github.com/goproxy0/go@v0.0.0-20171111080102-49cc0c489d2c/src/cmd/compile/internal/gc/syntax.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // “Abstract” syntax representation.
     6  
     7  package gc
     8  
     9  import (
    10  	"cmd/compile/internal/ssa"
    11  	"cmd/compile/internal/syntax"
    12  	"cmd/compile/internal/types"
    13  	"cmd/internal/obj"
    14  	"cmd/internal/src"
    15  )
    16  
    17  // A Node is a single node in the syntax tree.
    18  // Actually the syntax tree is a syntax DAG, because there is only one
    19  // node with Op=ONAME for a given instance of a variable x.
    20  // The same is true for Op=OTYPE and Op=OLITERAL. See Node.mayBeShared.
    21  type Node struct {
    22  	// Tree structure.
    23  	// Generic recursive walks should follow these fields.
    24  	Left  *Node
    25  	Right *Node
    26  	Ninit Nodes
    27  	Nbody Nodes
    28  	List  Nodes
    29  	Rlist Nodes
    30  
    31  	// most nodes
    32  	Type *types.Type
    33  	Orig *Node // original form, for printing, and tracking copies of ONAMEs
    34  
    35  	// func
    36  	Func *Func
    37  
    38  	// ONAME, OTYPE, OPACK, OLABEL, some OLITERAL
    39  	Name *Name
    40  
    41  	Sym *types.Sym  // various
    42  	E   interface{} // Opt or Val, see methods below
    43  
    44  	// Various. Usually an offset into a struct. For example:
    45  	// - ONAME nodes that refer to local variables use it to identify their stack frame position.
    46  	// - ODOT, ODOTPTR, and OINDREGSP use it to indicate offset relative to their base address.
    47  	// - OSTRUCTKEY uses it to store the named field's offset.
    48  	// - Named OLITERALs use it to to store their ambient iota value.
    49  	// Possibly still more uses. If you find any, document them.
    50  	Xoffset int64
    51  
    52  	Pos src.XPos
    53  
    54  	flags bitset32
    55  
    56  	Esc uint16 // EscXXX
    57  
    58  	Op    Op
    59  	Etype types.EType // op for OASOP, etype for OTYPE, exclam for export, 6g saved reg, ChanDir for OTCHAN, for OINDEXMAP 1=LHS,0=RHS
    60  }
    61  
    62  // IsAutoTmp indicates if n was created by the compiler as a temporary,
    63  // based on the setting of the .AutoTemp flag in n's Name.
    64  func (n *Node) IsAutoTmp() bool {
    65  	if n == nil || n.Op != ONAME {
    66  		return false
    67  	}
    68  	return n.Name.AutoTemp()
    69  }
    70  
    71  const (
    72  	nodeClass, _     = iota, 1 << iota // PPARAM, PAUTO, PEXTERN, etc; three bits; first in the list because frequently accessed
    73  	_, _                               // second nodeClass bit
    74  	_, _                               // third nodeClass bit
    75  	nodeWalkdef, _                     // tracks state during typecheckdef; 2 == loop detected; two bits
    76  	_, _                               // second nodeWalkdef bit
    77  	nodeTypecheck, _                   // tracks state during typechecking; 2 == loop detected; two bits
    78  	_, _                               // second nodeTypecheck bit
    79  	nodeInitorder, _                   // tracks state during init1; two bits
    80  	_, _                               // second nodeInitorder bit
    81  	_, nodeHasBreak
    82  	_, nodeIsClosureVar
    83  	_, nodeIsOutputParamHeapAddr
    84  	_, nodeNoInline  // used internally by inliner to indicate that a function call should not be inlined; set for OCALLFUNC and OCALLMETH only
    85  	_, nodeAssigned  // is the variable ever assigned to
    86  	_, nodeAddrtaken // address taken, even if not moved to heap
    87  	_, nodeImplicit
    88  	_, nodeIsddd    // is the argument variadic
    89  	_, nodeDiag     // already printed error about this
    90  	_, nodeColas    // OAS resulting from :=
    91  	_, nodeNonNil   // guaranteed to be non-nil
    92  	_, nodeNoescape // func arguments do not escape; TODO(rsc): move Noescape to Func struct (see CL 7360)
    93  	_, nodeBounded  // bounds check unnecessary
    94  	_, nodeAddable  // addressable
    95  	_, nodeHasCall  // expression contains a function call
    96  	_, nodeLikely   // if statement condition likely
    97  	_, nodeHasVal   // node.E contains a Val
    98  	_, nodeHasOpt   // node.E contains an Opt
    99  	_, nodeEmbedded // ODCLFIELD embedded type
   100  )
   101  
   102  func (n *Node) Class() Class     { return Class(n.flags.get3(nodeClass)) }
   103  func (n *Node) Walkdef() uint8   { return n.flags.get2(nodeWalkdef) }
   104  func (n *Node) Typecheck() uint8 { return n.flags.get2(nodeTypecheck) }
   105  func (n *Node) Initorder() uint8 { return n.flags.get2(nodeInitorder) }
   106  
   107  func (n *Node) HasBreak() bool              { return n.flags&nodeHasBreak != 0 }
   108  func (n *Node) IsClosureVar() bool          { return n.flags&nodeIsClosureVar != 0 }
   109  func (n *Node) NoInline() bool              { return n.flags&nodeNoInline != 0 }
