg != localpkg {
  1673  		return
  1674  	}
  1675  
  1676  	lineno = autogeneratedPos
  1677  
  1678  	dclcontext = PEXTERN
  1679  	types.Markdcl()
  1680  
  1681  	this := namedfield(".this", rcvr)
  1682  	this.Left.Name.Param.Ntype = this.Right
  1683  	in := structargs(method.Type.Params(), true)
  1684  	out := structargs(method.Type.Results(), false)
  1685  
  1686  	t := nod(OTFUNC, nil, nil)
  1687  	l := []*Node{this}
  1688  	if iface && rcvr.Width < int64(Widthptr) {
  1689  		// Building method for interface table and receiver
  1690  		// is smaller than the single pointer-sized word
  1691  		// that the interface call will pass in.
  1692  		// Add a dummy padding argument after the
  1693  		// receiver to make up the difference.
  1694  		tpad := types.NewArray(types.Types[TUINT8], int64(Widthptr)-rcvr.Width)
  1695  		pad := namedfield(".pad", tpad)
  1696  		l = append(l, pad)
  1697  	}
  1698  
  1699  	t.List.Set(append(l, in...))
  1700  	t.Rlist.Set(out)
  1701  
  1702  	fn := dclfunc(newnam, t)
  1703  	fn.Func.SetDupok(true)
  1704  	fn.Func.Nname.Sym.SetExported(true) // prevent export; see closure.go
  1705  
  1706  	// arg list
  1707  	var args []*Node
  1708  
  1709  	isddd := false
  1710  	for _, n := range in {
  1711  		args = append(args, n.Left)
  1712  		isddd = n.Left.Isddd()
  1713  	}
  1714  
  1715  	methodrcvr := method.Type.Recv().Type
  1716  
  1717  	// generate nil pointer check for better error
  1718  	if rcvr.IsPtr() && rcvr.Elem() == methodrcvr {
  1719  		// generating wrapper from *T to T.
  1720  		n := nod(OIF, nil, nil)
  1721  		n.Left = nod(OEQ, this.Left, nodnil())
  1722  		call := nod(OCALL, syslook("panicwrap"), nil)
  1723  		n.Nbody.Set1(call)
  1724  		fn.Nbody.Append(n)
  1725  	}
  1726  
  1727  	dot := adddot(nodSym(OXDOT, this.Left, method.Sym))
  1728  
  1729  	// generate call
  1730  	// It's not possible to use a tail call when dynamic linking on ppc64le. The
  1731  	// bad scenario is when a local call is made to the wrapper: the wrapper will
  1732  	// call the implementation, which might be in a different module and so set
  1733  	// the TOC to the appropriate value for that module. But if it returns
  1734  	// directly to the wrapper's caller, nothing will reset it to the correct
  1735  	// value for that function.
  1736  	if !instrumenting && rcvr.IsPtr() && methodrcvr.IsPtr() && method.Embedded != 0 && !isifacemethod(method.Type) && !(thearch.LinkArch.Name == "ppc64le" && Ctxt.Flag_dynlink) {
  1737  		// generate tail call: adjust pointer receiver and jump to embedded method.
  1738  		dot = dot.Left // skip final .M
  1739  		// TODO(mdempsky): Remove dependency on dotlist.
  1740  		if !dotlist[0].field.Type.IsPtr() {
  1741  			dot = nod(OADDR, dot, nil)
  1742  		}
  1743  		as := nod(OAS, this.Left, nod(OCONVNOP, dot, nil))
  1744  		as.Right.Type = rcvr
  1745  		fn.Nbody.Append(as)
  1746  		fn.Nbody.Append(nodSym(ORETJMP, nil, methodsym(method.Sym, methodrcvr, false)))
  1747  		// When tail-calling, we can't use a frame pointer.
