github.com/goproxy0/go@v0.0.0-20171111080102-49cc0c489d2c/src/cmd/internal/obj/s390x/asmz.go (about)

     1  // Based on cmd/internal/obj/ppc64/asm9.go.
     2  //
     3  //    Copyright © 1994-1999 Lucent Technologies Inc.  All rights reserved.
     4  //    Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net)
     5  //    Portions Copyright © 1997-1999 Vita Nuova Limited
     6  //    Portions Copyright © 2000-2008 Vita Nuova Holdings Limited (www.vitanuova.com)
     7  //    Portions Copyright © 2004,2006 Bruce Ellis
     8  //    Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net)
     9  //    Revisions Copyright © 2000-2008 Lucent Technologies Inc. and others
    10  //    Portions Copyright © 2009 The Go Authors. All rights reserved.
    11  //
    12  // Permission is hereby granted, free of charge, to any person obtaining a copy
    13  // of this software and associated documentation files (the "Software"), to deal
    14  // in the Software without restriction, including without limitation the rights
    15  // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
    16  // copies of the Software, and to permit persons to whom the Software is
    17  // furnished to do so, subject to the following conditions:
    18  //
    19  // The above copyright notice and this permission notice shall be included in
    20  // all copies or substantial portions of the Software.
    21  //
    22  // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
    23  // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
    24  // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
    25  // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
    26  // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
    27  // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
    28  // THE SOFTWARE.
    29  
    30  package s390x
    31  
    32  import (
    33  	"cmd/internal/obj"
    34  	"cmd/internal/objabi"
    35  	"log"
    36  	"math"
    37  	"sort"
    38  )
    39  
    40  // ctxtz holds state while assembling a single function.
    41  // Each function gets a fresh ctxtz.
    42  // This allows for multiple functions to be safely concurrently assembled.
    43  type ctxtz struct {
    44  	ctxt       *obj.Link
    45  	newprog    obj.ProgAlloc
    46  	cursym     *obj.LSym
    47  	autosize   int32
    48  	instoffset int64
    49  	pc         int64
    50  }
    51  
    52  // instruction layout.
    53  const (
    54  	funcAlign = 16
    55  )
    56  
    57  type Optab struct {
    58  	as    obj.As // opcode
    59  	a1    uint8  // From
    60  	a2    uint8  // Reg
    61  	a3    uint8  // From3
    62  	a4    uint8  // To
    63  	type_ int8
    64  	param int16 // REGSP for auto variables
    65  }
    66  
    67  var optab = []Optab{
    68  	// instruction,  From,   Reg,    From3,  To, type, param
    69  	Optab{obj.ATEXT, C_ADDR, C_NONE, C_NONE, C_TEXTSIZE, 0, 0},
    70  	Optab{obj.ATEXT, C_ADDR, C_NONE, C_LCON, C_TEXTSIZE, 0, 0},
    71  
    72  	// move register
    73  	Optab{AMOVD, C_REG, C_NONE, C_NONE, C_REG, 1, 0},
    74  	Optab{AMOVB, C_REG, C_NONE, C_NONE, C_REG, 1, 0},
    75  	Optab{AMOVBZ, C_REG, C_NONE, C_NONE, C_REG, 1, 0},
    76  	Optab{AMOVW, C_REG, C_NONE, C_NONE, C_REG, 1, 0},
    77  	Optab{AMOVWZ, C_REG, C_NONE, C_NONE, C_REG, 1, 0},
    78  	Optab{AFMOVD, C_FREG, C_NONE, C_NONE, C_FREG, 1, 0},
    79  	Optab{AMOVDBR, C_REG, C_NONE, C_NONE, C_REG, 1, 0},
    80  
    81  	// load constant
    82  	Optab{AMOVD, C_LACON, C_NONE, C_NONE, C_REG, 26, REGSP},
    83  	Optab{AMOVW, C_LACON, C_NONE, C_NONE, C_REG, 26, REGSP},
    84  	Optab{AMOVWZ, C_LACON, C_NONE, C_NONE, C_REG, 26, REGSP},
    85  	Optab{AMOVD, C_DCON, C_NONE, C_NONE, C_REG, 3, 0},
    86  	Optab{AMOVW, C_DCON, C_NONE, C_NONE, C_REG, 3, 0},
    87  	Optab{AMOVWZ, C_DCON, C_NONE, C_NONE, C_REG, 3, 0},
    88  	Optab{AMOVB, C_DCON, C_NONE, C_NONE, C_REG, 3, 0},
    89  	Optab{AMOVBZ, C_DCON, C_NONE, C_NONE, C_REG, 3, 0},
    90  
    91  	// store constant
    92  	Optab{AMOVD, C_SCON, C_NONE, C_NONE, C_LAUTO, 72, REGSP},
    93  	Optab{AMOVD, C_ADDCON, C_NONE, C_NONE, C_LAUTO, 72, REGSP},
    94  	Optab{AMOVW, C_SCON, C_NONE, C_NONE, C_LAUTO, 72, REGSP},
    95  	Optab{AMOVW, C_ADDCON, C_NONE, C_NONE, C_LAUTO, 72, REGSP},
    96  	Optab{AMOVWZ, C_SCON, C_NONE, C_NONE, C_LAUTO, 72, REGSP},
    97  	Optab{AMOVWZ, C_ADDCON, C_NONE, C_NONE, C_LAUTO, 72, REGSP},
    98  	Optab{AMOVB, C_SCON, C_NONE, C_NONE, C_LAUTO, 72, REGSP},
    99  	Optab{AMOVB, C_ADDCON, C_NONE, C_NONE, C_LAUTO, 72, REGSP},
   100  	Optab{AMOVBZ, C_SCON, C_NONE, C_NONE, C_LAUTO, 72, REGSP},
   101  	Optab{AMOVBZ, C_ADDCON, C_NONE, C_NONE, C_LAUTO, 72, REGSP},
   102  	Optab{AMOVD, C_SCON, C_NONE, C_NONE, C_LOREG, 72, 0},
   103  	Optab{AMOVD, C_ADDCON, C_NONE, C_NONE, C_LOREG, 72, 0},
   104  	Optab{AMOVW, C_SCON, C_NONE, C_NONE, C_LOREG, 72, 0},
   105  	Optab{AMOVW, C_ADDCON, C_NONE, C_NONE, C_LOREG, 72, 0},
   106  	Optab{AMOVWZ, C_SCON, C_NONE, C_NONE, C_LOREG, 72, 0},
   107  	Optab{AMOVWZ, C_ADDCON, C_NONE, C_NONE, C_LOREG, 72, 0},
   108  	Optab{AMOVB, C_SCON, C_NONE, C_NONE, C_LOREG, 72, 0},
   109  	Optab{AMOVB, C_ADDCON, C_NONE, C_NONE, C_LOREG, 72, 0},
   110  	Optab{AMOVBZ, C_SCON, C_NONE, C_NONE, C_LOREG, 72, 0},
   111  	Optab{AMOVBZ, C_ADDCON, C_NONE, C_NONE, C_LOREG, 72, 0},
   112  
   113  	// store
   114  	Optab{AMOVD, C_REG, C_NONE, C_NONE, C_LAUTO, 35, REGSP},
   115  	Optab{AMOVW, C_REG, C_NONE, C_NONE, C_LAUTO, 35, REGSP},
   116  	Optab{AMOVWZ, C_REG, C_NONE, C_NONE, C_LAUTO, 35, REGSP},
   117  	Optab{AMOVBZ, C_REG, C_NONE, C_NONE, C_LAUTO, 35, REGSP},
   118  	Optab{AMOVB, C_REG, C_NONE, C_NONE, C_LAUTO, 35, REGSP},
   119  	Optab{AMOVDBR, C_REG, C_NONE, C_NONE, C_LAUTO, 35, REGSP},
   120  	Optab{AMOVHBR, C_REG, C_NONE, C_NONE, C_LAUTO, 35, REGSP},
   121  	Optab{AMOVD, C_REG, C_NONE, C_NONE, C_LOREG, 35, 0},
   122  	Optab{AMOVW, C_REG, C_NONE, C_NONE, C_LOREG, 35, 0},
   123  	Optab{AMOVWZ, C_REG, C_NONE, C_NONE, C_LOREG, 35, 0},
   124  	Optab{AMOVBZ, C_REG, C_NONE, C_NONE, C_LOREG, 35, 0},
   125  	Optab{AMOVB, C_REG, C_NONE, C_NONE, C_LOREG, 35, 0},
   126  	Optab{AMOVDBR, C_REG, C_NONE, C_NONE, C_LOREG, 35, 0},
   127  	Optab{AMOVHBR, C_REG, C_NONE, C_NONE, C_LOREG, 35, 0},
   128  	Optab{AMOVD, C_REG, C_NONE, C_NONE, C_ADDR, 74, 0},
   129  	Optab{AMOVW, C_REG, C_NONE, C_NONE, C_ADDR, 74, 0},
   130  	Optab{AMOVWZ, C_REG, C_NONE, C_NONE, C_ADDR, 74, 0},
   131  	Optab{AMOVBZ, C_REG, C_NONE, C_NONE, C_ADDR, 74, 0},
   132  	Optab{AMOVB, C_REG, C_NONE, C_NONE, C_ADDR, 74, 0},
   133  
   134  	// load
   135  	Optab{AMOVD, C_LAUTO, C_NONE, C_NONE, C_REG, 36, REGSP},
   136  	Optab{AMOVW, C_LAUTO, C_NONE, C_NONE, C_REG, 36, REGSP},
   137  	Optab{AMOVWZ, C_LAUTO, C_NONE, C_NONE, C_REG, 36, REGSP},
   138  	Optab{AMOVBZ, C_LAUTO, C_NONE, C_NONE, C_REG, 36, REGSP},
   139  	Optab{AMOVB, C_LAUTO, C_NONE, C_NONE, C_REG, 36, REGSP},
   140  	Optab{AMOVDBR, C_LAUTO, C_NONE, C_NONE, C_REG, 36, REGSP},
   141  	Optab{AMOVHBR, C_LAUTO, C_NONE, C_NONE, C_REG, 36, REGSP},
   142  	Optab{AMOVD, C_LOREG, C_NONE, C_NONE, C_REG, 36, 0},
   143  	Optab{AMOVW, C_LOREG, C_NONE, C_NONE, C_REG, 36, 0},
   144  	Optab{AMOVWZ, C_LOREG, C_NONE, C_NONE, C_REG, 36, 0},
   145  	Optab{AMOVBZ, C_LOREG, C_NONE, C_NONE, C_REG, 36, 0},
   146  	Optab{AMOVB, C_LOREG, C_NONE, C_NONE, C_REG, 36, 0},
   147  	Optab{AMOVDBR, C_LOREG, C_NONE, C_NONE, C_REG, 36, 0},
   148  	Optab{AMOVHBR, C_LOREG, C_NONE, C_NONE, C_REG, 36, 0},
   149  	Optab{AMOVD, C_ADDR, C_NONE, C_NONE, C_REG, 75, 0},
   150  	Optab{AMOVW, C_ADDR, C_NONE, C_NONE, C_REG, 75, 0},
   151  	Optab{AMOVWZ, C_ADDR, C_NONE, C_NONE, C_REG, 75, 0},
   152  	Optab{AMOVBZ, C_ADDR, C_NONE, C_NONE, C_REG, 75, 0},
   153  	Optab{AMOVB, C_ADDR, C_NONE, C_NONE, C_REG, 75, 0},
   154  
   155  	// interlocked load and op
   156  	Optab{ALAAG, C_REG, C_REG, C_NONE, C_LOREG, 99, 0},
   157  
   158  	// integer arithmetic
   159  	Optab{AADD, C_REG, C_REG, C_NONE, C_REG, 2, 0},
   160  	Optab{AADD, C_REG, C_NONE, C_NONE, C_REG, 2, 0},
   161  	Optab{AADD, C_LCON, C_REG, C_NONE, C_REG, 22, 0},
   162  	Optab{AADD, C_LCON, C_NONE, C_NONE, C_REG, 22, 0},
   163  	Optab{AADD, C_LOREG, C_NONE, C_NONE, C_REG, 12, 0},
   164  	Optab{AADD, C_LAUTO, C_NONE, C_NONE, C_REG, 12, REGSP},
   165  	Optab{ASUB, C_LCON, C_REG, C_NONE, C_REG, 21, 0},
   166  	Optab{ASUB, C_LCON, C_NONE, C_NONE, C_REG, 21, 0},
   167  	Optab{ASUB, C_LOREG, C_NONE, C_NONE, C_REG, 12, 0},
   168  	Optab{ASUB, C_LAUTO, C_NONE, C_NONE, C_REG, 12, REGSP},
   169  	Optab{AMULHD, C_REG, C_NONE, C_NONE, C_REG, 4, 0},
   170  	Optab{AMULHD, C_REG, C_REG, C_NONE, C_REG, 4, 0},
   171  	Optab{ADIVW, C_REG, C_REG, C_NONE, C_REG, 2, 0},
   172  	Optab{ADIVW, C_REG, C_NONE, C_NONE, C_REG, 2, 0},
   173  	Optab{ASUB, C_REG, C_REG, C_NONE, C_REG, 10, 0},
   174  	Optab{ASUB, C_REG, C_NONE, C_NONE, C_REG, 10, 0},
   175  	Optab{ANEG, C_REG, C_NONE, C_NONE, C_REG, 47, 0},
   176  	Optab{ANEG, C_NONE, C_NONE, C_NONE, C_REG, 47, 0},
   177  
   178  	// integer logical
   179  	Optab{AAND, C_REG, C_REG, C_NONE, C_REG, 6, 0},
   180  	Optab{AAND, C_REG, C_NONE, C_NONE, C_REG, 6, 0},
   181  	Optab{AAND, C_LCON, C_NONE, C_NONE, C_REG, 23, 0},
   182  	Optab{AAND, C_LOREG, C_NONE, C_NONE, C_REG, 12, 0},
   183  	Optab{AAND, C_LAUTO, C_NONE, C_NONE, C_REG, 12, REGSP},
   184  	Optab{AANDW, C_REG, C_REG, C_NONE, C_REG, 6, 0},
   185  	Optab{AANDW, C_REG, C_NONE, C_NONE, C_REG, 6, 0},
   186  	Optab{AANDW, C_LCON, C_NONE, C_NONE, C_REG, 24, 0},
   187  	Optab{AANDW, C_LOREG, C_NONE, C_NONE, C_REG, 12, 0},
   188  	Optab{AANDW, C_LAUTO, C_NONE, C_NONE, C_REG, 12, REGSP},
   189  	Optab{ASLD, C_REG, C_NONE, C_NONE, C_REG, 7, 0},
   190  	Optab{ASLD, C_REG, C_REG, C_NONE, C_REG, 7, 0},
   191  	Optab{ASLD, C_SCON, C_REG, C_NONE, C_REG, 7, 0},
   192  	Optab{ASLD, C_SCON, C_NONE, C_NONE, C_REG, 7, 0},
   193  
   194  	// compare and swap
   195  	Optab{ACSG, C_REG, C_REG, C_NONE, C_SOREG, 79, 0},
   196  
   197  	// floating point
   198  	Optab{AFADD, C_FREG, C_NONE, C_NONE, C_FREG, 32, 0},
   199  	Optab{AFABS, C_FREG, C_NONE, C_NONE, C_FREG, 33, 0},
   200  	Optab{AFABS, C_NONE, C_NONE, C_NONE, C_FREG, 33, 0},
   201  	Optab{AFMADD, C_FREG, C_FREG, C_NONE, C_FREG, 34, 0},
   202  	Optab{AFMUL, C_FREG, C_NONE, C_NONE, C_FREG, 32, 0},
   203  	Optab{AFMOVD, C_LAUTO, C_NONE, C_NONE, C_FREG, 36, REGSP},
   204  	Optab{AFMOVD, C_LOREG, C_NONE, C_NONE, C_FREG, 36, 0},
   205  	Optab{AFMOVD, C_ADDR, C_NONE, C_NONE, C_FREG, 75, 0},
   206  	Optab{AFMOVD, C_FREG, C_NONE, C_NONE, C_LAUTO, 35, REGSP},
   207  	Optab{AFMOVD, C_FREG, C_NONE, C_NONE, C_LOREG, 35, 0},
   208  	Optab{AFMOVD, C_FREG, C_NONE, C_NONE, C_ADDR, 74, 0},
   209  	Optab{AFMOVD, C_ZCON, C_NONE, C_NONE, C_FREG, 67, 0},
   210  	Optab{ALDGR, C_REG, C_NONE, C_NONE, C_FREG, 81, 0},
   211  	Optab{ALGDR, C_FREG, C_NONE, C_NONE, C_REG, 81, 0},
   212  	Optab{ACEFBRA, C_REG, C_NONE, C_NONE, C_FREG, 82, 0},
   213  	Optab{ACFEBRA, C_FREG, C_NONE, C_NONE, C_REG, 83, 0},
   214  	Optab{AFIEBR, C_SCON, C_FREG, C_NONE, C_FREG, 48, 0},
   215  	Optab{ACPSDR, C_FREG, C_FREG, C_NONE, C_FREG, 49, 0},
   216  
   217  	// load symbol address (plus offset)
   218  	Optab{AMOVD, C_SYMADDR, C_NONE, C_NONE, C_REG, 19, 0},
   219  	Optab{AMOVD, C_GOTADDR, C_NONE, C_NONE, C_REG, 93, 0},
   220  	Optab{AMOVD, C_TLS_LE, C_NONE, C_NONE, C_REG, 94, 0},