   110  func (n *Node) IsOutputParamHeapAddr() bool { return n.flags&nodeIsOutputParamHeapAddr != 0 }
   111  func (n *Node) Assigned() bool              { return n.flags&nodeAssigned != 0 }
   112  func (n *Node) Addrtaken() bool             { return n.flags&nodeAddrtaken != 0 }
   113  func (n *Node) Implicit() bool              { return n.flags&nodeImplicit != 0 }
   114  func (n *Node) Isddd() bool                 { return n.flags&nodeIsddd != 0 }
   115  func (n *Node) Diag() bool                  { return n.flags&nodeDiag != 0 }
   116  func (n *Node) Colas() bool                 { return n.flags&nodeColas != 0 }
   117  func (n *Node) NonNil() bool                { return n.flags&nodeNonNil != 0 }
   118  func (n *Node) Noescape() bool              { return n.flags&nodeNoescape != 0 }
   119  func (n *Node) Bounded() bool               { return n.flags&nodeBounded != 0 }
   120  func (n *Node) Addable() bool               { return n.flags&nodeAddable != 0 }
   121  func (n *Node) HasCall() bool               { return n.flags&nodeHasCall != 0 }
   122  func (n *Node) Likely() bool                { return n.flags&nodeLikely != 0 }
   123  func (n *Node) HasVal() bool                { return n.flags&nodeHasVal != 0 }
   124  func (n *Node) HasOpt() bool                { return n.flags&nodeHasOpt != 0 }
   125  func (n *Node) Embedded() bool              { return n.flags&nodeEmbedded != 0 }
   126  
   127  func (n *Node) SetClass(b Class)     { n.flags.set3(nodeClass, uint8(b)) }
   128  func (n *Node) SetWalkdef(b uint8)   { n.flags.set2(nodeWalkdef, b) }
   129  func (n *Node) SetTypecheck(b uint8) { n.flags.set2(nodeTypecheck, b) }
   130  func (n *Node) SetInitorder(b uint8) { n.flags.set2(nodeInitorder, b) }
   131  
   132  func (n *Node) SetHasBreak(b bool)              { n.flags.set(nodeHasBreak, b) }
   133  func (n *Node) SetIsClosureVar(b bool)          { n.flags.set(nodeIsClosureVar, b) }
   134  func (n *Node) SetNoInline(b bool)              { n.flags.set(nodeNoInline, b) }
   135  func (n *Node) SetIsOutputParamHeapAddr(b bool) { n.flags.set(nodeIsOutputParamHeapAddr, b) }
   136  func (n *Node) SetAssigned(b bool)              { n.flags.set(nodeAssigned, b) }
   137  func (n *Node) SetAddrtaken(b bool)             { n.flags.set(nodeAddrtaken, b) }
   138  func (n *Node) SetImplicit(b bool)              { n.flags.set(nodeImplicit, b) }
   139  func (n *Node) SetIsddd(b bool)                 { n.flags.set(nodeIsddd, b) }
   140  func (n *Node) SetDiag(b bool)                  { n.flags.set(nodeDiag, b) }
   141  func (n *Node) SetColas(b bool)                 { n.flags.set(nodeColas, b) }
   142  func (n *Node) SetNonNil(b bool)                { n.flags.set(nodeNonNil, b) }
   143  func (n *Node) SetNoescape(b bool)              { n.flags.set(nodeNoescape, b) }
   144  func (n *Node) SetBounded(b bool)               { n.flags.set(nodeBounded, b) }
   145  func (n *Node) SetAddable(b bool)               { n.flags.set(nodeAddable, b) }
   146  func (n *Node) SetHasCall(b bool)               { n.flags.set(nodeHasCall, b) }
   147  func (n *Node) SetLikely(b bool)                { n.flags.set(nodeLikely, b) }
   148  func (n *Node) SetHasVal(b bool)                { n.flags.set(nodeHasVal, b) }
   149  func (n *Node) SetHasOpt(b bool)                { n.flags.set(nodeHasOpt, b) }
   150  func (n *Node) SetEmbedded(b bool)              { n.flags.set(nodeEmbedded, b) }
   151  
   152  // Val returns the Val for the node.
   153  func (n *Node) Val() Val {
   154  	if !n.HasVal() {
   155  		return Val{}
   156  	}
   157  	return Val{n.E}
   158  }
   159  
   160  // SetVal sets the Val for the node, which must not have been used with SetOpt.
   161  func (n *Node) SetVal(v Val) {
   162  	if n.HasOpt() {
   163  		Debug['h'] = 1
   164  		Dump("have Opt", n)
   165  		Fatalf("have Opt")
   166  	}
   167  	n.SetHasVal(true)
   168  	n.E = v.U
   169  }
   170  
   171  // Opt returns the optimizer data for the node.
   172  func (n *Node) Opt() interface{} {
   173  	if !n.HasOpt() {
   174  		return nil
   175  	}
   176  	return n.E
   177  }
   178  
   179  // SetOpt sets the optimizer data for the node, which must not have been used with SetVal.
   180  // SetOpt(nil) is ignored for Vals to simplify call sites that are clearing Opts.
   181  func (n *Node) SetOpt(x interface{}) {
   182  	if x == nil && n.HasVal() {
   183  		return
   184  	}
   185  	if n.HasVal() {
   186  		Debug['h'] = 1
   187  		Dump("have Val", n)
   188  		Fatalf("have Val")
   189  	}
   190  	n.SetHasOpt(true)
   191  	n.E = x
   192  }
   193  
   194  func (n *Node) Iota() int64 {
   195  	return n.Xoffset
   196  }
   197  
   198  func (n *Node) SetIota(x int64) {
   199  	n.Xoffset = x
   200  }
   201  
   202  // mayBeShared reports whether n may occur in multiple places in the AST.