  1748  		fn.Func.SetNoFramePointer(true)
  1749  	} else {
  1750  		fn.Func.SetWrapper(true) // ignore frame for panic+recover matching
  1751  		call := nod(OCALL, dot, nil)
  1752  		call.List.Set(args)
  1753  		call.SetIsddd(isddd)
  1754  		if method.Type.NumResults() > 0 {
  1755  			n := nod(ORETURN, nil, nil)
  1756  			n.List.Set1(call)
  1757  			call = n
  1758  		}
  1759  
  1760  		fn.Nbody.Append(call)
  1761  	}
  1762  
  1763  	if false && Debug['r'] != 0 {
  1764  		dumplist("genwrapper body", fn.Nbody)
  1765  	}
  1766  
  1767  	funcbody()
  1768  	Curfn = fn
  1769  	types.Popdcl()
  1770  	if debug_dclstack != 0 {
  1771  		testdclstack()
  1772  	}
  1773  
  1774  	// wrappers where T is anonymous (struct or interface) can be duplicated.
  1775  	if rcvr.IsStruct() || rcvr.IsInterface() || rcvr.IsPtr() && rcvr.Elem().IsStruct() {
  1776  		fn.Func.SetDupok(true)
  1777  	}
  1778  	fn = typecheck(fn, Etop)
  1779  	typecheckslice(fn.Nbody.Slice(), Etop)
  1780  
  1781  	inlcalls(fn)
  1782  	escAnalyze([]*Node{fn}, false)
  1783  
  1784  	Curfn = nil
  1785  	funccompile(fn)
  1786  }
  1787  
  1788  func hashmem(t *types.Type) *Node {
  1789  	sym := Runtimepkg.Lookup("memhash")
  1790  
  1791  	n := newname(sym)
  1792  	n.SetClass(PFUNC)
  1793  	tfn := nod(OTFUNC, nil, nil)
  1794  	tfn.List.Append(anonfield(types.NewPtr(t)))
  1795  	tfn.List.Append(anonfield(types.Types[TUINTPTR]))
  1796  	tfn.List.Append(anonfield(types.Types[TUINTPTR]))
  1797  	tfn.Rlist.Append(anonfield(types.Types[TUINTPTR]))
  1798  	tfn = typecheck(tfn, Etype)
  1799  	n.Type = tfn.Type
  1800  	return n
  1801  }
  1802  
  1803  func ifacelookdot(s *types.Sym, t *types.Type, ignorecase bool) (m *types.Field, followptr bool) {
  1804  	if t == nil {
  1805  		return nil, false
  1806  	}
  1807  
  1808  	path, ambig := dotpath(s, t, &m, ignorecase)
  1809  	if path == nil {
  1810  		if ambig {
  1811  			yyerror("%v.%v is ambiguous", t, s)
  1812  		}
  1813  		return nil, false
  1814  	}
  1815  
  1816  	for _, d := range path {
  1817  		if d.field.Type.IsPtr() {
  1818  			followptr = true
  1819  			break
  1820  		}
  1821  	}
  1822  
  1823  	if m.Type.Etype != TFUNC || m.Type.Recv() == nil {
  1824  		yyerror("%v.%v is a field, not a method", t, s)
  1825  		return nil, followptr
  1826  	}
  1827  
  1828  	return m, followptr
  1829  }
  1830  
  1831  func implements(t, iface *types.Type, m, samename **types.Field, ptr *int) bool {
  1832  	t0 := t
  1833  	if t == nil {
  1834  		return false
  1835  	}
  1836  
  1837  	// if this is too slow,
  1838  	// could sort these first
  1839  	// and then do one loop.