   221  	Optab{AMOVD, C_TLS_IE, C_NONE, C_NONE, C_REG, 95, 0},
   222  
   223  	// system call
   224  	Optab{ASYSCALL, C_NONE, C_NONE, C_NONE, C_NONE, 5, 0},
   225  	Optab{ASYSCALL, C_SCON, C_NONE, C_NONE, C_NONE, 77, 0},
   226  
   227  	// branch
   228  	Optab{ABEQ, C_NONE, C_NONE, C_NONE, C_SBRA, 16, 0},
   229  	Optab{ABR, C_NONE, C_NONE, C_NONE, C_LBRA, 11, 0},
   230  	Optab{ABC, C_SCON, C_REG, C_NONE, C_LBRA, 16, 0},
   231  	Optab{ABR, C_NONE, C_NONE, C_NONE, C_REG, 18, 0},
   232  	Optab{ABR, C_REG, C_NONE, C_NONE, C_REG, 18, 0},
   233  	Optab{ABR, C_NONE, C_NONE, C_NONE, C_ZOREG, 15, 0},
   234  	Optab{ABC, C_NONE, C_NONE, C_NONE, C_ZOREG, 15, 0},
   235  	Optab{ACMPBEQ, C_REG, C_REG, C_NONE, C_SBRA, 89, 0},
   236  	Optab{ACMPBEQ, C_REG, C_NONE, C_ADDCON, C_SBRA, 90, 0},
   237  	Optab{ACMPBEQ, C_REG, C_NONE, C_SCON, C_SBRA, 90, 0},
   238  	Optab{ACMPUBEQ, C_REG, C_REG, C_NONE, C_SBRA, 89, 0},
   239  	Optab{ACMPUBEQ, C_REG, C_NONE, C_ANDCON, C_SBRA, 90, 0},
   240  
   241  	// move on condition
   242  	Optab{AMOVDEQ, C_REG, C_NONE, C_NONE, C_REG, 17, 0},
   243  
   244  	// find leftmost one
   245  	Optab{AFLOGR, C_REG, C_NONE, C_NONE, C_REG, 8, 0},
   246  
   247  	// compare
   248  	Optab{ACMP, C_REG, C_NONE, C_NONE, C_REG, 70, 0},
   249  	Optab{ACMP, C_REG, C_NONE, C_NONE, C_LCON, 71, 0},
   250  	Optab{ACMPU, C_REG, C_NONE, C_NONE, C_REG, 70, 0},
   251  	Optab{ACMPU, C_REG, C_NONE, C_NONE, C_LCON, 71, 0},
   252  	Optab{AFCMPO, C_FREG, C_NONE, C_NONE, C_FREG, 70, 0},
   253  	Optab{AFCMPO, C_FREG, C_REG, C_NONE, C_FREG, 70, 0},
   254  
   255  	// test under mask
   256  	Optab{ATMHH, C_REG, C_NONE, C_NONE, C_ANDCON, 91, 0},
   257  
   258  	// 32-bit access registers
   259  	Optab{AMOVW, C_AREG, C_NONE, C_NONE, C_REG, 68, 0},
   260  	Optab{AMOVWZ, C_AREG, C_NONE, C_NONE, C_REG, 68, 0},
   261  	Optab{AMOVW, C_REG, C_NONE, C_NONE, C_AREG, 69, 0},
   262  	Optab{AMOVWZ, C_REG, C_NONE, C_NONE, C_AREG, 69, 0},
   263  
   264  	// macros
   265  	Optab{ACLEAR, C_LCON, C_NONE, C_NONE, C_LOREG, 96, 0},
   266  	Optab{ACLEAR, C_LCON, C_NONE, C_NONE, C_LAUTO, 96, REGSP},
   267  
   268  	// load/store multiple
   269  	Optab{ASTMG, C_REG, C_REG, C_NONE, C_LOREG, 97, 0},
   270  	Optab{ASTMG, C_REG, C_REG, C_NONE, C_LAUTO, 97, REGSP},
   271  	Optab{ALMG, C_LOREG, C_REG, C_NONE, C_REG, 98, 0},
   272  	Optab{ALMG, C_LAUTO, C_REG, C_NONE, C_REG, 98, REGSP},
   273  
   274  	// bytes
   275  	Optab{ABYTE, C_SCON, C_NONE, C_NONE, C_NONE, 40, 0},
   276  	Optab{AWORD, C_LCON, C_NONE, C_NONE, C_NONE, 40, 0},
   277  	Optab{ADWORD, C_LCON, C_NONE, C_NONE, C_NONE, 31, 0},
   278  	Optab{ADWORD, C_DCON, C_NONE, C_NONE, C_NONE, 31, 0},
   279  
   280  	// fast synchronization
   281  	Optab{ASYNC, C_NONE, C_NONE, C_NONE, C_NONE, 80, 0},
   282  
   283  	// store clock
   284  	Optab{ASTCK, C_NONE, C_NONE, C_NONE, C_SAUTO, 88, REGSP},
   285  	Optab{ASTCK, C_NONE, C_NONE, C_NONE, C_SOREG, 88, 0},
   286  
   287  	// storage and storage
   288  	Optab{AMVC, C_SCON, C_NONE, C_LOREG, C_LOREG, 84, 0},
   289  	Optab{AMVC, C_SCON, C_NONE, C_LOREG, C_LAUTO, 84, REGSP},
   290  	Optab{AMVC, C_SCON, C_NONE, C_LAUTO, C_LAUTO, 84, REGSP},
   291  
   292  	// address
   293  	Optab{ALARL, C_LCON, C_NONE, C_NONE, C_REG, 85, 0},
   294  	Optab{ALARL, C_SYMADDR, C_NONE, C_NONE, C_REG, 85, 0},
   295  	Optab{ALA, C_SOREG, C_NONE, C_NONE, C_REG, 86, 0},
   296  	Optab{ALA, C_SAUTO, C_NONE, C_NONE, C_REG, 86, REGSP},
   297  	Optab{AEXRL, C_SYMADDR, C_NONE, C_NONE, C_REG, 87, 0},
   298  
   299  	// misc
   300  	Optab{obj.AUNDEF, C_NONE, C_NONE, C_NONE, C_NONE, 78, 0},
   301  	Optab{obj.APCDATA, C_LCON, C_NONE, C_NONE, C_LCON, 0, 0},
   302  	Optab{obj.AFUNCDATA, C_SCON, C_NONE, C_NONE, C_ADDR, 0, 0},
   303  	Optab{obj.ANOP, C_NONE, C_NONE, C_NONE, C_NONE, 0, 0},
   304  	Optab{obj.ANOP, C_SAUTO, C_NONE, C_NONE, C_NONE, 0, 0},
   305  
   306  	// vector instructions
   307  
   308  	// VRX store
   309  	Optab{AVST, C_VREG, C_NONE, C_NONE, C_SOREG, 100, 0},
   310  	Optab{AVST, C_VREG, C_NONE, C_NONE, C_SAUTO, 100, REGSP},
   311  	Optab{AVSTEG, C_SCON, C_VREG, C_NONE, C_SOREG, 100, 0},
   312  	Optab{AVSTEG, C_SCON, C_VREG, C_NONE, C_SAUTO, 100, REGSP},
   313  
   314  	// VRX load
   315  	Optab{AVL, C_SOREG, C_NONE, C_NONE, C_VREG, 101, 0},
   316  	Optab{AVL, C_SAUTO, C_NONE, C_NONE, C_VREG, 101, REGSP},
   317  	Optab{AVLEG, C_SCON, C_NONE, C_SOREG, C_VREG, 101, 0},
   318  	Optab{AVLEG, C_SCON, C_NONE, C_SAUTO, C_VREG, 101, REGSP},
   319  
   320  	// VRV scatter
   321  	Optab{AVSCEG, C_SCON, C_VREG, C_NONE, C_SOREG, 102, 0},
   322  	Optab{AVSCEG, C_SCON, C_VREG, C_NONE, C_SAUTO, 102, REGSP},
   323  
   324  	// VRV gather
   325  	Optab{AVGEG, C_SCON, C_NONE, C_SOREG, C_VREG, 103, 0},
   326  	Optab{AVGEG, C_SCON, C_NONE, C_SAUTO, C_VREG, 103, REGSP},
   327  
   328  	// VRS element shift/rotate and load gr to/from vr element
   329  	Optab{AVESLG, C_SCON, C_VREG, C_NONE, C_VREG, 104, 0},
   330  	Optab{AVESLG, C_REG, C_VREG, C_NONE, C_VREG, 104, 0},
   331  	Optab{AVESLG, C_SCON, C_NONE, C_NONE, C_VREG, 104, 0},
   332  	Optab{AVESLG, C_REG, C_NONE, C_NONE, C_VREG, 104, 0},
   333  	Optab{AVLGVG, C_SCON, C_VREG, C_NONE, C_REG, 104, 0},
   334  	Optab{AVLGVG, C_REG, C_VREG, C_NONE, C_REG, 104, 0},
   335  	Optab{AVLVGG, C_SCON, C_REG, C_NONE, C_VREG, 104, 0},
   336  	Optab{AVLVGG, C_REG, C_REG, C_NONE, C_VREG, 104, 0},
   337  
   338  	// VRS store multiple
   339  	Optab{AVSTM, C_VREG, C_VREG, C_NONE, C_SOREG, 105, 0},
   340  	Optab{AVSTM, C_VREG, C_VREG, C_NONE, C_SAUTO, 105, REGSP},
   341  
   342  	// VRS load multiple
   343  	Optab{AVLM, C_SOREG, C_VREG, C_NONE, C_VREG, 106, 0},
   344  	Optab{AVLM, C_SAUTO, C_VREG, C_NONE, C_VREG, 106, REGSP},
   345  
   346  	// VRS store with length
   347  	Optab{AVSTL, C_REG, C_VREG, C_NONE, C_SOREG, 107, 0},
   348  	Optab{AVSTL, C_REG, C_VREG, C_NONE, C_SAUTO, 107, REGSP},
   349  
   350  	// VRS load with length
   351  	Optab{AVLL, C_REG, C_NONE, C_SOREG, C_VREG, 108, 0},
   352  	Optab{AVLL, C_REG, C_NONE, C_SAUTO, C_VREG, 108, REGSP},
   353  
   354  	// VRI-a
   355  	Optab{AVGBM, C_ANDCON, C_NONE, C_NONE, C_VREG, 109, 0},
   356  	Optab{AVZERO, C_NONE, C_NONE, C_NONE, C_VREG, 109, 0},
   357  	Optab{AVREPIG, C_ADDCON, C_NONE, C_NONE, C_VREG, 109, 0},
   358  	Optab{AVREPIG, C_SCON, C_NONE, C_NONE, C_VREG, 109, 0},
   359  	Optab{AVLEIG, C_SCON, C_NONE, C_ADDCON, C_VREG, 109, 0},
   360  	Optab{AVLEIG, C_SCON, C_NONE, C_SCON, C_VREG, 109, 0},
   361  
   362  	// VRI-b generate mask
   363  	Optab{AVGMG, C_SCON, C_NONE, C_SCON, C_VREG, 110, 0},
   364  
   365  	// VRI-c replicate
   366  	Optab{AVREPG, C_UCON, C_VREG, C_NONE, C_VREG, 111, 0},
   367  
   368  	// VRI-d element rotate and insert under mask and
   369  	// shift left double by byte
   370  	Optab{AVERIMG, C_SCON, C_VREG, C_VREG, C_VREG, 112, 0},
   371  	Optab{AVSLDB, C_SCON, C_VREG, C_VREG, C_VREG, 112, 0},
   372  
   373  	// VRI-d fp test data class immediate
   374  	Optab{AVFTCIDB, C_SCON, C_VREG, C_NONE, C_VREG, 113, 0},
   375  
   376  	// VRR-a load reg
   377  	Optab{AVLR, C_VREG, C_NONE, C_NONE, C_VREG, 114, 0},
   378  
   379  	// VRR-a compare
   380  	Optab{AVECG, C_VREG, C_NONE, C_NONE, C_VREG, 115, 0},
   381  
   382  	// VRR-b
   383  	Optab{AVCEQG, C_VREG, C_VREG, C_NONE, C_VREG, 117, 0},
   384  	Optab{AVFAEF, C_VREG, C_VREG, C_NONE, C_VREG, 117, 0},
   385  	Optab{AVPKSG, C_VREG, C_VREG, C_NONE, C_VREG, 117, 0},
   386  
   387  	// VRR-c
   388  	Optab{AVAQ, C_VREG, C_VREG, C_NONE, C_VREG, 118, 0},
   389  	Optab{AVAQ, C_VREG, C_NONE, C_NONE, C_VREG, 118, 0},
   390  	Optab{AVNOT, C_VREG, C_NONE, C_NONE, C_VREG, 118, 0},
   391  	Optab{AVPDI, C_SCON, C_VREG, C_VREG, C_VREG, 123, 0},
   392  
   393  	// VRR-c shifts
   394  	Optab{AVERLLVG, C_VREG, C_VREG, C_NONE, C_VREG, 119, 0},
   395  	Optab{AVERLLVG, C_VREG, C_NONE, C_NONE, C_VREG, 119, 0},
   396  
   397  	// VRR-d
   398  	//             2       3       1       4
   399  	Optab{AVACQ, C_VREG, C_VREG, C_VREG, C_VREG, 120, 0},
   400  
   401  	// VRR-e
   402  	Optab{AVSEL, C_VREG, C_VREG, C_VREG, C_VREG, 121, 0},
   403  
   404  	// VRR-f
   405  	Optab{AVLVGP, C_REG, C_REG, C_NONE, C_VREG, 122, 0},
   406  }
   407  
   408  var oprange [ALAST & obj.AMask][]Optab
   409  
   410  var xcmp [C_NCLASS][C_NCLASS]bool
   411  
   412  func spanz(ctxt *obj.Link, cursym *obj.LSym, newprog obj.ProgAlloc) {
   413  	p := cursym.Func.Text
   414  	if p == nil || p.Link == nil { // handle external functions and ELF section symbols
   415  		return
   416  	}
   417  
   418  	if oprange[AORW&obj.AMask] == nil {
   419  		ctxt.Diag("s390x ops not initialized, call s390x.buildop first")
   420  	}
   421  
   422  	c := ctxtz{ctxt: ctxt, newprog: newprog, cursym: cursym, autosize: int32(p.To.Offset)}
   423  
   424  	buffer := make([]byte, 0)
   425  	changed := true
   426  	loop := 0
   427  	for changed {
   428  		if loop > 10 {
   429  			c.ctxt.Diag("stuck in spanz loop")
   430  			break
   431  		}
   432  		changed = false
   433  		buffer = buffer[:0]
   434  		c.cursym.R = make([]obj.Reloc, 0)
   435  		for p := c.cursym.Func.Text; p != nil; p = p.Link {
   436  			pc := int64(len(buffer))
   437  			if pc != p.Pc {
   438  				changed = true
   439  			}
   440  			p.Pc = pc
   441  			c.pc = p.Pc
   442  			c.asmout(p, &buffer)
   443  			if pc == int64(len(buffer)) {
   444  				switch p.As {
   445  				case obj.ANOP, obj.AFUNCDATA, obj.APCDATA, obj.ATEXT:
   446  					// ok
   447  				default:
   448  					c.ctxt.Diag("zero-width instruction\n%v", p)
   449  				}
   450  			}
   451  		}
   452  		loop++
   453  	}
   454  
   455  	c.cursym.Size = int64(len(buffer))
   456  	if c.cursym.Size%funcAlign != 0 {
   457  		c.cursym.Size += funcAlign - (c.cursym.Size % funcAlign)
   458  	}
   459  	c.cursym.Grow(c.cursym.Size)
   460  	copy(c.cursym.P, buffer)
   461  }
   462  
   463  func isint32(v int64) bool {
   464  	return int64(int32(v)) == v
   465  }
   466  
   467  func isuint32(v uint64) bool {
   468  	return uint64(uint32(v)) == v
   469  }
   470  
   471  func (c *ctxtz) aclass(a *obj.Addr) int {
   472  	switch a.Type {
   473  	case obj.TYPE_NONE:
   474  		return C_NONE
   475  
   476  	case obj.TYPE_REG:
   477  		if REG_R0 <= a.Reg && a.Reg <= REG_R15 {
   478  			return C_REG
   479  		}
   480  		if REG_F0 <= a.Reg && a.Reg <= REG_F15 {
   481  			return C_FREG
   482  		}
   483  		if REG_AR0 <= a.Reg && a.Reg <= REG_AR15 {
   484  			return C_AREG
   485  		}
   486  		if REG_V0 <= a.Reg && a.Reg <= REG_V31 {
   487  			return C_VREG
   488  		}
   489  		return C_GOK
   490  
   491  	case obj.TYPE_MEM:
   492  		switch a.Name {
   493  		case obj.NAME_EXTERN,
   494  			obj.NAME_STATIC:
   495  			if a.Sym == nil {
   496  				// must have a symbol
   497  				break
   498  			}
   499  			c.instoffset = a.Offset
   500  			if a.Sym.Type == objabi.STLSBSS {
   501  				if c.ctxt.Flag_shared {
   502  					return C_TLS_IE // initial exec model
   503  				}
   504  				return C_TLS_LE // local exec model
   505  			}
   506  			return C_ADDR
   507  
   508  		case obj.NAME_GOTREF:
   509  			return C_GOTADDR
   510  
   511  		case obj.NAME_AUTO:
   512  			if a.Reg == REGSP {
   513  				// unset base register for better printing, since
   514  				// a.Offset is still relative to pseudo-SP.