   203  // Extra care must be taken when mutating such a node.
   204  func (n *Node) mayBeShared() bool {
   205  	switch n.Op {
   206  	case ONAME, OLITERAL, OTYPE:
   207  		return true
   208  	}
   209  	return false
   210  }
   211  
   212  // isMethodExpression reports whether n represents a method expression T.M.
   213  func (n *Node) isMethodExpression() bool {
   214  	return n.Op == ONAME && n.Left != nil && n.Left.Op == OTYPE && n.Right != nil && n.Right.Op == ONAME
   215  }
   216  
   217  // funcname returns the name of the function n.
   218  func (n *Node) funcname() string {
   219  	if n == nil || n.Func == nil || n.Func.Nname == nil {
   220  		return "<nil>"
   221  	}
   222  	return n.Func.Nname.Sym.Name
   223  }
   224  
   225  // Name holds Node fields used only by named nodes (ONAME, OTYPE, OPACK, OLABEL, some OLITERAL).
   226  type Name struct {
   227  	Pack      *Node      // real package for import . names
   228  	Pkg       *types.Pkg // pkg for OPACK nodes
   229  	Defn      *Node      // initializing assignment
   230  	Curfn     *Node      // function for local variables
   231  	Param     *Param     // additional fields for ONAME, OTYPE
   232  	Decldepth int32      // declaration loop depth, increased for every loop or label
   233  	Vargen    int32      // unique name for ONAME within a function.  Function outputs are numbered starting at one.
   234  	Funcdepth int32
   235  
   236  	used  bool // for variable declared and not used error
   237  	flags bitset8
   238  }
   239  
   240  const (
   241  	nameCaptured = 1 << iota // is the variable captured by a closure
   242  	nameReadonly
   243  	nameByval     // is the variable captured by value or by reference
   244  	nameNeedzero  // if it contains pointers, needs to be zeroed on function entry
   245  	nameKeepalive // mark value live across unknown assembly call
   246  	nameAutoTemp  // is the variable a temporary (implies no dwarf info. reset if escapes to heap)
   247  )
   248  
   249  func (n *Name) Captured() bool  { return n.flags&nameCaptured != 0 }
   250  func (n *Name) Readonly() bool  { return n.flags&nameReadonly != 0 }
   251  func (n *Name) Byval() bool     { return n.flags&nameByval != 0 }
   252  func (n *Name) Needzero() bool  { return n.flags&nameNeedzero != 0 }
   253  func (n *Name) Keepalive() bool { return n.flags&nameKeepalive != 0 }
   254  func (n *Name) AutoTemp() bool  { return n.flags&nameAutoTemp != 0 }
   255  func (n *Name) Used() bool      { return n.used }
   256  
   257  func (n *Name) SetCaptured(b bool)  { n.flags.set(nameCaptured, b) }
   258  func (n *Name) SetReadonly(b bool)  { n.flags.set(nameReadonly, b) }
   259  func (n *Name) SetByval(b bool)     { n.flags.set(nameByval, b) }
   260  func (n *Name) SetNeedzero(b bool)  { n.flags.set(nameNeedzero, b) }
   261  func (n *Name) SetKeepalive(b bool) { n.flags.set(nameKeepalive, b) }
   262  func (n *Name) SetAutoTemp(b bool)  { n.flags.set(nameAutoTemp, b) }
   263  func (n *Name) SetUsed(b bool)      { n.used = b }
   264  
   265  type Param struct {
   266  	Ntype    *Node
   267  	Heapaddr *Node // temp holding heap address of param
   268  
   269  	// ONAME PAUTOHEAP
   270  	Stackcopy *Node // the PPARAM/PPARAMOUT on-stack slot (moved func params only)
   271  
   272  	// ONAME PPARAM
   273  	Field *types.Field // TFIELD in arg struct
   274  
   275  	// ONAME closure linkage
   276  	// Consider:
   277  	//
   278  	//	func f() {
   279  	//		x := 1 // x1
   280  	//		func() {
   281  	//			use(x) // x2
   282  	//			func() {
   283  	//				use(x) // x3
   284  	//				--- parser is here ---
   285  	//			}()
   286  	//		}()
   287  	//	}
   288  	//
   289  	// There is an original declaration of x and then a chain of mentions of x
   290  	// leading into the current function. Each time x is mentioned in a new closure,
   291  	// we create a variable representing x for use in that specific closure,
   292  	// since the way you get to x is different in each closure.
   293  	//
   294  	// Let's number the specific variables as shown in the code:
   295  	// x1 is the original x, x2 is when mentioned in the closure,
   296  	// and x3 is when mentioned in the closure in the closure.
   297  	//
   298  	// We keep these linked (assume N > 1):
   299  	//
   300  	//   - x1.Defn = original declaration statement for x (like most variables)
   301  	//   - x1.Innermost = current innermost closure x (in this case x3), or nil for none
   302  	//   - x1.IsClosureVar() = false
   303  	//
   304  	//   - xN.Defn = x1, N > 1
   305  	//   - xN.IsClosureVar() = true, N > 1
   306  	//   - x2.Outer = nil
   307  	//   - xN.Outer = x(N-1), N > 2
   308  	//
   309  	//
   310  	// When we look up x in the symbol table, we always get x1.