  1840  
  1841  	if t.IsInterface() {
  1842  	Outer:
  1843  		for _, im := range iface.Fields().Slice() {
  1844  			for _, tm := range t.Fields().Slice() {
  1845  				if tm.Sym == im.Sym {
  1846  					if eqtype(tm.Type, im.Type) {
  1847  						continue Outer
  1848  					}
  1849  					*m = im
  1850  					*samename = tm
  1851  					*ptr = 0
  1852  					return false
  1853  				}
  1854  			}
  1855  
  1856  			*m = im
  1857  			*samename = nil
  1858  			*ptr = 0
  1859  			return false
  1860  		}
  1861  
  1862  		return true
  1863  	}
  1864  
  1865  	t = methtype(t)
  1866  	if t != nil {
  1867  		expandmeth(t)
  1868  	}
  1869  	for _, im := range iface.Fields().Slice() {
  1870  		if im.Broke() {
  1871  			continue
  1872  		}
  1873  		tm, followptr := ifacelookdot(im.Sym, t, false)
  1874  		if tm == nil || tm.Nointerface() || !eqtype(tm.Type, im.Type) {
  1875  			if tm == nil {
  1876  				tm, followptr = ifacelookdot(im.Sym, t, true)
  1877  			}
  1878  			*m = im
  1879  			*samename = tm
  1880  			*ptr = 0
  1881  			return false
  1882  		}
  1883  
  1884  		// if pointer receiver in method,
  1885  		// the method does not exist for value types.
  1886  		rcvr := tm.Type.Recv().Type
  1887  
  1888  		if rcvr.IsPtr() && !t0.IsPtr() && !followptr && !isifacemethod(tm.Type) {
  1889  			if false && Debug['r'] != 0 {
  1890  				yyerror("interface pointer mismatch")
  1891  			}
  1892  
  1893  			*m = im
  1894  			*samename = nil
  1895  			*ptr = 1
  1896  			return false
  1897  		}
  1898  	}
  1899  
  1900  	// We're going to emit an OCONVIFACE.
  1901  	// Call itabname so that (t, iface)
  1902  	// gets added to itabs early, which allows
  1903  	// us to de-virtualize calls through this
  1904  	// type/interface pair later. See peekitabs in reflect.go
  1905  	if isdirectiface(t0) && !iface.IsEmptyInterface() {
  1906  		itabname(t0, iface)
  1907  	}
  1908  	return true
  1909  }
  1910  
  1911  func listtreecopy(l []*Node, pos src.XPos) []*Node {
  1912  	var out []*Node
  1913  	for _, n := range l {
  1914  		out = append(out, treecopy(n, pos))
  1915  	}
  1916  	return out
  1917  }
  1918  
  1919  func liststmt(l []*Node) *Node {
  1920  	n := nod(OBLOCK, nil, nil)
  1921  	n.List.Set(l)
  1922  	if len(l) != 0 {
  1923  		n.Pos = l[0].Pos
  1924  	}
  1925  	return n
  1926  }
  1927  
  1928  func (l Nodes) asblock() *Node {
  1929  	n := nod(OBLOCK, nil, nil)
  1930  	n.List = l
  1931  	if l.Len() != 0 {
  1932  		n.Pos = l.First().Pos
  1933  	}
  1934  	return n
  1935  }
  1936  
  1937  func ngotype(n *Node) *types.Sym {
  1938  	if n.Type != nil {
  1939  		return typenamesym(n.Type)
  1940  	}
  1941  	return nil
  1942  }
  1943  
  1944  // The result of addinit MUST be assigned back to n, e.g.
  1945  // 	n.Left = addinit(n.Left, init)
  1946  func addinit(n *Node, init []*Node) *Node {
  1947  	if len(init) == 0 {
  1948  		return n
  1949  	}
  1950  	if n.mayBeShared() {
  1951  		// Introduce OCONVNOP to hold init list.
  1952  		n = nod(OCONVNOP, n, nil)
  1953  		n.Type = n.Left.Type
  1954  		n.SetTypecheck(1)
  1955  	}
  1956  
  1957  	n.Ninit.Prepend(init...)