   515  				a.Reg = obj.REG_NONE
   516  			}
   517  			c.instoffset = int64(c.autosize) + a.Offset
   518  			if c.instoffset >= -BIG && c.instoffset < BIG {
   519  				return C_SAUTO
   520  			}
   521  			return C_LAUTO
   522  
   523  		case obj.NAME_PARAM:
   524  			if a.Reg == REGSP {
   525  				// unset base register for better printing, since
   526  				// a.Offset is still relative to pseudo-FP.
   527  				a.Reg = obj.REG_NONE
   528  			}
   529  			c.instoffset = int64(c.autosize) + a.Offset + c.ctxt.FixedFrameSize()
   530  			if c.instoffset >= -BIG && c.instoffset < BIG {
   531  				return C_SAUTO
   532  			}
   533  			return C_LAUTO
   534  
   535  		case obj.NAME_NONE:
   536  			c.instoffset = a.Offset
   537  			if c.instoffset == 0 {
   538  				return C_ZOREG
   539  			}
   540  			if c.instoffset >= -BIG && c.instoffset < BIG {
   541  				return C_SOREG
   542  			}
   543  			return C_LOREG
   544  		}
   545  
   546  		return C_GOK
   547  
   548  	case obj.TYPE_TEXTSIZE:
   549  		return C_TEXTSIZE
   550  
   551  	case obj.TYPE_FCONST:
   552  		if f64, ok := a.Val.(float64); ok && math.Float64bits(f64) == 0 {
   553  			return C_ZCON
   554  		}
   555  		c.ctxt.Diag("cannot handle the floating point constant %v", a.Val)
   556  
   557  	case obj.TYPE_CONST,
   558  		obj.TYPE_ADDR:
   559  		switch a.Name {
   560  		case obj.NAME_NONE:
   561  			c.instoffset = a.Offset
   562  			if a.Reg != 0 {
   563  				if -BIG <= c.instoffset && c.instoffset <= BIG {
   564  					return C_SACON
   565  				}
   566  				if isint32(c.instoffset) {
   567  					return C_LACON
   568  				}
   569  				return C_DACON
   570  			}
   571  			goto consize
   572  
   573  		case obj.NAME_EXTERN,
   574  			obj.NAME_STATIC:
   575  			s := a.Sym
   576  			if s == nil {
   577  				break
   578  			}
   579  			c.instoffset = a.Offset
   580  
   581  			return C_SYMADDR
   582  
   583  		case obj.NAME_AUTO:
   584  			if a.Reg == REGSP {
   585  				// unset base register for better printing, since
   586  				// a.Offset is still relative to pseudo-SP.
   587  				a.Reg = obj.REG_NONE
   588  			}
   589  			c.instoffset = int64(c.autosize) + a.Offset
   590  			if c.instoffset >= -BIG && c.instoffset < BIG {
   591  				return C_SACON
   592  			}
   593  			return C_LACON
   594  
   595  		case obj.NAME_PARAM:
   596  			if a.Reg == REGSP {
   597  				// unset base register for better printing, since
   598  				// a.Offset is still relative to pseudo-FP.
   599  				a.Reg = obj.REG_NONE
   600  			}
   601  			c.instoffset = int64(c.autosize) + a.Offset + c.ctxt.FixedFrameSize()
   602  			if c.instoffset >= -BIG && c.instoffset < BIG {
   603  				return C_SACON
   604  			}
   605  			return C_LACON
   606  		}
   607  
   608  		return C_GOK
   609  
   610  	consize:
   611  		if c.instoffset == 0 {
   612  			return C_ZCON
   613  		}
   614  		if c.instoffset >= 0 {
   615  			if c.instoffset <= 0x7fff {
   616  				return C_SCON
   617  			}
   618  			if c.instoffset <= 0xffff {
   619  				return C_ANDCON
   620  			}
   621  			if c.instoffset&0xffff == 0 && isuint32(uint64(c.instoffset)) { /* && (instoffset & (1<<31)) == 0) */
   622  				return C_UCON
   623  			}
   624  			if isint32(c.instoffset) || isuint32(uint64(c.instoffset)) {
   625  				return C_LCON
   626  			}
   627  			return C_DCON
   628  		}
   629  
   630  		if c.instoffset >= -0x8000 {
   631  			return C_ADDCON
   632  		}
   633  		if c.instoffset&0xffff == 0 && isint32(c.instoffset) {
   634  			return C_UCON
   635  		}
   636  		if isint32(c.instoffset) {
   637  			return C_LCON
   638  		}
   639  		return C_DCON
   640  
   641  	case obj.TYPE_BRANCH:
   642  		return C_SBRA
   643  	}
   644  
   645  	return C_GOK
   646  }
   647  
   648  func (c *ctxtz) oplook(p *obj.Prog) *Optab {
   649  	a1 := int(p.Optab)
   650  	if a1 != 0 {
   651  		return &optab[a1-1]
   652  	}
   653  	a1 = int(p.From.Class)
   654  	if a1 == 0 {
   655  		a1 = c.aclass(&p.From) + 1
   656  		p.From.Class = int8(a1)
   657  	}
   658  
   659  	a1--
   660  	a3 := C_NONE + 1
   661  	if p.GetFrom3() != nil {
   662  		a3 = int(p.GetFrom3().Class)
   663  		if a3 == 0 {
   664  			a3 = c.aclass(p.GetFrom3()) + 1
   665  			p.GetFrom3().Class = int8(a3)
   666  		}
   667  	}
   668  
   669  	a3--
   670  	a4 := int(p.To.Class)
   671  	if a4 == 0 {
   672  		a4 = c.aclass(&p.To) + 1
   673  		p.To.Class = int8(a4)
   674  	}
   675  
   676  	a4--
   677  	a2 := C_NONE
   678  	if p.Reg != 0 {
   679  		if REG_R0 <= p.Reg && p.Reg <= REG_R15 {
   680  			a2 = C_REG
   681  		} else if REG_V0 <= p.Reg && p.Reg <= REG_V31 {
   682  			a2 = C_VREG
   683  		} else if REG_F0 <= p.Reg && p.Reg <= REG_F15 {
   684  			a2 = C_FREG
   685  		} else if REG_AR0 <= p.Reg && p.Reg <= REG_AR15 {
   686  			a2 = C_AREG
   687  		}
   688  	}
   689  
   690  	ops := oprange[p.As&obj.AMask]
   691  	c1 := &xcmp[a1]
   692  	c2 := &xcmp[a2]
   693  	c3 := &xcmp[a3]
   694  	c4 := &xcmp[a4]
   695  	for i := range ops {
   696  		op := &ops[i]
   697  		if (int(op.a2) == a2 || c2[op.a2]) && c4[op.a4] && c1[op.a1] && c3[op.a3] {
   698  			p.Optab = uint16(cap(optab) - cap(ops) + i + 1)
   699  			return op
   700  		}
   701  	}
   702  
   703  	// cannot find a case; abort
   704  	c.ctxt.Diag("illegal combination %v %v %v %v %v\n", p.As, DRconv(a1), DRconv(a2), DRconv(a3), DRconv(a4))
   705  	c.ctxt.Diag("prog: %v\n", p)
   706  	return nil
   707  }
   708  
   709  func cmp(a int, b int) bool {
   710  	if a == b {
   711  		return true
   712  	}
   713  	switch a {
   714  	case C_DCON:
   715  		if b == C_LCON {
   716  			return true
   717  		}
   718  		fallthrough
   719  	case C_LCON:
   720  		if b == C_ZCON || b == C_SCON || b == C_UCON || b == C_ADDCON || b == C_ANDCON {
   721  			return true
   722  		}
   723  
   724  	case C_ADDCON:
   725  		if b == C_ZCON || b == C_SCON {
   726  			return true
   727  		}
   728  
   729  	case C_ANDCON:
   730  		if b == C_ZCON || b == C_SCON {
   731  			return true
   732  		}
   733  
   734  	case C_UCON:
   735  		if b == C_ZCON || b == C_SCON {
   736  			return true
   737  		}
   738  
   739  	case C_SCON:
   740  		if b == C_ZCON {
   741  			return true
   742  		}
   743  
   744  	case C_LACON:
   745  		if b == C_SACON {
   746  			return true
   747  		}
   748  
   749  	case C_LBRA:
   750  		if b == C_SBRA {
   751  			return true
   752  		}
   753  
   754  	case C_LAUTO:
   755  		if b == C_SAUTO {
   756  			return true
   757  		}
   758  
   759  	case C_LOREG:
   760  		if b == C_ZOREG || b == C_SOREG {
   761  			return true
   762  		}
   763  
   764  	case C_SOREG:
   765  		if b == C_ZOREG {
   766  			return true
   767  		}
   768  
   769  	case C_ANY:
   770  		return true
   771  	}
   772  
   773  	return false
   774  }
   775  
   776  type ocmp []Optab
   777  
   778  func (x ocmp) Len() int {
   779  	return len(x)
   780  }
   781  
   782  func (x ocmp) Swap(i, j int) {
   783  	x[i], x[j] = x[j], x[i]
   784  }
   785  
   786  func (x ocmp) Less(i, j int) bool {
   787  	p1 := &x[i]
   788  	p2 := &x[j]
   789  	n := int(p1.as) - int(p2.as)
   790  	if n != 0 {
   791  		return n < 0
   792  	}
   793  	n = int(p1.a1) - int(p2.a1)
   794  	if n != 0 {
   795  		return n < 0
   796  	}
   797  	n = int(p1.a2) - int(p2.a2)
   798  	if n != 0 {
   799  		return n < 0
   800  	}
   801  	n = int(p1.a3) - int(p2.a3)
   802  	if n != 0 {
   803  		return n < 0
   804  	}
   805  	n = int(p1.a4) - int(p2.a4)
   806  	if n != 0 {
   807  		return n < 0
   808  	}
   809  	return false
   810  }
   811  func opset(a, b obj.As) {
   812  	oprange[a&obj.AMask] = oprange[b&obj.AMask]
   813  }
   814  
   815  func buildop(ctxt *obj.Link) {
   816  	if oprange[AORW&obj.AMask] != nil {
   817  		// Already initialized; stop now.
   818  		// This happens in the cmd/asm tests,
   819  		// each of which re-initializes the arch.
   820  		return
   821  	}
   822  
   823  	for i := 0; i < C_NCLASS; i++ {
   824  		for n := 0; n < C_NCLASS; n++ {
   825  			if cmp(n, i) {
   826  				xcmp[i][n] = true
   827  			}
   828  		}
   829  	}
   830  	sort.Sort(ocmp(optab))
   831  	for i := 0; i < len(optab); i++ {
   832  		r := optab[i].as
   833  		start := i
   834  		for ; i+1 < len(optab); i++ {
   835  			if optab[i+1].as != r {
   836  				break
   837  			}
   838  		}
   839  		oprange[r&obj.AMask] = optab[start : i+1]
   840  
   841  		// opset() aliases optab ranges for similar instructions, to reduce the number of optabs in the array.
   842  		// oprange[] is used by oplook() to find the Optab entry that applies to a given Prog.