   311  	// Then we can use x1.Innermost (if not nil) to get the x
   312  	// for the innermost known closure function,
   313  	// but the first reference in a closure will find either no x1.Innermost
   314  	// or an x1.Innermost with .Funcdepth < Funcdepth.
   315  	// In that case, a new xN must be created, linked in with:
   316  	//
   317  	//     xN.Defn = x1
   318  	//     xN.Outer = x1.Innermost
   319  	//     x1.Innermost = xN
   320  	//
   321  	// When we finish the function, we'll process its closure variables
   322  	// and find xN and pop it off the list using:
   323  	//
   324  	//     x1 := xN.Defn
   325  	//     x1.Innermost = xN.Outer
   326  	//
   327  	// We leave xN.Innermost set so that we can still get to the original
   328  	// variable quickly. Not shown here, but once we're
   329  	// done parsing a function and no longer need xN.Outer for the
   330  	// lexical x reference links as described above, closurebody
   331  	// recomputes xN.Outer as the semantic x reference link tree,
   332  	// even filling in x in intermediate closures that might not
   333  	// have mentioned it along the way to inner closures that did.
   334  	// See closurebody for details.
   335  	//
   336  	// During the eventual compilation, then, for closure variables we have:
   337  	//
   338  	//     xN.Defn = original variable
   339  	//     xN.Outer = variable captured in next outward scope
   340  	//                to make closure where xN appears
   341  	//
   342  	// Because of the sharding of pieces of the node, x.Defn means x.Name.Defn
   343  	// and x.Innermost/Outer means x.Name.Param.Innermost/Outer.
   344  	Innermost *Node
   345  	Outer     *Node
   346  
   347  	// OTYPE
   348  	//
   349  	// TODO: Should Func pragmas also be stored on the Name?
   350  	Pragma syntax.Pragma
   351  	Alias  bool // node is alias for Ntype (only used when type-checking ODCLTYPE)
   352  }
   353  
   354  // Functions
   355  //
   356  // A simple function declaration is represented as an ODCLFUNC node f
   357  // and an ONAME node n. They're linked to one another through
   358  // f.Func.Nname == n and n.Name.Defn == f. When functions are
   359  // referenced by name in an expression, the function's ONAME node is
   360  // used directly.
   361  //
   362  // Function names have n.Class() == PFUNC. This distinguishes them
   363  // from variables of function type.
   364  //
   365  // Confusingly, n.Func and f.Func both exist, but commonly point to
   366  // different Funcs. (Exception: an OCALLPART's Func does point to its
   367  // ODCLFUNC's Func.)
   368  //
   369  // A method declaration is represented like functions, except n.Sym
   370  // will be the qualified method name (e.g., "T.m") and
   371  // f.Func.Shortname is the bare method name (e.g., "m").
   372  //
   373  // Method expressions are represented as ONAME/PFUNC nodes like
   374  // function names, but their Left and Right fields still point to the
   375  // type and method, respectively. They can be distinguished from
   376  // normal functions with isMethodExpression. Also, unlike function
   377  // name nodes, method expression nodes exist for each method
   378  // expression. The declaration ONAME can be accessed with
   379  // x.Type.Nname(), where x is the method expression ONAME node.
   380  //
   381  // Method values are represented by ODOTMETH/ODOTINTER when called
   382  // immediately, and OCALLPART otherwise. They are like method
   383  // expressions, except that for ODOTMETH/ODOTINTER the method name is
   384  // stored in Sym instead of Right.
   385  //
   386  // Closures are represented by OCLOSURE node c. They link back and
   387  // forth with the ODCLFUNC via Func.Closure; that is, c.Func.Closure
   388  // == f and f.Func.Closure == c.
   389  //
   390  // Function bodies are stored in f.Nbody, and inline function bodies
   391  // are stored in n.Func.Inl. Pragmas are stored in f.Func.Pragma.
   392  //
   393  // Imported functions skip the ODCLFUNC, so n.Name.Defn is nil. They
   394  // also use Dcl instead of Inldcl.
   395  
   396  // Func holds Node fields used only with function-like nodes.
   397  type Func struct {
   398  	Shortname *types.Sym
   399  	Enter     Nodes // for example, allocate and initialize memory for escaping parameters
   400  	Exit      Nodes
   401  	Cvars     Nodes   // closure params
   402  	Dcl       []*Node // autodcl for this func/closure
   403  	Inldcl    Nodes   // copy of dcl for use in inlining
   404  
   405  	// Parents records the parent scope of each scope within a
   406  	// function. The root scope (0) has no parent, so the i'th
   407  	// scope's parent is stored at Parents[i-1].
   408  	Parents []ScopeID
   409  
   410  	// Marks records scope boundary changes.
   411  	Marks []Mark
   412  
   413  	Closgen    int
   414  	Outerfunc  *Node // outer function (for closure)
   415  	FieldTrack map[*types.Sym]struct{}
   416  	DebugInfo  *ssa.FuncDebug
   417  	Ntype      *Node // signature
   418  	Top        int   // top context (Ecall, Eproc, etc)
   419  	Closure    *Node // OCLOSURE <-> ODCLFUNC
   420  	Nname      *Node
   421  	lsym       *obj.LSym
   422  
   423  	Inl     Nodes // copy of the body for use in inlining
   424  	InlCost int32
   425  	Depth   int32
   426  
   427  	Label int32 // largest auto-generated label in this function
   428  
   429  	Endlineno src.XPos
   430  	WBPos     src.XPos // position of first write barrier; see SetWBPos
   431  
   432  	Pragma syntax.Pragma // go:xxx function annotations
   433  
   434  	flags bitset16
   435  
   436  	// nwbrCalls records the LSyms of functions called by this
   437  	// function for go:nowritebarrierrec analysis. Only filled in
   438  	// if nowritebarrierrecCheck != nil.