  1958  	n.SetHasCall(true)
  1959  	return n
  1960  }
  1961  
  1962  var reservedimports = []string{
  1963  	"go",
  1964  	"type",
  1965  }
  1966  
  1967  func isbadimport(path string, allowSpace bool) bool {
  1968  	if strings.Contains(path, "\x00") {
  1969  		yyerror("import path contains NUL")
  1970  		return true
  1971  	}
  1972  
  1973  	for _, ri := range reservedimports {
  1974  		if path == ri {
  1975  			yyerror("import path %q is reserved and cannot be used", path)
  1976  			return true
  1977  		}
  1978  	}
  1979  
  1980  	for _, r := range path {
  1981  		if r == utf8.RuneError {
  1982  			yyerror("import path contains invalid UTF-8 sequence: %q", path)
  1983  			return true
  1984  		}
  1985  
  1986  		if r < 0x20 || r == 0x7f {
  1987  			yyerror("import path contains control character: %q", path)
  1988  			return true
  1989  		}
  1990  
  1991  		if r == '\\' {
  1992  			yyerror("import path contains backslash; use slash: %q", path)
  1993  			return true
  1994  		}
  1995  
  1996  		if !allowSpace && unicode.IsSpace(r) {
  1997  			yyerror("import path contains space character: %q", path)
  1998  			return true
  1999  		}
  2000  
  2001  		if strings.ContainsRune("!\"#$%&'()*,:;<=>?[]^`{|}", r) {
  2002  			yyerror("import path contains invalid character '%c': %q", r, path)
  2003  			return true
  2004  		}
  2005  	}
  2006  
  2007  	return false
  2008  }
  2009  
  2010  func checknil(x *Node, init *Nodes) {
  2011  	x = walkexpr(x, nil) // caller has not done this yet
  2012  	if x.Type.IsInterface() {
  2013  		x = nod(OITAB, x, nil)
  2014  		x = typecheck(x, Erv)
  2015  	}
  2016  
  2017  	n := nod(OCHECKNIL, x, nil)
  2018  	n.SetTypecheck(1)
  2019  	init.Append(n)
  2020  }
  2021  
  2022  // Can this type be stored directly in an interface word?
  2023  // Yes, if the representation is a single pointer.
  2024  func isdirectiface(t *types.Type) bool {
  2025  	switch t.Etype {
  2026  	case TPTR32,
  2027  		TPTR64,
  2028  		TCHAN,
  2029  		TMAP,
  2030  		TFUNC,
  2031  		TUNSAFEPTR:
  2032  		return true
  2033  
  2034  	case TARRAY:
  2035  		// Array of 1 direct iface type can be direct.
  2036  		return t.NumElem() == 1 && isdirectiface(t.Elem())
  2037  
  2038  	case TSTRUCT:
  2039  		// Struct with 1 field of direct iface type can be direct.
  2040  		return t.NumFields() == 1 && isdirectiface(t.Field(0).Type)
  2041  	}
  2042  
  2043  	return false
  2044  }
  2045  
  2046  // itabType loads the _type field from a runtime.itab struct.
  2047  func itabType(itab *Node) *Node {
  2048  	typ := nodSym(ODOTPTR, itab, nil)
  2049  	typ.Type = types.NewPtr(types.Types[TUINT8])
  2050  	typ.SetTypecheck(1)
  2051  	typ.Xoffset = int64(Widthptr) // offset of _type in runtime.itab
  2052  	typ.SetBounded(true)          // guaranteed not to fault
  2053  	return typ
  2054  }
  2055  
  2056  // ifaceData loads the data field from an interface.
  2057  // The concrete type must be known to have type t.
  2058  // It follows the pointer if !isdirectiface(t).
  2059  func ifaceData(n *Node, t *types.Type) *Node {
  2060  	ptr := nodSym(OIDATA, n, nil)
  2061  	if isdirectiface(t) {
  2062  		ptr.Type = t
  2063  		ptr.SetTypecheck(1)
  2064  		return ptr
  2065  	}
  2066  	ptr.Type = types.NewPtr(t)
  2067  	ptr.SetBounded(true)
  2068  	ptr.SetTypecheck(1)
  2069  	ind := nod(OIND, ptr, nil)
  2070  	ind.Type = t
  2071  	ind.SetTypecheck(1)
  2072  	return ind
  2073  }