   843  		switch r {
   844  		case AADD:
   845  			opset(AADDC, r)
   846  			opset(AADDW, r)
   847  			opset(AMULLD, r)
   848  			opset(AMULLW, r)
   849  		case ADIVW:
   850  			opset(AADDE, r)
   851  			opset(ADIVD, r)
   852  			opset(ADIVDU, r)
   853  			opset(ADIVWU, r)
   854  			opset(AMODD, r)
   855  			opset(AMODDU, r)
   856  			opset(AMODW, r)
   857  			opset(AMODWU, r)
   858  		case AMULHD:
   859  			opset(AMULHDU, r)
   860  		case AMOVBZ:
   861  			opset(AMOVH, r)
   862  			opset(AMOVHZ, r)
   863  		case ALA:
   864  			opset(ALAY, r)
   865  		case AMVC:
   866  			opset(ACLC, r)
   867  			opset(AXC, r)
   868  			opset(AOC, r)
   869  			opset(ANC, r)
   870  		case ASTCK:
   871  			opset(ASTCKC, r)
   872  			opset(ASTCKE, r)
   873  			opset(ASTCKF, r)
   874  		case ALAAG:
   875  			opset(ALAA, r)
   876  			opset(ALAAL, r)
   877  			opset(ALAALG, r)
   878  			opset(ALAN, r)
   879  			opset(ALANG, r)
   880  			opset(ALAX, r)
   881  			opset(ALAXG, r)
   882  			opset(ALAO, r)
   883  			opset(ALAOG, r)
   884  		case ASTMG:
   885  			opset(ASTMY, r)
   886  		case ALMG:
   887  			opset(ALMY, r)
   888  		case ABEQ:
   889  			opset(ABGE, r)
   890  			opset(ABGT, r)
   891  			opset(ABLE, r)
   892  			opset(ABLT, r)
   893  			opset(ABNE, r)
   894  			opset(ABVC, r)
   895  			opset(ABVS, r)
   896  			opset(ABLEU, r)
   897  			opset(ABLTU, r)
   898  		case ABR:
   899  			opset(ABL, r)
   900  		case ABC:
   901  			opset(ABCL, r)
   902  		case AFABS:
   903  			opset(AFNABS, r)
   904  			opset(ALPDFR, r)
   905  			opset(ALNDFR, r)
   906  			opset(AFNEG, r)
   907  			opset(AFNEGS, r)
   908  			opset(ALEDBR, r)
   909  			opset(ALDEBR, r)
   910  			opset(AFSQRT, r)
   911  			opset(AFSQRTS, r)
   912  		case AFADD:
   913  			opset(AFADDS, r)
   914  			opset(AFDIV, r)
   915  			opset(AFDIVS, r)
   916  			opset(AFSUB, r)
   917  			opset(AFSUBS, r)
   918  		case AFMADD:
   919  			opset(AFMADDS, r)
   920  			opset(AFMSUB, r)
   921  			opset(AFMSUBS, r)
   922  		case AFMUL:
   923  			opset(AFMULS, r)
   924  		case AFCMPO:
   925  			opset(AFCMPU, r)
   926  			opset(ACEBR, r)
   927  		case AAND:
   928  			opset(AOR, r)
   929  			opset(AXOR, r)
   930  		case AANDW:
   931  			opset(AORW, r)
   932  			opset(AXORW, r)
   933  		case ASLD:
   934  			opset(ASRD, r)
   935  			opset(ASLW, r)
   936  			opset(ASRW, r)
   937  			opset(ASRAD, r)
   938  			opset(ASRAW, r)
   939  			opset(ARLL, r)
   940  			opset(ARLLG, r)
   941  		case ACSG:
   942  			opset(ACS, r)
   943  		case ASUB:
   944  			opset(ASUBC, r)
   945  			opset(ASUBE, r)
   946  			opset(ASUBW, r)
   947  		case ANEG:
   948  			opset(ANEGW, r)
   949  		case AFMOVD:
   950  			opset(AFMOVS, r)
   951  		case AMOVDBR:
   952  			opset(AMOVWBR, r)
   953  		case ACMP:
   954  			opset(ACMPW, r)
   955  		case ACMPU:
   956  			opset(ACMPWU, r)
   957  		case ATMHH:
   958  			opset(ATMHL, r)
   959  			opset(ATMLH, r)
   960  			opset(ATMLL, r)
   961  		case ACEFBRA:
   962  			opset(ACDFBRA, r)
   963  			opset(ACEGBRA, r)
   964  			opset(ACDGBRA, r)
   965  			opset(ACELFBR, r)
   966  			opset(ACDLFBR, r)
   967  			opset(ACELGBR, r)
   968  			opset(ACDLGBR, r)
   969  		case ACFEBRA:
   970  			opset(ACFDBRA, r)
   971  			opset(ACGEBRA, r)
   972  			opset(ACGDBRA, r)
   973  			opset(ACLFEBR, r)
   974  			opset(ACLFDBR, r)
   975  			opset(ACLGEBR, r)
   976  			opset(ACLGDBR, r)
   977  		case AFIEBR:
   978  			opset(AFIDBR, r)
   979  		case ACMPBEQ:
   980  			opset(ACMPBGE, r)
   981  			opset(ACMPBGT, r)
   982  			opset(ACMPBLE, r)
   983  			opset(ACMPBLT, r)
   984  			opset(ACMPBNE, r)
   985  		case ACMPUBEQ:
   986  			opset(ACMPUBGE, r)
   987  			opset(ACMPUBGT, r)
   988  			opset(ACMPUBLE, r)
   989  			opset(ACMPUBLT, r)
   990  			opset(ACMPUBNE, r)
   991  		case AMOVDEQ:
   992  			opset(AMOVDGE, r)
   993  			opset(AMOVDGT, r)
   994  			opset(AMOVDLE, r)
   995  			opset(AMOVDLT, r)
   996  			opset(AMOVDNE, r)
   997  		case AVL:
   998  			opset(AVLLEZB, r)
   999  			opset(AVLLEZH, r)
  1000  			opset(AVLLEZF, r)
  1001  			opset(AVLLEZG, r)
  1002  			opset(AVLREPB, r)
  1003  			opset(AVLREPH, r)
  1004  			opset(AVLREPF, r)
  1005  			opset(AVLREPG, r)
  1006  		case AVLEG:
  1007  			opset(AVLBB, r)
  1008  			opset(AVLEB, r)
  1009  			opset(AVLEH, r)
  1010  			opset(AVLEF, r)
  1011  			opset(AVLEG, r)
  1012  			opset(AVLREP, r)
  1013  		case AVSTEG:
  1014  			opset(AVSTEB, r)
  1015  			opset(AVSTEH, r)
  1016  			opset(AVSTEF, r)
  1017  		case AVSCEG:
  1018  			opset(AVSCEF, r)
  1019  		case AVGEG:
  1020  			opset(AVGEF, r)
  1021  		case AVESLG:
  1022  			opset(AVESLB, r)
  1023  			opset(AVESLH, r)
  1024  			opset(AVESLF, r)
  1025  			opset(AVERLLB, r)
  1026  			opset(AVERLLH, r)
  1027  			opset(AVERLLF, r)
  1028  			opset(AVERLLG, r)
  1029  			opset(AVESRAB, r)
  1030  			opset(AVESRAH, r)
  1031  			opset(AVESRAF, r)
  1032  			opset(AVESRAG, r)
  1033  			opset(AVESRLB, r)
  1034  			opset(AVESRLH, r)
  1035  			opset(AVESRLF, r)
  1036  			opset(AVESRLG, r)
  1037  		case AVLGVG:
  1038  			opset(AVLGVB, r)
  1039  			opset(AVLGVH, r)
  1040  			opset(AVLGVF, r)
  1041  		case AVLVGG:
  1042  			opset(AVLVGB, r)
  1043  			opset(AVLVGH, r)
  1044  			opset(AVLVGF, r)
  1045  		case AVZERO:
  1046  			opset(AVONE, r)
  1047  		case AVREPIG:
  1048  			opset(AVREPIB, r)
  1049  			opset(AVREPIH, r)
  1050  			opset(AVREPIF, r)
  1051  		case AVLEIG:
  1052  			opset(AVLEIB, r)
  1053  			opset(AVLEIH, r)
  1054  			opset(AVLEIF, r)
  1055  		case AVGMG:
  1056  			opset(AVGMB, r)
  1057  			opset(AVGMH, r)
  1058  			opset(AVGMF, r)
  1059  		case AVREPG:
  1060  			opset(AVREPB, r)
  1061  			opset(AVREPH, r)
  1062  			opset(AVREPF, r)
  1063  		case AVERIMG:
  1064  			opset(AVERIMB, r)
  1065  			opset(AVERIMH, r)
  1066  			opset(AVERIMF, r)
  1067  		case AVFTCIDB:
  1068  			opset(AWFTCIDB, r)
  1069  		case AVLR:
  1070  			opset(AVUPHB, r)
  1071  			opset(AVUPHH, r)
  1072  			opset(AVUPHF, r)
  1073  			opset(AVUPLHB, r)
  1074  			opset(AVUPLHH, r)
  1075  			opset(AVUPLHF, r)
  1076  			opset(AVUPLB, r)
  1077  			opset(AVUPLHW, r)
  1078  			opset(AVUPLF, r)
  1079  			opset(AVUPLLB, r)
  1080  			opset(AVUPLLH, r)
  1081  			opset(AVUPLLF, r)
  1082  			opset(AVCLZB, r)
  1083  			opset(AVCLZH, r)
  1084  			opset(AVCLZF, r)
  1085  			opset(AVCLZG, r)
  1086  			opset(AVCTZB, r)
  1087  			opset(AVCTZH, r)
  1088  			opset(AVCTZF, r)
  1089  			opset(AVCTZG, r)
  1090  			opset(AVLDEB, r)
  1091  			opset(AWLDEB, r)
  1092  			opset(AVFLCDB, r)
  1093  			opset(AWFLCDB, r)
  1094  			opset(AVFLNDB, r)
  1095  			opset(AWFLNDB, r)
  1096  			opset(AVFLPDB, r)
  1097  			opset(AWFLPDB, r)
  1098  			opset(AVFSQDB, r)
  1099  			opset(AWFSQDB, r)
  1100  			opset(AVISTRB, r)
  1101  			opset(AVISTRH, r)
  1102  			opset(AVISTRF, r)
  1103  			opset(AVISTRBS, r)
  1104  			opset(AVISTRHS, r)
  1105  			opset(AVISTRFS, r)
  1106  			opset(AVLCB, r)
  1107  			opset(AVLCH, r)
  1108  			opset(AVLCF, r)
  1109  			opset(AVLCG, r)
  1110  			opset(AVLPB, r)
  1111  			opset(AVLPH, r)
  1112  			opset(AVLPF, r)
  1113  			opset(AVLPG, r)
  1114  			opset(AVPOPCT, r)
  1115  			opset(AVSEGB, r)
  1116  			opset(AVSEGH, r)
  1117  			opset(AVSEGF, r)
  1118  		case AVECG:
  1119  			opset(AVECB, r)
  1120  			opset(AVECH, r)
  1121  			opset(AVECF, r)
  1122  			opset(AVECLB, r)
  1123  			opset(AVECLH, r)
  1124  			opset(AVECLF, r)
  1125  			opset(AVECLG, r)
  1126  			opset(AWFCDB, r)
  1127  			opset(AWFKDB, r)
  1128  		case AVCEQG:
  1129  			opset(AVCEQB, r)
  1130  			opset(AVCEQH, r)
  1131  			opset(AVCEQF, r)
  1132  			opset(AVCEQBS, r)
  1133  			opset(AVCEQHS, r)
  1134  			opset(AVCEQFS, r)
  1135  			opset(AVCEQGS, r)
  1136  			opset(AVCHB, r)
  1137  			opset(AVCHH, r)
  1138  			opset(AVCHF, r)
  1139  			opset(AVCHG, r)
  1140  			opset(AVCHBS, r)
  1141  			opset(AVCHHS, r)
  1142  			opset(AVCHFS, r)
  1143  			opset(AVCHGS, r)
  1144  			opset(AVCHLB, r)
  1145  			opset(AVCHLH, r)
  1146  			opset(AVCHLF, r)
  1147  			opset(AVCHLG, r)
  1148  			opset(AVCHLBS, r)
  1149  			opset(AVCHLHS, r)
  1150  			opset(AVCHLFS, r)
  1151  			opset(AVCHLGS, r)
  1152  		case AVFAEF:
  1153  			opset(AVFAEB, r)
  1154  			opset(AVFAEH, r)
  1155  			opset(AVFAEBS, r)
  1156  			opset(AVFAEHS, r)
  1157  			opset(AVFAEFS, r)
  1158  			opset(AVFAEZB, r)
  1159  			opset(AVFAEZH, r)
  1160  			opset(AVFAEZF, r)
  1161  			opset(AVFAEZBS, r)
  1162  			opset(AVFAEZHS, r)
  1163  			opset(AVFAEZFS, r)
  1164  			opset(AVFEEB, r)
  1165  			opset(AVFEEH, r)
  1166  			opset(AVFEEF, r)
  1167  			opset(AVFEEBS, r)
  1168  			opset(AVFEEHS, r)
  1169  			opset(AVFEEFS, r)
  1170  			opset(AVFEEZB, r)
  1171  			opset(AVFEEZH, r)
  1172  			opset(AVFEEZF, r)
  1173  			opset(AVFEEZBS, r)
  1174  			opset(AVFEEZHS, r)
  1175  			opset(AVFEEZFS, r)
  1176  			opset(AVFENEB, r)
  1177  			opset(AVFENEH, r)
  1178  			opset(AVFENEF, r)
  1179  			opset(AVFENEBS, r)
  1180  			opset(AVFENEHS, r)
  1181  			opset(AVFENEFS, r)
  1182  			opset(AVFENEZB, r)
  1183  			opset(AVFENEZH, r)
  1184  			opset(AVFENEZF, r)
  1185  			opset(AVFENEZBS, r)
  1186  			opset(AVFENEZHS, r)
  1187  			opset(AVFENEZFS, r)
  1188  		case AVPKSG:
  1189  			opset(AVPKSH, r)
  1190  			opset(AVPKSF, r)
  1191  			opset(AVPKSHS, r)
  1192  			opset(AVPKSFS, r)
  1193  			opset(AVPKSGS, r)
  1194  			opset(AVPKLSH, r)
  1195  			opset(AVPKLSF, r)
  1196  			opset(AVPKLSG, r)
  1197  			opset(AVPKLSHS, r)
  1198  			opset(AVPKLSFS, r)
  1199  			opset(AVPKLSGS, r)
  1200  		case AVAQ:
  1201  			opset(AVAB, r)
  1202  			opset(AVAH, r)
  1203  			opset(AVAF, r)
  1204  			opset(AVAG, r)
  1205  			opset(AVACCB, r)
  1206  			opset(AVACCH, r)
  1207  			opset(AVACCF, r)
  1208  			opset(AVACCG, r)
  1209  			opset(AVACCQ, r)
  1210  			opset(AVN, r)
  1211  			opset(AVNC, r)
  1212  			opset(AVAVGB, r)
  1213  			opset(AVAVGH, r)
  1214  			opset(AVAVGF, r)
  1215  			opset(AVAVGG, r)
  1216  			opset(AVAVGLB, r)
  1217  			opset(AVAVGLH, r)
  1218  			opset(AVAVGLF, r)
  1219  			opset(AVAVGLG, r)
  1220  			opset(AVCKSM, r)
  1221  			opset(AVX, r)
  1222  			opset(AVFADB, r)
  1223  			opset(AWFADB, r)
  1224  			opset(AVFCEDB, r)
  1225  			opset(AVFCEDBS, r)
  1226  			opset(AWFCEDB, r)
  1227  			opset(AWFCEDBS, r)
  1228  			opset(AVFCHDB, r)
  1229  			opset(AVFCHDBS, r)
  1230  			opset(AWFCHDB, r)
  1231  			opset(AWFCHDBS, r)
  1232  			opset(AVFCHEDB, r)
  1233  			opset(AVFCHEDBS, r)