   439  	nwbrCalls *[]nowritebarrierrecCallSym
   440  }
   441  
   442  // A Mark represents a scope boundary.
   443  type Mark struct {
   444  	// Pos is the position of the token that marks the scope
   445  	// change.
   446  	Pos src.XPos
   447  
   448  	// Scope identifies the innermost scope to the right of Pos.
   449  	Scope ScopeID
   450  }
   451  
   452  // A ScopeID represents a lexical scope within a function.
   453  type ScopeID int32
   454  
   455  const (
   456  	funcDupok         = 1 << iota // duplicate definitions ok
   457  	funcWrapper                   // is method wrapper
   458  	funcNeedctxt                  // function uses context register (has closure variables)
   459  	funcReflectMethod             // function calls reflect.Type.Method or MethodByName
   460  	funcIsHiddenClosure
   461  	funcNoFramePointer      // Must not use a frame pointer for this function
   462  	funcHasDefer            // contains a defer statement
   463  	funcNilCheckDisabled    // disable nil checks when compiling this function
   464  	funcInlinabilityChecked // inliner has already determined whether the function is inlinable
   465  	funcExportInline        // include inline body in export data
   466  )
   467  
   468  func (f *Func) Dupok() bool               { return f.flags&funcDupok != 0 }
   469  func (f *Func) Wrapper() bool             { return f.flags&funcWrapper != 0 }
   470  func (f *Func) Needctxt() bool            { return f.flags&funcNeedctxt != 0 }
   471  func (f *Func) ReflectMethod() bool       { return f.flags&funcReflectMethod != 0 }
   472  func (f *Func) IsHiddenClosure() bool     { return f.flags&funcIsHiddenClosure != 0 }
   473  func (f *Func) NoFramePointer() bool      { return f.flags&funcNoFramePointer != 0 }
   474  func (f *Func) HasDefer() bool            { return f.flags&funcHasDefer != 0 }
   475  func (f *Func) NilCheckDisabled() bool    { return f.flags&funcNilCheckDisabled != 0 }
   476  func (f *Func) InlinabilityChecked() bool { return f.flags&funcInlinabilityChecked != 0 }
   477  func (f *Func) ExportInline() bool        { return f.flags&funcExportInline != 0 }
   478  
   479  func (f *Func) SetDupok(b bool)               { f.flags.set(funcDupok, b) }
   480  func (f *Func) SetWrapper(b bool)             { f.flags.set(funcWrapper, b) }
   481  func (f *Func) SetNeedctxt(b bool)            { f.flags.set(funcNeedctxt, b) }
   482  func (f *Func) SetReflectMethod(b bool)       { f.flags.set(funcReflectMethod, b) }
   483  func (f *Func) SetIsHiddenClosure(b bool)     { f.flags.set(funcIsHiddenClosure, b) }
   484  func (f *Func) SetNoFramePointer(b bool)      { f.flags.set(funcNoFramePointer, b) }
   485  func (f *Func) SetHasDefer(b bool)            { f.flags.set(funcHasDefer, b) }
   486  func (f *Func) SetNilCheckDisabled(b bool)    { f.flags.set(funcNilCheckDisabled, b) }
   487  func (f *Func) SetInlinabilityChecked(b bool) { f.flags.set(funcInlinabilityChecked, b) }
   488  func (f *Func) SetExportInline(b bool)        { f.flags.set(funcExportInline, b) }
   489  
   490  func (f *Func) setWBPos(pos src.XPos) {
   491  	if Debug_wb != 0 {
   492  		Warnl(pos, "write barrier")
   493  	}
   494  	if !f.WBPos.IsKnown() {
   495  		f.WBPos = pos
   496  	}
   497  }
   498  
   499  //go:generate stringer -type=Op -trimprefix=O
   500  
   501  type Op uint8
   502  
   503  // Node ops.