  1234  			opset(AWFCHEDB, r)
  1235  			opset(AWFCHEDBS, r)
  1236  			opset(AVFMDB, r)
  1237  			opset(AWFMDB, r)
  1238  			opset(AVGFMB, r)
  1239  			opset(AVGFMH, r)
  1240  			opset(AVGFMF, r)
  1241  			opset(AVGFMG, r)
  1242  			opset(AVMXB, r)
  1243  			opset(AVMXH, r)
  1244  			opset(AVMXF, r)
  1245  			opset(AVMXG, r)
  1246  			opset(AVMXLB, r)
  1247  			opset(AVMXLH, r)
  1248  			opset(AVMXLF, r)
  1249  			opset(AVMXLG, r)
  1250  			opset(AVMNB, r)
  1251  			opset(AVMNH, r)
  1252  			opset(AVMNF, r)
  1253  			opset(AVMNG, r)
  1254  			opset(AVMNLB, r)
  1255  			opset(AVMNLH, r)
  1256  			opset(AVMNLF, r)
  1257  			opset(AVMNLG, r)
  1258  			opset(AVMRHB, r)
  1259  			opset(AVMRHH, r)
  1260  			opset(AVMRHF, r)
  1261  			opset(AVMRHG, r)
  1262  			opset(AVMRLB, r)
  1263  			opset(AVMRLH, r)
  1264  			opset(AVMRLF, r)
  1265  			opset(AVMRLG, r)
  1266  			opset(AVMEB, r)
  1267  			opset(AVMEH, r)
  1268  			opset(AVMEF, r)
  1269  			opset(AVMLEB, r)
  1270  			opset(AVMLEH, r)
  1271  			opset(AVMLEF, r)
  1272  			opset(AVMOB, r)
  1273  			opset(AVMOH, r)
  1274  			opset(AVMOF, r)
  1275  			opset(AVMLOB, r)
  1276  			opset(AVMLOH, r)
  1277  			opset(AVMLOF, r)
  1278  			opset(AVMHB, r)
  1279  			opset(AVMHH, r)
  1280  			opset(AVMHF, r)
  1281  			opset(AVMLHB, r)
  1282  			opset(AVMLHH, r)
  1283  			opset(AVMLHF, r)
  1284  			opset(AVMLH, r)
  1285  			opset(AVMLHW, r)
  1286  			opset(AVMLF, r)
  1287  			opset(AVNO, r)
  1288  			opset(AVO, r)
  1289  			opset(AVPKH, r)
  1290  			opset(AVPKF, r)
  1291  			opset(AVPKG, r)
  1292  			opset(AVSUMGH, r)
  1293  			opset(AVSUMGF, r)
  1294  			opset(AVSUMQF, r)
  1295  			opset(AVSUMQG, r)
  1296  			opset(AVSUMB, r)
  1297  			opset(AVSUMH, r)
  1298  		case AVERLLVG:
  1299  			opset(AVERLLVB, r)
  1300  			opset(AVERLLVH, r)
  1301  			opset(AVERLLVF, r)
  1302  			opset(AVESLVB, r)
  1303  			opset(AVESLVH, r)
  1304  			opset(AVESLVF, r)
  1305  			opset(AVESLVG, r)
  1306  			opset(AVESRAVB, r)
  1307  			opset(AVESRAVH, r)
  1308  			opset(AVESRAVF, r)
  1309  			opset(AVESRAVG, r)
  1310  			opset(AVESRLVB, r)
  1311  			opset(AVESRLVH, r)
  1312  			opset(AVESRLVF, r)
  1313  			opset(AVESRLVG, r)
  1314  			opset(AVFDDB, r)
  1315  			opset(AWFDDB, r)
  1316  			opset(AVFSDB, r)
  1317  			opset(AWFSDB, r)
  1318  			opset(AVSL, r)
  1319  			opset(AVSLB, r)
  1320  			opset(AVSRA, r)
  1321  			opset(AVSRAB, r)
  1322  			opset(AVSRL, r)
  1323  			opset(AVSRLB, r)
  1324  			opset(AVSF, r)
  1325  			opset(AVSG, r)
  1326  			opset(AVSQ, r)
  1327  			opset(AVSCBIB, r)
  1328  			opset(AVSCBIH, r)
  1329  			opset(AVSCBIF, r)
  1330  			opset(AVSCBIG, r)
  1331  			opset(AVSCBIQ, r)
  1332  		case AVACQ:
  1333  			opset(AVACCCQ, r)
  1334  			opset(AVGFMAB, r)
  1335  			opset(AVGFMAH, r)
  1336  			opset(AVGFMAF, r)
  1337  			opset(AVGFMAG, r)
  1338  			opset(AVMALB, r)
  1339  			opset(AVMALHW, r)
  1340  			opset(AVMALF, r)
  1341  			opset(AVMAHB, r)
  1342  			opset(AVMAHH, r)
  1343  			opset(AVMAHF, r)
  1344  			opset(AVMALHB, r)
  1345  			opset(AVMALHH, r)
  1346  			opset(AVMALHF, r)
  1347  			opset(AVMAEB, r)
  1348  			opset(AVMAEH, r)
  1349  			opset(AVMAEF, r)
  1350  			opset(AVMALEB, r)
  1351  			opset(AVMALEH, r)
  1352  			opset(AVMALEF, r)
  1353  			opset(AVMAOB, r)
  1354  			opset(AVMAOH, r)
  1355  			opset(AVMAOF, r)
  1356  			opset(AVMALOB, r)
  1357  			opset(AVMALOH, r)
  1358  			opset(AVMALOF, r)
  1359  			opset(AVSTRCB, r)
  1360  			opset(AVSTRCH, r)
  1361  			opset(AVSTRCF, r)
  1362  			opset(AVSTRCBS, r)
  1363  			opset(AVSTRCHS, r)
  1364  			opset(AVSTRCFS, r)
  1365  			opset(AVSTRCZB, r)
  1366  			opset(AVSTRCZH, r)
  1367  			opset(AVSTRCZF, r)
  1368  			opset(AVSTRCZBS, r)
  1369  			opset(AVSTRCZHS, r)
  1370  			opset(AVSTRCZFS, r)
  1371  			opset(AVSBCBIQ, r)
  1372  			opset(AVSBIQ, r)
  1373  		case AVSEL:
  1374  			opset(AVFMADB, r)
  1375  			opset(AWFMADB, r)
  1376  			opset(AVFMSDB, r)
  1377  			opset(AWFMSDB, r)
  1378  			opset(AVPERM, r)
  1379  		}
  1380  	}
  1381  }
  1382  
  1383  const (
  1384  	op_A       uint32 = 0x5A00 // FORMAT_RX1        ADD (32)
  1385  	op_AD      uint32 = 0x6A00 // FORMAT_RX1        ADD NORMALIZED (long HFP)
  1386  	op_ADB     uint32 = 0xED1A // FORMAT_RXE        ADD (long BFP)
  1387  	op_ADBR    uint32 = 0xB31A // FORMAT_RRE        ADD (long BFP)
  1388  	op_ADR     uint32 = 0x2A00 // FORMAT_RR         ADD NORMALIZED (long HFP)
  1389  	op_ADTR    uint32 = 0xB3D2 // FORMAT_RRF1       ADD (long DFP)
  1390  	op_ADTRA   uint32 = 0xB3D2 // FORMAT_RRF1       ADD (long DFP)
  1391  	op_AE      uint32 = 0x7A00 // FORMAT_RX1        ADD NORMALIZED (short HFP)
  1392  	op_AEB     uint32 = 0xED0A // FORMAT_RXE        ADD (short BFP)
  1393  	op_AEBR    uint32 = 0xB30A // FORMAT_RRE        ADD (short BFP)
  1394  	op_AER     uint32 = 0x3A00 // FORMAT_RR         ADD NORMALIZED (short HFP)
  1395  	op_AFI     uint32 = 0xC209 // FORMAT_RIL1       ADD IMMEDIATE (32)
  1396  	op_AG      uint32 = 0xE308 // FORMAT_RXY1       ADD (64)
  1397  	op_AGF     uint32 = 0xE318 // FORMAT_RXY1       ADD (64<-32)
  1398  	op_AGFI    uint32 = 0xC208 // FORMAT_RIL1       ADD IMMEDIATE (64<-32)
  1399  	op_AGFR    uint32 = 0xB918 // FORMAT_RRE        ADD (64<-32)
  1400  	op_AGHI    uint32 = 0xA70B // FORMAT_RI1        ADD HALFWORD IMMEDIATE (64)
  1401  	op_AGHIK   uint32 = 0xECD9 // FORMAT_RIE4       ADD IMMEDIATE (64<-16)
  1402  	op_AGR     uint32 = 0xB908 // FORMAT_RRE        ADD (64)
  1403  	op_AGRK    uint32 = 0xB9E8 // FORMAT_RRF1       ADD (64)
  1404  	op_AGSI    uint32 = 0xEB7A // FORMAT_SIY        ADD IMMEDIATE (64<-8)
  1405  	op_AH      uint32 = 0x4A00 // FORMAT_RX1        ADD HALFWORD
  1406  	op_AHHHR   uint32 = 0xB9C8 // FORMAT_RRF1       ADD HIGH (32)
  1407  	op_AHHLR   uint32 = 0xB9D8 // FORMAT_RRF1       ADD HIGH (32)
  1408  	op_AHI     uint32 = 0xA70A // FORMAT_RI1        ADD HALFWORD IMMEDIATE (32)
  1409  	op_AHIK    uint32 = 0xECD8 // FORMAT_RIE4       ADD IMMEDIATE (32<-16)
  1410  	op_AHY     uint32 = 0xE37A // FORMAT_RXY1       ADD HALFWORD
  1411  	op_AIH     uint32 = 0xCC08 // FORMAT_RIL1       ADD IMMEDIATE HIGH (32)
  1412  	op_AL      uint32 = 0x5E00 // FORMAT_RX1        ADD LOGICAL (32)
  1413  	op_ALC     uint32 = 0xE398 // FORMAT_RXY1       ADD LOGICAL WITH CARRY (32)
  1414  	op_ALCG    uint32 = 0xE388 // FORMAT_RXY1       ADD LOGICAL WITH CARRY (64)
  1415  	op_ALCGR   uint32 = 0xB988 // FORMAT_RRE        ADD LOGICAL WITH CARRY (64)
  1416  	op_ALCR    uint32 = 0xB998 // FORMAT_RRE        ADD LOGICAL WITH CARRY (32)
  1417  	op_ALFI    uint32 = 0xC20B // FORMAT_RIL1       ADD LOGICAL IMMEDIATE (32)
  1418  	op_ALG     uint32 = 0xE30A // FORMAT_RXY1       ADD LOGICAL (64)
  1419  	op_ALGF    uint32 = 0xE31A // FORMAT_RXY1       ADD LOGICAL (64<-32)
  1420  	op_ALGFI   uint32 = 0xC20A // FORMAT_RIL1       ADD LOGICAL IMMEDIATE (64<-32)
  1421  	op_ALGFR   uint32 = 0xB91A // FORMAT_RRE        ADD LOGICAL (64<-32)
  1422  	op_ALGHSIK uint32 = 0xECDB // FORMAT_RIE4       ADD LOGICAL WITH SIGNED IMMEDIATE (64<-16)
  1423  	op_ALGR    uint32 = 0xB90A // FORMAT_RRE        ADD LOGICAL (64)
  1424  	op_ALGRK   uint32 = 0xB9EA // FORMAT_RRF1       ADD LOGICAL (64)
  1425  	op_ALGSI   uint32 = 0xEB7E // FORMAT_SIY        ADD LOGICAL WITH SIGNED IMMEDIATE (64<-8)
  1426  	op_ALHHHR  uint32 = 0xB9CA // FORMAT_RRF1       ADD LOGICAL HIGH (32)
  1427  	op_ALHHLR  uint32 = 0xB9DA // FORMAT_RRF1       ADD LOGICAL HIGH (32)
  1428  	op_ALHSIK  uint32 = 0xECDA // FORMAT_RIE4       ADD LOGICAL WITH SIGNED IMMEDIATE (32<-16)
  1429  	op_ALR     uint32 = 0x1E00 // FORMAT_RR         ADD LOGICAL (32)
  1430  	op_ALRK    uint32 = 0xB9FA // FORMAT_RRF1       ADD LOGICAL (32)
  1431  	op_ALSI    uint32 = 0xEB6E // FORMAT_SIY        ADD LOGICAL WITH SIGNED IMMEDIATE (32<-8)
  1432  	op_ALSIH   uint32 = 0xCC0A // FORMAT_RIL1       ADD LOGICAL WITH SIGNED IMMEDIATE HIGH (32)
  1433  	op_ALSIHN  uint32 = 0xCC0B // FORMAT_RIL1       ADD LOGICAL WITH SIGNED IMMEDIATE HIGH (32)
  1434  	op_ALY     uint32 = 0xE35E // FORMAT_RXY1       ADD LOGICAL (32)
  1435  	op_AP      uint32 = 0xFA00 // FORMAT_SS2        ADD DECIMAL
  1436  	op_AR      uint32 = 0x1A00 // FORMAT_RR         ADD (32)
  1437  	op_ARK     uint32 = 0xB9F8 // FORMAT_RRF1       ADD (32)
  1438  	op_ASI     uint32 = 0xEB6A // FORMAT_SIY        ADD IMMEDIATE (32<-8)
  1439  	op_AU      uint32 = 0x7E00 // FORMAT_RX1        ADD UNNORMALIZED (short HFP)
  1440  	op_AUR     uint32 = 0x3E00 // FORMAT_RR         ADD UNNORMALIZED (short HFP)
  1441  	op_AW      uint32 = 0x6E00 // FORMAT_RX1        ADD UNNORMALIZED (long HFP)
  1442  	op_AWR     uint32 = 0x2E00 // FORMAT_RR         ADD UNNORMALIZED (long HFP)
  1443  	op_AXBR    uint32 = 0xB34A // FORMAT_RRE        ADD (extended BFP)
  1444  	op_AXR     uint32 = 0x3600 // FORMAT_RR         ADD NORMALIZED (extended HFP)
  1445  	op_AXTR    uint32 = 0xB3DA // FORMAT_RRF1       ADD (extended DFP)
  1446  	op_AXTRA   uint32 = 0xB3DA // FORMAT_RRF1       ADD (extended DFP)
  1447  	op_AY      uint32 = 0xE35A // FORMAT_RXY1       ADD (32)
  1448  	op_BAKR    uint32 = 0xB240 // FORMAT_RRE        BRANCH AND STACK
  1449  	op_BAL     uint32 = 0x4500 // FORMAT_RX1        BRANCH AND LINK
  1450  	op_BALR    uint32 = 0x0500 // FORMAT_RR         BRANCH AND LINK
  1451  	op_BAS     uint32 = 0x4D00 // FORMAT_RX1        BRANCH AND SAVE
  1452  	op_BASR    uint32 = 0x0D00 // FORMAT_RR         BRANCH AND SAVE
  1453  	op_BASSM   uint32 = 0x0C00 // FORMAT_RR         BRANCH AND SAVE AND SET MODE
  1454  	op_BC      uint32 = 0x4700 // FORMAT_RX2        BRANCH ON CONDITION
  1455  	op_BCR     uint32 = 0x0700 // FORMAT_RR         BRANCH ON CONDITION
  1456  	op_BCT     uint32 = 0x4600 // FORMAT_RX1        BRANCH ON COUNT (32)
  1457  	op_BCTG    uint32 = 0xE346 // FORMAT_RXY1       BRANCH ON COUNT (64)
  1458  	op_BCTGR   uint32 = 0xB946 // FORMAT_RRE        BRANCH ON COUNT (64)
  1459  	op_BCTR    uint32 = 0x0600 // FORMAT_RR         BRANCH ON COUNT (32)
  1460  	op_BPP     uint32 = 0xC700 // FORMAT_SMI        BRANCH PREDICTION PRELOAD
  1461  	op_BPRP    uint32 = 0xC500 // FORMAT_MII        BRANCH PREDICTION RELATIVE PRELOAD
  1462  	op_BRAS    uint32 = 0xA705 // FORMAT_RI2        BRANCH RELATIVE AND SAVE
  1463  	op_BRASL   uint32 = 0xC005 // FORMAT_RIL2       BRANCH RELATIVE AND SAVE LONG
  1464  	op_BRC     uint32 = 0xA704 // FORMAT_RI3        BRANCH RELATIVE ON CONDITION
  1465  	op_BRCL    uint32 = 0xC004 // FORMAT_RIL3       BRANCH RELATIVE ON CONDITION LONG
  1466  	op_BRCT    uint32 = 0xA706 // FORMAT_RI2        BRANCH RELATIVE ON COUNT (32)
  1467  	op_BRCTG   uint32 = 0xA707 // FORMAT_RI2        BRANCH RELATIVE ON COUNT (64)
  1468  	op_BRCTH   uint32 = 0xCC06 // FORMAT_RIL2       BRANCH RELATIVE ON COUNT HIGH (32)
  1469  	op_BRXH    uint32 = 0x8400 // FORMAT_RSI        BRANCH RELATIVE ON INDEX HIGH (32)
  1470  	op_BRXHG   uint32 = 0xEC44 // FORMAT_RIE5       BRANCH RELATIVE ON INDEX HIGH (64)
  1471  	op_BRXLE   uint32 = 0x8500 // FORMAT_RSI        BRANCH RELATIVE ON INDEX LOW OR EQ. (32)
  1472  	op_BRXLG   uint32 = 0xEC45 // FORMAT_RIE5       BRANCH RELATIVE ON INDEX LOW OR EQ. (64)
  1473  	op_BSA     uint32 = 0xB25A // FORMAT_RRE        BRANCH AND SET AUTHORITY
  1474  	op_BSG     uint32 = 0xB258 // FORMAT_RRE        BRANCH IN SUBSPACE GROUP
  1475  	op_BSM     uint32 = 0x0B00 // FORMAT_RR         BRANCH AND SET MODE
  1476  	op_BXH     uint32 = 0x8600 // FORMAT_RS1        BRANCH ON INDEX HIGH (32)
  1477  	op_BXHG    uint32 = 0xEB44 // FORMAT_RSY1       BRANCH ON INDEX HIGH (64)
  1478  	op_BXLE    uint32 = 0x8700 // FORMAT_RS1        BRANCH ON INDEX LOW OR EQUAL (32)
  1479  	op_BXLEG   uint32 = 0xEB45 // FORMAT_RSY1       BRANCH ON INDEX LOW OR EQUAL (64)
  1480  	op_C       uint32 = 0x5900 // FORMAT_RX1        COMPARE (32)
  1481  	op_CD      uint32 = 0x6900 // FORMAT_RX1        COMPARE (long HFP)
  1482  	op_CDB     uint32 = 0xED19 // FORMAT_RXE        COMPARE (long BFP)
  1483  	op_CDBR    uint32 = 0xB319 // FORMAT_RRE        COMPARE (long BFP)
  1484  	op_CDFBR   uint32 = 0xB395 // FORMAT_RRE        CONVERT FROM FIXED (32 to long BFP)
  1485  	op_CDFBRA  uint32 = 0xB395 // FORMAT_RRF5       CONVERT FROM FIXED (32 to long BFP)
  1486  	op_CDFR    uint32 = 0xB3B5 // FORMAT_RRE        CONVERT FROM FIXED (32 to long HFP)
  1487  	op_CDFTR   uint32 = 0xB951 // FORMAT_RRE        CONVERT FROM FIXED (32 to long DFP)
  1488  	op_CDGBR   uint32 = 0xB3A5 // FORMAT_RRE        CONVERT FROM FIXED (64 to long BFP)
  1489  	op_CDGBRA  uint32 = 0xB3A5 // FORMAT_RRF5       CONVERT FROM FIXED (64 to long BFP)
  1490  	op_CDGR    uint32 = 0xB3C5 // FORMAT_RRE        CONVERT FROM FIXED (64 to long HFP)
  1491  	op_CDGTR   uint32 = 0xB3F1 // FORMAT_RRE        CONVERT FROM FIXED (64 to long DFP)
  1492  	op_CDGTRA  uint32 = 0xB3F1 // FORMAT_RRF5       CONVERT FROM FIXED (64 to long DFP)
  1493  	op_CDLFBR  uint32 = 0xB391 // FORMAT_RRF5       CONVERT FROM LOGICAL (32 to long BFP)
  1494  	op_CDLFTR  uint32 = 0xB953 // FORMAT_RRF5       CONVERT FROM LOGICAL (32 to long DFP)
  1495  	op_CDLGBR  uint32 = 0xB3A1 // FORMAT_RRF5       CONVERT FROM LOGICAL (64 to long BFP)
  1496  	op_CDLGTR  uint32 = 0xB952 // FORMAT_RRF5       CONVERT FROM LOGICAL (64 to long DFP)
  1497  	op_CDR     uint32 = 0x2900 // FORMAT_RR         COMPARE (long HFP)
  1498  	op_CDS     uint32 = 0xBB00 // FORMAT_RS1        COMPARE DOUBLE AND SWAP (32)
  1499  	op_CDSG    uint32 = 0xEB3E // FORMAT_RSY1       COMPARE DOUBLE AND SWAP (64)
  1500  	op_CDSTR   uint32 = 0xB3F3 // FORMAT_RRE        CONVERT FROM SIGNED PACKED (64 to long DFP)
  1501  	op_CDSY    uint32 = 0xEB31 // FORMAT_RSY1       COMPARE DOUBLE AND SWAP (32)
  1502  	op_CDTR    uint32 = 0xB3E4 // FORMAT_RRE        COMPARE (long DFP)
  1503  	op_CDUTR   uint32 = 0xB3F2 // FORMAT_RRE        CONVERT FROM UNSIGNED PACKED (64 to long DFP)
  1504  	op_CDZT    uint32 = 0xEDAA // FORMAT_RSL        CONVERT FROM ZONED (to long DFP)
  1505  	op_CE      uint32 = 0x7900 // FORMAT_RX1        COMPARE (short HFP)
  1506  	op_CEB     uint32 = 0xED09 // FORMAT_RXE        COMPARE (short BFP)
  1507  	op_CEBR    uint32 = 0xB309 // FORMAT_RRE        COMPARE (short BFP)
  1508  	op_CEDTR   uint32 = 0xB3F4 // FORMAT_RRE        COMPARE BIASED EXPONENT (long DFP)
  1509  	op_CEFBR   uint32 = 0xB394 // FORMAT_RRE        CONVERT FROM FIXED (32 to short BFP)
  1510  	op_CEFBRA  uint32 = 0xB394 // FORMAT_RRF5       CONVERT FROM FIXED (32 to short BFP)
  1511  	op_CEFR    uint32 = 0xB3B4 // FORMAT_RRE        CONVERT FROM FIXED (32 to short HFP)
  1512  	op_CEGBR   uint32 = 0xB3A4 // FORMAT_RRE        CONVERT FROM FIXED (64 to short BFP)
  1513  	op_CEGBRA  uint32 = 0xB3A4 // FORMAT_RRF5       CONVERT FROM FIXED (64 to short BFP)
  1514  	op_CEGR    uint32 = 0xB3C4 // FORMAT_RRE        CONVERT FROM FIXED (64 to short HFP)
  1515  	op_CELFBR  uint32 = 0xB390 // FORMAT_RRF5       CONVERT FROM LOGICAL (32 to short BFP)
  1516  	op_CELGBR  uint32 = 0xB3A0 // FORMAT_RRF5       CONVERT FROM LOGICAL (64 to short BFP)
  1517  	op_CER     uint32 = 0x3900 // FORMAT_RR         COMPARE (short HFP)
  1518  	op_CEXTR   uint32 = 0xB3FC // FORMAT_RRE        COMPARE BIASED EXPONENT (extended DFP)
  1519  	op_CFC     uint32 = 0xB21A // FORMAT_S          COMPARE AND FORM CODEWORD
  1520  	op_CFDBR   uint32 = 0xB399 // FORMAT_RRF5       CONVERT TO FIXED (long BFP to 32)
  1521  	op_CFDBRA  uint32 = 0xB399 // FORMAT_RRF5       CONVERT TO FIXED (long BFP to 32)
  1522  	op_CFDR    uint32 = 0xB3B9 // FORMAT_RRF5       CONVERT TO FIXED (long HFP to 32)
  1523  	op_CFDTR   uint32 = 0xB941 // FORMAT_RRF5       CONVERT TO FIXED (long DFP to 32)
  1524  	op_CFEBR   uint32 = 0xB398 // FORMAT_RRF5       CONVERT TO FIXED (short BFP to 32)
  1525  	op_CFEBRA  uint32 = 0xB398 // FORMAT_RRF5       CONVERT TO FIXED (short BFP to 32)
  1526  	op_CFER    uint32 = 0xB3B8 // FORMAT_RRF5       CONVERT TO FIXED (short HFP to 32)
  1527  	op_CFI     uint32 = 0xC20D // FORMAT_RIL1       COMPARE IMMEDIATE (32)
  1528  	op_CFXBR   uint32 = 0xB39A // FORMAT_RRF5       CONVERT TO FIXED (extended BFP to 32)
  1529  	op_CFXBRA  uint32 = 0xB39A // FORMAT_RRF5       CONVERT TO FIXED (extended BFP to 32)
  1530  	op_CFXR    uint32 = 0xB3BA // FORMAT_RRF5       CONVERT TO FIXED (extended HFP to 32)
  1531  	op_CFXTR   uint32 = 0xB949 // FORMAT_RRF5       CONVERT TO FIXED (extended DFP to 32)
  1532  	op_CG      uint32 = 0xE320 // FORMAT_RXY1       COMPARE (64)
  1533  	op_CGDBR   uint32 = 0xB3A9 // FORMAT_RRF5       CONVERT TO FIXED (long BFP to 64)
  1534  	op_CGDBRA  uint32 = 0xB3A9 // FORMAT_RRF5       CONVERT TO FIXED (long BFP to 64)
  1535  	op_CGDR    uint32 = 0xB3C9 // FORMAT_RRF5       CONVERT TO FIXED (long HFP to 64)
  1536  	op_CGDTR   uint32 = 0xB3E1 // FORMAT_RRF5       CONVERT TO FIXED (long DFP to 64)
  1537  	op_CGDTRA  uint32 = 0xB3E1 // FORMAT_RRF5       CONVERT TO FIXED (long DFP to 64)
  1538  	op_CGEBR   uint32 = 0xB3A8 // FORMAT_RRF5       CONVERT TO FIXED (short BFP to 64)
  1539  	op_CGEBRA  uint32 = 0xB3A8 // FORMAT_RRF5       CONVERT TO FIXED (short BFP to 64)
  1540  	op_CGER    uint32 = 0xB3C8 // FORMAT_RRF5       CONVERT TO FIXED (short HFP to 64)
  1541  	op_CGF     uint32 = 0xE330 // FORMAT_RXY1       COMPARE (64<-32)
  1542  	op_CGFI    uint32 = 0xC20C // FORMAT_RIL1       COMPARE IMMEDIATE (64<-32)
  1543  	op_CGFR    uint32 = 0xB930 // FORMAT_RRE        COMPARE (64<-32)
  1544  	op_CGFRL   uint32 = 0xC60C // FORMAT_RIL2       COMPARE RELATIVE LONG (64<-32)
  1545  	op_CGH     uint32 = 0xE334 // FORMAT_RXY1       COMPARE HALFWORD (64<-16)
  1546  	op_CGHI    uint32 = 0xA70F // FORMAT_RI1        COMPARE HALFWORD IMMEDIATE (64<-16)
  1547  	op_CGHRL   uint32 = 0xC604 // FORMAT_RIL2       COMPARE HALFWORD RELATIVE LONG (64<-16)
  1548  	op_CGHSI   uint32 = 0xE558 // FORMAT_SIL        COMPARE HALFWORD IMMEDIATE (64<-16)
  1549  	op_CGIB    uint32 = 0xECFC // FORMAT_RIS        COMPARE IMMEDIATE AND BRANCH (64<-8)
  1550  	op_CGIJ    uint32 = 0xEC7C // FORMAT_RIE3       COMPARE IMMEDIATE AND BRANCH RELATIVE (64<-8)
  1551  	op_CGIT    uint32 = 0xEC70 // FORMAT_RIE1       COMPARE IMMEDIATE AND TRAP (64<-16)
  1552  	op_CGR     uint32 = 0xB920 // FORMAT_RRE        COMPARE (64)
  1553  	op_CGRB    uint32 = 0xECE4 // FORMAT_RRS        COMPARE AND BRANCH (64)
  1554  	op_CGRJ    uint32 = 0xEC64 // FORMAT_RIE2       COMPARE AND BRANCH RELATIVE (64)
  1555  	op_CGRL    uint32 = 0xC608 // FORMAT_RIL2       COMPARE RELATIVE LONG (64)
  1556  	op_CGRT    uint32 = 0xB960 // FORMAT_RRF3       COMPARE AND TRAP (64)
  1557  	op_CGXBR   uint32 = 0xB3AA // FORMAT_RRF5       CONVERT TO FIXED (extended BFP to 64)
  1558  	op_CGXBRA  uint32 = 0xB3AA // FORMAT_RRF5       CONVERT TO FIXED (extended BFP to 64)
  1559  	op_CGXR    uint32 = 0xB3CA // FORMAT_RRF5       CONVERT TO FIXED (extended HFP to 64)
  1560  	op_CGXTR   uint32 = 0xB3E9 // FORMAT_RRF5       CONVERT TO FIXED (extended DFP to 64)
  1561  	op_CGXTRA  uint32 = 0xB3E9 // FORMAT_RRF5       CONVERT TO FIXED (extended DFP to 64)
  1562  	op_CH      uint32 = 0x4900 // FORMAT_RX1        COMPARE HALFWORD (32<-16)
  1563  	op_CHF     uint32 = 0xE3CD // FORMAT_RXY1       COMPARE HIGH (32)
  1564  	op_CHHR    uint32 = 0xB9CD // FORMAT_RRE        COMPARE HIGH (32)
  1565  	op_CHHSI   uint32 = 0xE554 // FORMAT_SIL        COMPARE HALFWORD IMMEDIATE (16)
  1566  	op_CHI     uint32 = 0xA70E // FORMAT_RI1        COMPARE HALFWORD IMMEDIATE (32<-16)
  1567  	op_CHLR    uint32 = 0xB9DD // FORMAT_RRE        COMPARE HIGH (32)
  1568  	op_CHRL    uint32 = 0xC605 // FORMAT_RIL2       COMPARE HALFWORD RELATIVE LONG (32<-16)
  1569  	op_CHSI    uint32 = 0xE55C // FORMAT_SIL        COMPARE HALFWORD IMMEDIATE (32<-16)
  1570  	op_CHY     uint32 = 0xE379 // FORMAT_RXY1       COMPARE HALFWORD (32<-16)
  1571  	op_CIB     uint32 = 0xECFE // FORMAT_RIS        COMPARE IMMEDIATE AND BRANCH (32<-8)
  1572  	op_CIH     uint32 = 0xCC0D // FORMAT_RIL1       COMPARE IMMEDIATE HIGH (32)
  1573  	op_CIJ     uint32 = 0xEC7E // FORMAT_RIE3       COMPARE IMMEDIATE AND BRANCH RELATIVE (32<-8)
  1574  	op_CIT     uint32 = 0xEC72 // FORMAT_RIE1       COMPARE IMMEDIATE AND TRAP (32<-16)
  1575  	op_CKSM    uint32 = 0xB241 // FORMAT_RRE        CHECKSUM
  1576  	op_CL      uint32 = 0x5500 // FORMAT_RX1        COMPARE LOGICAL (32)
  1577  	op_CLC     uint32 = 0xD500 // FORMAT_SS1        COMPARE LOGICAL (character)
  1578  	op_CLCL    uint32 = 0x0F00 // FORMAT_RR         COMPARE LOGICAL LONG
  1579  	op_CLCLE   uint32 = 0xA900 // FORMAT_RS1        COMPARE LOGICAL LONG EXTENDED
  1580  	op_CLCLU   uint32 = 0xEB8F // FORMAT_RSY1       COMPARE LOGICAL LONG UNICODE
  1581  	op_CLFDBR  uint32 = 0xB39D // FORMAT_RRF5       CONVERT TO LOGICAL (long BFP to 32)
  1582  	op_CLFDTR  uint32 = 0xB943 // FORMAT_RRF5       CONVERT TO LOGICAL (long DFP to 32)
  1583  	op_CLFEBR  uint32 = 0xB39C // FORMAT_RRF5       CONVERT TO LOGICAL (short BFP to 32)
  1584  	op_CLFHSI  uint32 = 0xE55D // FORMAT_SIL        COMPARE LOGICAL IMMEDIATE (32<-16)
  1585  	op_CLFI    uint32 = 0xC20F // FORMAT_RIL1       COMPARE LOGICAL IMMEDIATE (32)
  1586  	op_CLFIT   uint32 = 0xEC73 // FORMAT_RIE1       COMPARE LOGICAL IMMEDIATE AND TRAP (32<-16)