   504  const (
   505  	OXXX Op = iota
   506  
   507  	// names
   508  	ONAME    // var, const or func name
   509  	ONONAME  // unnamed arg or return value: f(int, string) (int, error) { etc }
   510  	OTYPE    // type name
   511  	OPACK    // import
   512  	OLITERAL // literal
   513  
   514  	// expressions
   515  	OADD             // Left + Right
   516  	OSUB             // Left - Right
   517  	OOR              // Left | Right
   518  	OXOR             // Left ^ Right
   519  	OADDSTR          // +{List} (string addition, list elements are strings)
   520  	OADDR            // &Left
   521  	OANDAND          // Left && Right
   522  	OAPPEND          // append(List); after walk, Left may contain elem type descriptor
   523  	OARRAYBYTESTR    // Type(Left) (Type is string, Left is a []byte)
   524  	OARRAYBYTESTRTMP // Type(Left) (Type is string, Left is a []byte, ephemeral)
   525  	OARRAYRUNESTR    // Type(Left) (Type is string, Left is a []rune)
   526  	OSTRARRAYBYTE    // Type(Left) (Type is []byte, Left is a string)
   527  	OSTRARRAYBYTETMP // Type(Left) (Type is []byte, Left is a string, ephemeral)
   528  	OSTRARRAYRUNE    // Type(Left) (Type is []rune, Left is a string)
   529  	OAS              // Left = Right or (if Colas=true) Left := Right
   530  	OAS2             // List = Rlist (x, y, z = a, b, c)
   531  	OAS2FUNC         // List = Rlist (x, y = f())
   532  	OAS2RECV         // List = Rlist (x, ok = <-c)
   533  	OAS2MAPR         // List = Rlist (x, ok = m["foo"])
   534  	OAS2DOTTYPE      // List = Rlist (x, ok = I.(int))
   535  	OASOP            // Left Etype= Right (x += y)
   536  	OCALL            // Left(List) (function call, method call or type conversion)
   537  	OCALLFUNC        // Left(List) (function call f(args))
   538  	OCALLMETH        // Left(List) (direct method call x.Method(args))
   539  	OCALLINTER       // Left(List) (interface method call x.Method(args))
   540  	OCALLPART        // Left.Right (method expression x.Method, not called)
   541  	OCAP             // cap(Left)
   542  	OCLOSE           // close(Left)
   543  	OCLOSURE         // func Type { Body } (func literal)
   544  	OCMPIFACE        // Left Etype Right (interface comparison, x == y or x != y)
   545  	OCMPSTR          // Left Etype Right (string comparison, x == y, x < y, etc)
   546  	OCOMPLIT         // Right{List} (composite literal, not yet lowered to specific form)
   547  	OMAPLIT          // Type{List} (composite literal, Type is map)
   548  	OSTRUCTLIT       // Type{List} (composite literal, Type is struct)
   549  	OARRAYLIT        // Type{List} (composite literal, Type is array)
   550  	OSLICELIT        // Type{List} (composite literal, Type is slice)
   551  	OPTRLIT          // &Left (left is composite literal)
   552  	OCONV            // Type(Left) (type conversion)
   553  	OCONVIFACE       // Type(Left) (type conversion, to interface)
   554  	OCONVNOP         // Type(Left) (type conversion, no effect)
   555  	OCOPY            // copy(Left, Right)
   556  	ODCL             // var Left (declares Left of type Left.Type)
   557  
   558  	// Used during parsing but don't last.
   559  	ODCLFUNC  // func f() or func (r) f()
   560  	ODCLFIELD // struct field, interface field, or func/method argument/return value.
   561  	ODCLCONST // const pi = 3.14
   562  	ODCLTYPE  // type Int int or type Int = int
   563  
   564  	ODELETE    // delete(Left, Right)
   565  	ODOT       // Left.Sym (Left is of struct type)
   566  	ODOTPTR    // Left.Sym (Left is of pointer to struct type)
   567  	ODOTMETH   // Left.Sym (Left is non-interface, Right is method name)
   568  	ODOTINTER  // Left.Sym (Left is interface, Right is method name)
   569  	OXDOT      // Left.Sym (before rewrite to one of the preceding)
   570  	ODOTTYPE   // Left.Right or Left.Type (.Right during parsing, .Type once resolved); after walk, .Right contains address of interface type descriptor and .Right.Right contains address of concrete type descriptor
   571  	ODOTTYPE2  // Left.Right or Left.Type (.Right during parsing, .Type once resolved; on rhs of OAS2DOTTYPE); after walk, .Right contains address of interface type descriptor
   572  	OEQ        // Left == Right
   573  	ONE        // Left != Right
   574  	OLT        // Left < Right
   575  	OLE        // Left <= Right
   576  	OGE        // Left >= Right
   577  	OGT        // Left > Right
   578  	OIND       // *Left
   579  	OINDEX     // Left[Right] (index of array or slice)
   580  	OINDEXMAP  // Left[Right] (index of map)
   581  	OKEY       // Left:Right (key:value in struct/array/map literal)
   582  	OSTRUCTKEY // Sym:Left (key:value in struct literal, after type checking)
   583  	OLEN       // len(Left)
   584  	OMAKE      // make(List) (before type checking converts to one of the following)
   585  	OMAKECHAN  // make(Type, Left) (type is chan)
   586  	OMAKEMAP   // make(Type, Left) (type is map)
   587  	OMAKESLICE // make(Type, Left, Right) (type is slice)
   588  	OMUL       // Left * Right
   589  	ODIV       // Left / Right
   590  	OMOD       // Left % Right
   591  	OLSH       // Left << Right
   592  	ORSH       // Left >> Right
   593  	OAND       // Left & Right
   594  	OANDNOT    // Left &^ Right
   595  	ONEW       // new(Left)
   596  	ONOT       // !Left
   597  	OCOM       // ^Left
   598  	OPLUS      // +Left
   599  	OMINUS     // -Left
   600  	OOROR      // Left || Right
   601  	OPANIC     // panic(Left)
   602  	OPRINT     // print(List)
   603  	OPRINTN    // println(List)
   604  	OPAREN     // (Left)
   605  	OSEND      // Left <- Right
   606  	OSLICE     // Left[List[0] : List[1]] (Left is untypechecked or slice)
   607  	OSLICEARR  // Left[List[0] : List[1]] (Left is array)
   608  	OSLICESTR  // Left[List[0] : List[1]] (Left is string)
   609  	OSLICE3    // Left[List[0] : List[1] : List[2]] (Left is untypedchecked or slice)
   610  	OSLICE3ARR // Left[List[0] : List[1] : List[2]] (Left is array)
   611  	ORECOVER   // recover()
   612  	ORECV      // <-Left
   613  	ORUNESTR   // Type(Left) (Type is string, Left is rune)
   614  	OSELRECV   // Left = <-Right.Left: (appears as .Left of OCASE; Right.Op == ORECV)
   615  	OSELRECV2  // List = <-Right.Left: (apperas as .Left of OCASE; count(List) == 2, Right.Op == ORECV)
   616  	OIOTA      // iota
   617  	OREAL      // real(Left)
   618  	OIMAG      // imag(Left)
   619  	OCOMPLEX   // complex(Left, Right)
   620  	OALIGNOF   // unsafe.Alignof(Left)
   621  	OOFFSETOF  // unsafe.Offsetof(Left)
   622  	OSIZEOF    // unsafe.Sizeof(Left)
   623  
   624  	// statements
   625  	OBLOCK    // { List } (block of code)
   626  	OBREAK    // break
   627  	OCASE     // case Left or List[0]..List[1]: Nbody (select case after processing; Left==nil and List==nil means default)
   628  	OXCASE    // case List: Nbody (select case before processing; List==nil means default)
   629  	OCONTINUE // continue
   630  	ODEFER    // defer Left (Left must be call)
   631  	OEMPTY    // no-op (empty statement)
   632  	OFALL     // fallthrough
   633  	OFOR      // for Ninit; Left; Right { Nbody }
   634  	OFORUNTIL // for Ninit; Left; Right { Nbody } ; test applied after executing body, not before
   635  	OGOTO     // goto Left
   636  	OIF       // if Ninit; Left { Nbody } else { Rlist }
   637  	OLABEL    // Left:
   638  	OPROC     // go Left (Left must be call)
   639  	ORANGE    // for List = range Right { Nbody }
   640  	ORETURN   // return List
   641  	OSELECT   // select { List } (List is list of OXCASE or OCASE)
   642  	OSWITCH   // switch Ninit; Left { List } (List is a list of OXCASE or OCASE)
   643  	OTYPESW   // Left = Right.(type) (appears as .Left of OSWITCH)
   644  
   645  	// types
   646  	OTCHAN   // chan int
   647  	OTMAP    // map[string]int
   648  	OTSTRUCT // struct{}
   649  	OTINTER  // interface{}
   650  	OTFUNC   // func()
   651  	OTARRAY  // []int, [8]int, [N]int or [...]int
   652  
   653  	// misc
   654  	ODDD        // func f(args ...int) or f(l...) or var a = [...]int{0, 1, 2}.
   655  	ODDDARG     // func f(args ...int), introduced by escape analysis.
   656  	OINLCALL    // intermediary representation of an inlined call.
   657  	OEFACE      // itable and data words of an empty-interface value.
   658  	OITAB       // itable word of an interface value.
   659  	OIDATA      // data word of an interface value in Left
   660  	OSPTR       // base pointer of a slice or string.
   661  	OCLOSUREVAR // variable reference at beginning of closure function
   662  	OCFUNC      // reference to c function pointer (not go func value)
   663  	OCHECKNIL   // emit code to ensure pointer/interface not nil
   664  	OVARKILL    // variable is dead
   665  	OVARLIVE    // variable is alive
   666  	OINDREGSP   // offset plus indirect of REGSP, such as 8(SP).
   667  
   668  	// arch-specific opcodes
   669  	ORETJMP // return to other function
   670  	OGETG   // runtime.getg() (read g pointer)
   671  
   672  	OEND
   673  )
   674  
   675  // Nodes is a pointer to a slice of *Node.
   676  // For fields that are not used in most nodes, this is used instead of
   677  // a slice to save space.
   678  type Nodes struct{ slice *[]*Node }
   679  
   680  // Slice returns the entries in Nodes as a slice.
   681  // Changes to the slice entries (as in s[i] = n) will be reflected in
   682  // the Nodes.
   683  func (n Nodes) Slice() []*Node {
   684  	if n.slice == nil {
   685  		return nil
   686  	}
   687  	return *n.slice
   688  }
   689  
   690  // Len returns the number of entries in Nodes.
   691  func (n Nodes) Len() int {
   692  	if n.slice == nil {
   693  		return 0
   694  	}
   695  	return len(*n.slice)
   696  }
   697  
   698  // Index returns the i'th element of Nodes.
   699  // It panics if n does not have at least i+1 elements.
   700  func (n Nodes) Index(i int) *Node {
   701  	return (*n.slice)[i]
   702  }
   703  
   704  // First returns the first element of Nodes (same as n.Index(0)).
   705  // It panics if n has no elements.
   706  func (n Nodes) First() *Node {
   707  	return (*n.slice)[0]
   708  }
   709  
   710  // Second returns the second element of Nodes (same as n.Index(1)).
   711  // It panics if n has fewer than two elements.
   712  func (n Nodes) Second() *Node {
   713  	return (*n.slice)[1]
   714  }
   715  
   716  // Set sets n to a slice.
   717  // This takes ownership of the slice.
   718  func (n *Nodes) Set(s []*Node) {
   719  	if len(s) == 0 {
   720  		n.slice = nil
   721  	} else {
   722  		// Copy s and take address of t rather than s to avoid
   723  		// allocation in the case where len(s) == 0 (which is
   724  		// over 3x more common, dynamically, for make.bash).
   725  		t := s
   726  		n.slice = &t
   727  	}
   728  }
   729  
   730  // Set1 sets n to a slice containing a single node.