  1587  	op_CLFXBR  uint32 = 0xB39E // FORMAT_RRF5       CONVERT TO LOGICAL (extended BFP to 32)
  1588  	op_CLFXTR  uint32 = 0xB94B // FORMAT_RRF5       CONVERT TO LOGICAL (extended DFP to 32)
  1589  	op_CLG     uint32 = 0xE321 // FORMAT_RXY1       COMPARE LOGICAL (64)
  1590  	op_CLGDBR  uint32 = 0xB3AD // FORMAT_RRF5       CONVERT TO LOGICAL (long BFP to 64)
  1591  	op_CLGDTR  uint32 = 0xB942 // FORMAT_RRF5       CONVERT TO LOGICAL (long DFP to 64)
  1592  	op_CLGEBR  uint32 = 0xB3AC // FORMAT_RRF5       CONVERT TO LOGICAL (short BFP to 64)
  1593  	op_CLGF    uint32 = 0xE331 // FORMAT_RXY1       COMPARE LOGICAL (64<-32)
  1594  	op_CLGFI   uint32 = 0xC20E // FORMAT_RIL1       COMPARE LOGICAL IMMEDIATE (64<-32)
  1595  	op_CLGFR   uint32 = 0xB931 // FORMAT_RRE        COMPARE LOGICAL (64<-32)
  1596  	op_CLGFRL  uint32 = 0xC60E // FORMAT_RIL2       COMPARE LOGICAL RELATIVE LONG (64<-32)
  1597  	op_CLGHRL  uint32 = 0xC606 // FORMAT_RIL2       COMPARE LOGICAL RELATIVE LONG (64<-16)
  1598  	op_CLGHSI  uint32 = 0xE559 // FORMAT_SIL        COMPARE LOGICAL IMMEDIATE (64<-16)
  1599  	op_CLGIB   uint32 = 0xECFD // FORMAT_RIS        COMPARE LOGICAL IMMEDIATE AND BRANCH (64<-8)
  1600  	op_CLGIJ   uint32 = 0xEC7D // FORMAT_RIE3       COMPARE LOGICAL IMMEDIATE AND BRANCH RELATIVE (64<-8)
  1601  	op_CLGIT   uint32 = 0xEC71 // FORMAT_RIE1       COMPARE LOGICAL IMMEDIATE AND TRAP (64<-16)
  1602  	op_CLGR    uint32 = 0xB921 // FORMAT_RRE        COMPARE LOGICAL (64)
  1603  	op_CLGRB   uint32 = 0xECE5 // FORMAT_RRS        COMPARE LOGICAL AND BRANCH (64)
  1604  	op_CLGRJ   uint32 = 0xEC65 // FORMAT_RIE2       COMPARE LOGICAL AND BRANCH RELATIVE (64)
  1605  	op_CLGRL   uint32 = 0xC60A // FORMAT_RIL2       COMPARE LOGICAL RELATIVE LONG (64)
  1606  	op_CLGRT   uint32 = 0xB961 // FORMAT_RRF3       COMPARE LOGICAL AND TRAP (64)
  1607  	op_CLGT    uint32 = 0xEB2B // FORMAT_RSY2       COMPARE LOGICAL AND TRAP (64)
  1608  	op_CLGXBR  uint32 = 0xB3AE // FORMAT_RRF5       CONVERT TO LOGICAL (extended BFP to 64)
  1609  	op_CLGXTR  uint32 = 0xB94A // FORMAT_RRF5       CONVERT TO LOGICAL (extended DFP to 64)
  1610  	op_CLHF    uint32 = 0xE3CF // FORMAT_RXY1       COMPARE LOGICAL HIGH (32)
  1611  	op_CLHHR   uint32 = 0xB9CF // FORMAT_RRE        COMPARE LOGICAL HIGH (32)
  1612  	op_CLHHSI  uint32 = 0xE555 // FORMAT_SIL        COMPARE LOGICAL IMMEDIATE (16)
  1613  	op_CLHLR   uint32 = 0xB9DF // FORMAT_RRE        COMPARE LOGICAL HIGH (32)
  1614  	op_CLHRL   uint32 = 0xC607 // FORMAT_RIL2       COMPARE LOGICAL RELATIVE LONG (32<-16)
  1615  	op_CLI     uint32 = 0x9500 // FORMAT_SI         COMPARE LOGICAL (immediate)
  1616  	op_CLIB    uint32 = 0xECFF // FORMAT_RIS        COMPARE LOGICAL IMMEDIATE AND BRANCH (32<-8)
  1617  	op_CLIH    uint32 = 0xCC0F // FORMAT_RIL1       COMPARE LOGICAL IMMEDIATE HIGH (32)
  1618  	op_CLIJ    uint32 = 0xEC7F // FORMAT_RIE3       COMPARE LOGICAL IMMEDIATE AND BRANCH RELATIVE (32<-8)
  1619  	op_CLIY    uint32 = 0xEB55 // FORMAT_SIY        COMPARE LOGICAL (immediate)
  1620  	op_CLM     uint32 = 0xBD00 // FORMAT_RS2        COMPARE LOGICAL CHAR. UNDER MASK (low)
  1621  	op_CLMH    uint32 = 0xEB20 // FORMAT_RSY2       COMPARE LOGICAL CHAR. UNDER MASK (high)
  1622  	op_CLMY    uint32 = 0xEB21 // FORMAT_RSY2       COMPARE LOGICAL CHAR. UNDER MASK (low)
  1623  	op_CLR     uint32 = 0x1500 // FORMAT_RR         COMPARE LOGICAL (32)
  1624  	op_CLRB    uint32 = 0xECF7 // FORMAT_RRS        COMPARE LOGICAL AND BRANCH (32)
  1625  	op_CLRJ    uint32 = 0xEC77 // FORMAT_RIE2       COMPARE LOGICAL AND BRANCH RELATIVE (32)
  1626  	op_CLRL    uint32 = 0xC60F // FORMAT_RIL2       COMPARE LOGICAL RELATIVE LONG (32)
  1627  	op_CLRT    uint32 = 0xB973 // FORMAT_RRF3       COMPARE LOGICAL AND TRAP (32)
  1628  	op_CLST    uint32 = 0xB25D // FORMAT_RRE        COMPARE LOGICAL STRING
  1629  	op_CLT     uint32 = 0xEB23 // FORMAT_RSY2       COMPARE LOGICAL AND TRAP (32)
  1630  	op_CLY     uint32 = 0xE355 // FORMAT_RXY1       COMPARE LOGICAL (32)
  1631  	op_CMPSC   uint32 = 0xB263 // FORMAT_RRE        COMPRESSION CALL
  1632  	op_CP      uint32 = 0xF900 // FORMAT_SS2        COMPARE DECIMAL
  1633  	op_CPSDR   uint32 = 0xB372 // FORMAT_RRF2       COPY SIGN (long)
  1634  	op_CPYA    uint32 = 0xB24D // FORMAT_RRE        COPY ACCESS
  1635  	op_CR      uint32 = 0x1900 // FORMAT_RR         COMPARE (32)
  1636  	op_CRB     uint32 = 0xECF6 // FORMAT_RRS        COMPARE AND BRANCH (32)
  1637  	op_CRDTE   uint32 = 0xB98F // FORMAT_RRF2       COMPARE AND REPLACE DAT TABLE ENTRY
  1638  	op_CRJ     uint32 = 0xEC76 // FORMAT_RIE2       COMPARE AND BRANCH RELATIVE (32)
  1639  	op_CRL     uint32 = 0xC60D // FORMAT_RIL2       COMPARE RELATIVE LONG (32)
  1640  	op_CRT     uint32 = 0xB972 // FORMAT_RRF3       COMPARE AND TRAP (32)
  1641  	op_CS      uint32 = 0xBA00 // FORMAT_RS1        COMPARE AND SWAP (32)
  1642  	op_CSCH    uint32 = 0xB230 // FORMAT_S          CLEAR SUBCHANNEL
  1643  	op_CSDTR   uint32 = 0xB3E3 // FORMAT_RRF4       CONVERT TO SIGNED PACKED (long DFP to 64)
  1644  	op_CSG     uint32 = 0xEB30 // FORMAT_RSY1       COMPARE AND SWAP (64)
  1645  	op_CSP     uint32 = 0xB250 // FORMAT_RRE        COMPARE AND SWAP AND PURGE
  1646  	op_CSPG    uint32 = 0xB98A // FORMAT_RRE        COMPARE AND SWAP AND PURGE
  1647  	op_CSST    uint32 = 0xC802 // FORMAT_SSF        COMPARE AND SWAP AND STORE
  1648  	op_CSXTR   uint32 = 0xB3EB // FORMAT_RRF4       CONVERT TO SIGNED PACKED (extended DFP to 128)
  1649  	op_CSY     uint32 = 0xEB14 // FORMAT_RSY1       COMPARE AND SWAP (32)
  1650  	op_CU12    uint32 = 0xB2A7 // FORMAT_RRF3       CONVERT UTF-8 TO UTF-16
  1651  	op_CU14    uint32 = 0xB9B0 // FORMAT_RRF3       CONVERT UTF-8 TO UTF-32
  1652  	op_CU21    uint32 = 0xB2A6 // FORMAT_RRF3       CONVERT UTF-16 TO UTF-8
  1653  	op_CU24    uint32 = 0xB9B1 // FORMAT_RRF3       CONVERT UTF-16 TO UTF-32
  1654  	op_CU41    uint32 = 0xB9B2 // FORMAT_RRE        CONVERT UTF-32 TO UTF-8
  1655  	op_CU42    uint32 = 0xB9B3 // FORMAT_RRE        CONVERT UTF-32 TO UTF-16
  1656  	op_CUDTR   uint32 = 0xB3E2 // FORMAT_RRE        CONVERT TO UNSIGNED PACKED (long DFP to 64)
  1657  	op_CUSE    uint32 = 0xB257 // FORMAT_RRE        COMPARE UNTIL SUBSTRING EQUAL
  1658  	op_CUTFU   uint32 = 0xB2A7 // FORMAT_RRF3       CONVERT UTF-8 TO UNICODE
  1659  	op_CUUTF   uint32 = 0xB2A6 // FORMAT_RRF3       CONVERT UNICODE TO UTF-8
  1660  	op_CUXTR   uint32 = 0xB3EA // FORMAT_RRE        CONVERT TO UNSIGNED PACKED (extended DFP to 128)
  1661  	op_CVB     uint32 = 0x4F00 // FORMAT_RX1        CONVERT TO BINARY (32)
  1662  	op_CVBG    uint32 = 0xE30E // FORMAT_RXY1       CONVERT TO BINARY (64)
  1663  	op_CVBY    uint32 = 0xE306 // FORMAT_RXY1       CONVERT TO BINARY (32)
  1664  	op_CVD     uint32 = 0x4E00 // FORMAT_RX1        CONVERT TO DECIMAL (32)
  1665  	op_CVDG    uint32 = 0xE32E // FORMAT_RXY1       CONVERT TO DECIMAL (64)
  1666  	op_CVDY    uint32 = 0xE326 // FORMAT_RXY1       CONVERT TO DECIMAL (32)
  1667  	op_CXBR    uint32 = 0xB349 // FORMAT_RRE        COMPARE (extended BFP)
  1668  	op_CXFBR   uint32 = 0xB396 // FORMAT_RRE        CONVERT FROM FIXED (32 to extended BFP)
  1669  	op_CXFBRA  uint32 = 0xB396 // FORMAT_RRF5       CONVERT FROM FIXED (32 to extended BFP)
  1670  	op_CXFR    uint32 = 0xB3B6 // FORMAT_RRE        CONVERT FROM FIXED (32 to extended HFP)
  1671  	op_CXFTR   uint32 = 0xB959 // FORMAT_RRE        CONVERT FROM FIXED (32 to extended DFP)
  1672  	op_CXGBR   uint32 = 0xB3A6 // FORMAT_RRE        CONVERT FROM FIXED (64 to extended BFP)
  1673  	op_CXGBRA  uint32 = 0xB3A6 // FORMAT_RRF5       CONVERT FROM FIXED (64 to extended BFP)
  1674  	op_CXGR    uint32 = 0xB3C6 // FORMAT_RRE        CONVERT FROM FIXED (64 to extended HFP)
  1675  	op_CXGTR   uint32 = 0xB3F9 // FORMAT_RRE        CONVERT FROM FIXED (64 to extended DFP)
  1676  	op_CXGTRA  uint32 = 0xB3F9 // FORMAT_RRF5       CONVERT FROM FIXED (64 to extended DFP)
  1677  	op_CXLFBR  uint32 = 0xB392 // FORMAT_RRF5       CONVERT FROM LOGICAL (32 to extended BFP)
  1678  	op_CXLFTR  uint32 = 0xB95B // FORMAT_RRF5       CONVERT FROM LOGICAL (32 to extended DFP)
  1679  	op_CXLGBR  uint32 = 0xB3A2 // FORMAT_RRF5       CONVERT FROM LOGICAL (64 to extended BFP)
  1680  	op_CXLGTR  uint32 = 0xB95A // FORMAT_RRF5       CONVERT FROM LOGICAL (64 to extended DFP)
  1681  	op_CXR     uint32 = 0xB369 // FORMAT_RRE        COMPARE (extended HFP)
  1682  	op_CXSTR   uint32 = 0xB3FB // FORMAT_RRE        CONVERT FROM SIGNED PACKED (128 to extended DFP)
  1683  	op_CXTR    uint32 = 0xB3EC // FORMAT_RRE        COMPARE (extended DFP)
  1684  	op_CXUTR   uint32 = 0xB3FA // FORMAT_RRE        CONVERT FROM UNSIGNED PACKED (128 to ext. DFP)
  1685  	op_CXZT    uint32 = 0xEDAB // FORMAT_RSL        CONVERT FROM ZONED (to extended DFP)
  1686  	op_CY      uint32 = 0xE359 // FORMAT_RXY1       COMPARE (32)
  1687  	op_CZDT    uint32 = 0xEDA8 // FORMAT_RSL        CONVERT TO ZONED (from long DFP)
  1688  	op_CZXT    uint32 = 0xEDA9 // FORMAT_RSL        CONVERT TO ZONED (from extended DFP)
  1689  	op_D       uint32 = 0x5D00 // FORMAT_RX1        DIVIDE (32<-64)
  1690  	op_DD      uint32 = 0x6D00 // FORMAT_RX1        DIVIDE (long HFP)
  1691  	op_DDB     uint32 = 0xED1D // FORMAT_RXE        DIVIDE (long BFP)
  1692  	op_DDBR    uint32 = 0xB31D // FORMAT_RRE        DIVIDE (long BFP)
  1693  	op_DDR     uint32 = 0x2D00 // FORMAT_RR         DIVIDE (long HFP)
  1694  	op_DDTR    uint32 = 0xB3D1 // FORMAT_RRF1       DIVIDE (long DFP)
  1695  	op_DDTRA   uint32 = 0xB3D1 // FORMAT_RRF1       DIVIDE (long DFP)
  1696  	op_DE      uint32 = 0x7D00 // FORMAT_RX1        DIVIDE (short HFP)
  1697  	op_DEB     uint32 = 0xED0D // FORMAT_RXE        DIVIDE (short BFP)
  1698  	op_DEBR    uint32 = 0xB30D // FORMAT_RRE        DIVIDE (short BFP)
  1699  	op_DER     uint32 = 0x3D00 // FORMAT_RR         DIVIDE (short HFP)
  1700  	op_DIDBR   uint32 = 0xB35B // FORMAT_RRF2       DIVIDE TO INTEGER (long BFP)
  1701  	op_DIEBR   uint32 = 0xB353 // FORMAT_RRF2       DIVIDE TO INTEGER (short BFP)
  1702  	op_DL      uint32 = 0xE397 // FORMAT_RXY1       DIVIDE LOGICAL (32<-64)
  1703  	op_DLG     uint32 = 0xE387 // FORMAT_RXY1       DIVIDE LOGICAL (64<-128)
  1704  	op_DLGR    uint32 = 0xB987 // FORMAT_RRE        DIVIDE LOGICAL (64<-128)
  1705  	op_DLR     uint32 = 0xB997 // FORMAT_RRE        DIVIDE LOGICAL (32<-64)
  1706  	op_DP      uint32 = 0xFD00 // FORMAT_SS2        DIVIDE DECIMAL
  1707  	op_DR      uint32 = 0x1D00 // FORMAT_RR         DIVIDE (32<-64)
  1708  	op_DSG     uint32 = 0xE30D // FORMAT_RXY1       DIVIDE SINGLE (64)