   731  func (n *Nodes) Set1(n1 *Node) {
   732  	n.slice = &[]*Node{n1}
   733  }
   734  
   735  // Set2 sets n to a slice containing two nodes.
   736  func (n *Nodes) Set2(n1, n2 *Node) {
   737  	n.slice = &[]*Node{n1, n2}
   738  }
   739  
   740  // Set3 sets n to a slice containing three nodes.
   741  func (n *Nodes) Set3(n1, n2, n3 *Node) {
   742  	n.slice = &[]*Node{n1, n2, n3}
   743  }
   744  
   745  // MoveNodes sets n to the contents of n2, then clears n2.
   746  func (n *Nodes) MoveNodes(n2 *Nodes) {
   747  	n.slice = n2.slice
   748  	n2.slice = nil
   749  }
   750  
   751  // SetIndex sets the i'th element of Nodes to node.
   752  // It panics if n does not have at least i+1 elements.
   753  func (n Nodes) SetIndex(i int, node *Node) {
   754  	(*n.slice)[i] = node
   755  }
   756  
   757  // SetFirst sets the first element of Nodes to node.
   758  // It panics if n does not have at least one elements.
   759  func (n Nodes) SetFirst(node *Node) {
   760  	(*n.slice)[0] = node
   761  }
   762  
   763  // SetSecond sets the second element of Nodes to node.
   764  // It panics if n does not have at least two elements.
   765  func (n Nodes) SetSecond(node *Node) {
   766  	(*n.slice)[1] = node
   767  }
   768  
   769  // Addr returns the address of the i'th element of Nodes.
   770  // It panics if n does not have at least i+1 elements.
   771  func (n Nodes) Addr(i int) **Node {
   772  	return &(*n.slice)[i]
   773  }
   774  
   775  // Append appends entries to Nodes.
   776  func (n *Nodes) Append(a ...*Node) {
   777  	if len(a) == 0 {
   778  		return
   779  	}
   780  	if n.slice == nil {
   781  		s := make([]*Node, len(a))
   782  		copy(s, a)
   783  		n.slice = &s
   784  		return
   785  	}
   786  	*n.slice = append(*n.slice, a...)
   787  }
   788  
   789  // Prepend prepends entries to Nodes.
   790  // If a slice is passed in, this will take ownership of it.
   791  func (n *Nodes) Prepend(a ...*Node) {
   792  	if len(a) == 0 {
   793  		return
   794  	}
   795  	if n.slice == nil {
   796  		n.slice = &a
   797  	} else {
   798  		*n.slice = append(a, *n.slice...)
   799  	}
   800  }
   801  
   802  // AppendNodes appends the contents of *n2 to n, then clears n2.
   803  func (n *Nodes) AppendNodes(n2 *Nodes) {
   804  	switch {
   805  	case n2.slice == nil:
   806  	case n.slice == nil:
   807  		n.slice = n2.slice
   808  	default:
   809  		*n.slice = append(*n.slice, *n2.slice...)
   810  	}
   811  	n2.slice = nil
   812  }
   813  
   814  // inspect invokes f on each node in an AST in depth-first order.
   815  // If f(n) returns false, inspect skips visiting n's children.
   816  func inspect(n *Node, f func(*Node) bool) {
   817  	if n == nil || !f(n) {
   818  		return
   819  	}
   820  	inspectList(n.Ninit, f)
   821  	inspect(n.Left, f)
   822  	inspect(n.Right, f)
   823  	inspectList(n.List, f)
   824  	inspectList(n.Nbody, f)
   825  	inspectList(n.Rlist, f)
   826  }
   827  
   828  func inspectList(l Nodes, f func(*Node) bool) {
   829  	for _, n := range l.Slice() {
   830  		inspect(n, f)
   831  	}
   832  }
   833  
   834  // nodeQueue is a FIFO queue of *Node. The zero value of nodeQueue is
   835  // a ready-to-use empty queue.
   836  type nodeQueue struct {
   837  	ring       []*Node
   838  	head, tail int
   839  }
   840  
   841  // empty returns true if q contains no Nodes.
   842  func (q *nodeQueue) empty() bool {
   843  	return q.head == q.tail
   844  }
   845  
   846  // pushRight appends n to the right of the queue.
   847  func (q *nodeQueue) pushRight(n *Node) {
   848  	if len(q.ring) == 0 {
   849  		q.ring = make([]*Node, 16)
   850  	} else if q.head+len(q.ring) == q.tail {
   851  		// Grow the ring.
   852  		nring := make([]*Node, len(q.ring)*2)
   853  		// Copy the old elements.
   854  		part := q.ring[q.head%len(q.ring):]
   855  		if q.tail-q.head <= len(part) {
   856  			part = part[:q.tail-q.head]
   857  			copy(nring, part)
   858  		} else {
   859  			pos := copy(nring, part)
   860  			copy(nring[pos:], q.ring[:q.tail%len(q.ring)])
   861  		}
   862  		q.ring, q.head, q.tail = nring, 0, q.tail-q.head
   863  	}
   864  
   865  	q.ring[q.tail%len(q.ring)] = n
   866  	q.tail++
   867  }
   868  
   869  // popLeft pops a node from the left of the queue. It panics if q is
   870  // empty.
   871  func (q *nodeQueue) popLeft() *Node {
   872  	if q.empty() {
   873  		panic("dequeue empty")
   874  	}
   875  	n := q.ring[q.head%len(q.ring)]
   876  	q.head++
   877  	return n
   878  }