  1709  	op_DSGF    uint32 = 0xE31D // FORMAT_RXY1       DIVIDE SINGLE (64<-32)
  1710  	op_DSGFR   uint32 = 0xB91D // FORMAT_RRE        DIVIDE SINGLE (64<-32)
  1711  	op_DSGR    uint32 = 0xB90D // FORMAT_RRE        DIVIDE SINGLE (64)
  1712  	op_DXBR    uint32 = 0xB34D // FORMAT_RRE        DIVIDE (extended BFP)
  1713  	op_DXR     uint32 = 0xB22D // FORMAT_RRE        DIVIDE (extended HFP)
  1714  	op_DXTR    uint32 = 0xB3D9 // FORMAT_RRF1       DIVIDE (extended DFP)
  1715  	op_DXTRA   uint32 = 0xB3D9 // FORMAT_RRF1       DIVIDE (extended DFP)
  1716  	op_EAR     uint32 = 0xB24F // FORMAT_RRE        EXTRACT ACCESS
  1717  	op_ECAG    uint32 = 0xEB4C // FORMAT_RSY1       EXTRACT CACHE ATTRIBUTE
  1718  	op_ECTG    uint32 = 0xC801 // FORMAT_SSF        EXTRACT CPU TIME
  1719  	op_ED      uint32 = 0xDE00 // FORMAT_SS1        EDIT
  1720  	op_EDMK    uint32 = 0xDF00 // FORMAT_SS1        EDIT AND MARK
  1721  	op_EEDTR   uint32 = 0xB3E5 // FORMAT_RRE        EXTRACT BIASED EXPONENT (long DFP to 64)
  1722  	op_EEXTR   uint32 = 0xB3ED // FORMAT_RRE        EXTRACT BIASED EXPONENT (extended DFP to 64)
  1723  	op_EFPC    uint32 = 0xB38C // FORMAT_RRE        EXTRACT FPC
  1724  	op_EPAIR   uint32 = 0xB99A // FORMAT_RRE        EXTRACT PRIMARY ASN AND INSTANCE
  1725  	op_EPAR    uint32 = 0xB226 // FORMAT_RRE        EXTRACT PRIMARY ASN
  1726  	op_EPSW    uint32 = 0xB98D // FORMAT_RRE        EXTRACT PSW
  1727  	op_EREG    uint32 = 0xB249 // FORMAT_RRE        EXTRACT STACKED REGISTERS (32)
  1728  	op_EREGG   uint32 = 0xB90E // FORMAT_RRE        EXTRACT STACKED REGISTERS (64)
  1729  	op_ESAIR   uint32 = 0xB99B // FORMAT_RRE        EXTRACT SECONDARY ASN AND INSTANCE
  1730  	op_ESAR    uint32 = 0xB227 // FORMAT_RRE        EXTRACT SECONDARY ASN
  1731  	op_ESDTR   uint32 = 0xB3E7 // FORMAT_RRE        EXTRACT SIGNIFICANCE (long DFP)
  1732  	op_ESEA    uint32 = 0xB99D // FORMAT_RRE        EXTRACT AND SET EXTENDED AUTHORITY
  1733  	op_ESTA    uint32 = 0xB24A // FORMAT_RRE        EXTRACT STACKED STATE
  1734  	op_ESXTR   uint32 = 0xB3EF // FORMAT_RRE        EXTRACT SIGNIFICANCE (extended DFP)
  1735  	op_ETND    uint32 = 0xB2EC // FORMAT_RRE        EXTRACT TRANSACTION NESTING DEPTH
  1736  	op_EX      uint32 = 0x4400 // FORMAT_RX1        EXECUTE
  1737  	op_EXRL    uint32 = 0xC600 // FORMAT_RIL2       EXECUTE RELATIVE LONG
  1738  	op_FIDBR   uint32 = 0xB35F // FORMAT_RRF5       LOAD FP INTEGER (long BFP)
  1739  	op_FIDBRA  uint32 = 0xB35F // FORMAT_RRF5       LOAD FP INTEGER (long BFP)
  1740  	op_FIDR    uint32 = 0xB37F // FORMAT_RRE        LOAD FP INTEGER (long HFP)
  1741  	op_FIDTR   uint32 = 0xB3D7 // FORMAT_RRF5       LOAD FP INTEGER (long DFP)
  1742  	op_FIEBR   uint32 = 0xB357 // FORMAT_RRF5       LOAD FP INTEGER (short BFP)
  1743  	op_FIEBRA  uint32 = 0xB357 // FORMAT_RRF5       LOAD FP INTEGER (short BFP)
  1744  	op_FIER    uint32 = 0xB377 // FORMAT_RRE        LOAD FP INTEGER (short HFP)
  1745  	op_FIXBR   uint32 = 0xB347 // FORMAT_RRF5       LOAD FP INTEGER (extended BFP)
  1746  	op_FIXBRA  uint32 = 0xB347 // FORMAT_RRF5       LOAD FP INTEGER (extended BFP)
  1747  	op_FIXR    uint32 = 0xB367 // FORMAT_RRE        LOAD FP INTEGER (extended HFP)
  1748  	op_FIXTR   uint32 = 0xB3DF // FORMAT_RRF5       LOAD FP INTEGER (extended DFP)
  1749  	op_FLOGR   uint32 = 0xB983 // FORMAT_RRE        FIND LEFTMOST ONE
  1750  	op_HDR     uint32 = 0x2400 // FORMAT_RR         HALVE (long HFP)
  1751  	op_HER     uint32 = 0x3400 // FORMAT_RR         HALVE (short HFP)
  1752  	op_HSCH    uint32 = 0xB231 // FORMAT_S          HALT SUBCHANNEL
  1753  	op_IAC     uint32 = 0xB224 // FORMAT_RRE        INSERT ADDRESS SPACE CONTROL
  1754  	op_IC      uint32 = 0x4300 // FORMAT_RX1        INSERT CHARACTER
  1755  	op_ICM     uint32 = 0xBF00 // FORMAT_RS2        INSERT CHARACTERS UNDER MASK (low)
  1756  	op_ICMH    uint32 = 0xEB80 // FORMAT_RSY2       INSERT CHARACTERS UNDER MASK (high)
  1757  	op_ICMY    uint32 = 0xEB81 // FORMAT_RSY2       INSERT CHARACTERS UNDER MASK (low)
  1758  	op_ICY     uint32 = 0xE373 // FORMAT_RXY1       INSERT CHARACTER
  1759  	op_IDTE    uint32 = 0xB98E // FORMAT_RRF2       INVALIDATE DAT TABLE ENTRY
  1760  	op_IEDTR   uint32 = 0xB3F6 // FORMAT_RRF2       INSERT BIASED EXPONENT (64 to long DFP)
  1761  	op_IEXTR   uint32 = 0xB3FE // FORMAT_RRF2       INSERT BIASED EXPONENT (64 to extended DFP)
  1762  	op_IIHF    uint32 = 0xC008 // FORMAT_RIL1       INSERT IMMEDIATE (high)
  1763  	op_IIHH    uint32 = 0xA500 // FORMAT_RI1        INSERT IMMEDIATE (high high)
  1764  	op_IIHL    uint32 = 0xA501 // FORMAT_RI1        INSERT IMMEDIATE (high low)
  1765  	op_IILF    uint32 = 0xC009 // FORMAT_RIL1       INSERT IMMEDIATE (low)
  1766  	op_IILH    uint32 = 0xA502 // FORMAT_RI1        INSERT IMMEDIATE (low high)
  1767  	op_IILL    uint32 = 0xA503 // FORMAT_RI1        INSERT IMMEDIATE (low low)
  1768  	op_IPK     uint32 = 0xB20B // FORMAT_S          INSERT PSW KEY
  1769  	op_IPM     uint32 = 0xB222 // FORMAT_RRE        INSERT PROGRAM MASK
  1770  	op_IPTE    uint32 = 0xB221 // FORMAT_RRF1       INVALIDATE PAGE TABLE ENTRY
  1771  	op_ISKE    uint32 = 0xB229 // FORMAT_RRE        INSERT STORAGE KEY EXTENDED
  1772  	op_IVSK    uint32 = 0xB223 // FORMAT_RRE        INSERT VIRTUAL STORAGE KEY
  1773  	op_KDB     uint32 = 0xED18 // FORMAT_RXE        COMPARE AND SIGNAL (long BFP)
  1774  	op_KDBR    uint32 = 0xB318 // FORMAT_RRE        COMPARE AND SIGNAL (long BFP)
  1775  	op_KDTR    uint32 = 0xB3E0 // FORMAT_RRE        COMPARE AND SIGNAL (long DFP)
  1776  	op_KEB     uint32 = 0xED08 // FORMAT_RXE        COMPARE AND SIGNAL (short BFP)
  1777  	op_KEBR    uint32 = 0xB308 // FORMAT_RRE        COMPARE AND SIGNAL (short BFP)
  1778  	op_KIMD    uint32 = 0xB93E // FORMAT_RRE        COMPUTE INTERMEDIATE MESSAGE DIGEST
  1779  	op_KLMD    uint32 = 0xB93F // FORMAT_RRE        COMPUTE LAST MESSAGE DIGEST
  1780  	op_KM      uint32 = 0xB92E // FORMAT_RRE        CIPHER MESSAGE
  1781  	op_KMAC    uint32 = 0xB91E // FORMAT_RRE        COMPUTE MESSAGE AUTHENTICATION CODE
  1782  	op_KMC     uint32 = 0xB92F // FORMAT_RRE        CIPHER MESSAGE WITH CHAINING
  1783  	op_KMCTR   uint32 = 0xB92D // FORMAT_RRF2       CIPHER MESSAGE WITH COUNTER
  1784  	op_KMF     uint32 = 0xB92A // FORMAT_RRE        CIPHER MESSAGE WITH CFB
  1785  	op_KMO     uint32 = 0xB92B // FORMAT_RRE        CIPHER MESSAGE WITH OFB
  1786  	op_KXBR    uint32 = 0xB348 // FORMAT_RRE        COMPARE AND SIGNAL (extended BFP)
  1787  	op_KXTR    uint32 = 0xB3E8 // FORMAT_RRE        COMPARE AND SIGNAL (extended DFP)
  1788  	op_L       uint32 = 0x5800 // FORMAT_RX1        LOAD (32)
  1789  	op_LA      uint32 = 0x4100 // FORMAT_RX1        LOAD ADDRESS
  1790  	op_LAA     uint32 = 0xEBF8 // FORMAT_RSY1       LOAD AND ADD (32)
  1791  	op_LAAG    uint32 = 0xEBE8 // FORMAT_RSY1       LOAD AND ADD (64)
  1792  	op_LAAL    uint32 = 0xEBFA // FORMAT_RSY1       LOAD AND ADD LOGICAL (32)
  1793  	op_LAALG   uint32 = 0xEBEA // FORMAT_RSY1       LOAD AND ADD LOGICAL (64)
  1794  	op_LAE     uint32 = 0x5100 // FORMAT_RX1        LOAD ADDRESS EXTENDED
  1795  	op_LAEY    uint32 = 0xE375 // FORMAT_RXY1       LOAD ADDRESS EXTENDED
  1796  	op_LAM     uint32 = 0x9A00 // FORMAT_RS1        LOAD ACCESS MULTIPLE
  1797  	op_LAMY    uint32 = 0xEB9A // FORMAT_RSY1       LOAD ACCESS MULTIPLE
  1798  	op_LAN     uint32 = 0xEBF4 // FORMAT_RSY1       LOAD AND AND (32)
  1799  	op_LANG    uint32 = 0xEBE4 // FORMAT_RSY1       LOAD AND AND (64)
  1800  	op_LAO     uint32 = 0xEBF6 // FORMAT_RSY1       LOAD AND OR (32)
  1801  	op_LAOG    uint32 = 0xEBE6 // FORMAT_RSY1       LOAD AND OR (64)
  1802  	op_LARL    uint32 = 0xC000 // FORMAT_RIL2       LOAD ADDRESS RELATIVE LONG
  1803  	op_LASP    uint32 = 0xE500 // FORMAT_SSE        LOAD ADDRESS SPACE PARAMETERS
  1804  	op_LAT     uint32 = 0xE39F // FORMAT_RXY1       LOAD AND TRAP (32L<-32)
  1805  	op_LAX     uint32 = 0xEBF7 // FORMAT_RSY1       LOAD AND EXCLUSIVE OR (32)
  1806  	op_LAXG    uint32 = 0xEBE7 // FORMAT_RSY1       LOAD AND EXCLUSIVE OR (64)
  1807  	op_LAY     uint32 = 0xE371 // FORMAT_RXY1       LOAD ADDRESS
  1808  	op_LB      uint32 = 0xE376 // FORMAT_RXY1       LOAD BYTE (32)
  1809  	op_LBH     uint32 = 0xE3C0 // FORMAT_RXY1       LOAD BYTE HIGH (32<-8)
  1810  	op_LBR     uint32 = 0xB926 // FORMAT_RRE        LOAD BYTE (32)
  1811  	op_LCDBR   uint32 = 0xB313 // FORMAT_RRE        LOAD COMPLEMENT (long BFP)
  1812  	op_LCDFR   uint32 = 0xB373 // FORMAT_RRE        LOAD COMPLEMENT (long)
  1813  	op_LCDR    uint32 = 0x2300 // FORMAT_RR         LOAD COMPLEMENT (long HFP)
  1814  	op_LCEBR   uint32 = 0xB303 // FORMAT_RRE        LOAD COMPLEMENT (short BFP)
  1815  	op_LCER    uint32 = 0x3300 // FORMAT_RR         LOAD COMPLEMENT (short HFP)
  1816  	op_LCGFR   uint32 = 0xB913 // FORMAT_RRE        LOAD COMPLEMENT (64<-32)
  1817  	op_LCGR    uint32 = 0xB903 // FORMAT_RRE        LOAD COMPLEMENT (64)
  1818  	op_LCR     uint32 = 0x1300 // FORMAT_RR         LOAD COMPLEMENT (32)
  1819  	op_LCTL    uint32 = 0xB700 // FORMAT_RS1        LOAD CONTROL (32)
  1820  	op_LCTLG   uint32 = 0xEB2F // FORMAT_RSY1       LOAD CONTROL (64)
  1821  	op_LCXBR   uint32 = 0xB343 // FORMAT_RRE        LOAD COMPLEMENT (extended BFP)
  1822  	op_LCXR    uint32 = 0xB363 // FORMAT_RRE        LOAD COMPLEMENT (extended HFP)
  1823  	op_LD      uint32 = 0x6800 // FORMAT_RX1        LOAD (long)
  1824  	op_LDE     uint32 = 0xED24 // FORMAT_RXE        LOAD LENGTHENED (short to long HFP)
  1825  	op_LDEB    uint32 = 0xED04 // FORMAT_RXE        LOAD LENGTHENED (short to long BFP)
  1826  	op_LDEBR   uint32 = 0xB304 // FORMAT_RRE        LOAD LENGTHENED (short to long BFP)
  1827  	op_LDER    uint32 = 0xB324 // FORMAT_RRE        LOAD LENGTHENED (short to long HFP)
  1828  	op_LDETR   uint32 = 0xB3D4 // FORMAT_RRF4       LOAD LENGTHENED (short to long DFP)
  1829  	op_LDGR    uint32 = 0xB3C1 // FORMAT_RRE        LOAD FPR FROM GR (64 to long)
  1830  	op_LDR     uint32 = 0x2800 // FORMAT_RR         LOAD (long)
  1831  	op_LDXBR   uint32 = 0xB345 // FORMAT_RRE        LOAD ROUNDED (extended to long BFP)
  1832  	op_LDXBRA  uint32 = 0xB345 // FORMAT_RRF5       LOAD ROUNDED (extended to long BFP)
  1833  	op_LDXR    uint32 = 0x2500 // FORMAT_RR         LOAD ROUNDED (extended to long HFP)
  1834  	op_LDXTR   uint32 = 0xB3DD // FORMAT_RRF5       LOAD ROUNDED (extended to long DFP)
  1835  	op_LDY     uint32 = 0xED65 // FORMAT_RXY1       LOAD (long)
  1836  	op_LE      uint32 = 0x7800 // FORMAT_RX1        LOAD (short)
  1837  	op_LEDBR   uint32 = 0xB344 // FORMAT_RRE        LOAD ROUNDED (long to short BFP)
  1838  	op_LEDBRA  uint32 = 0xB344 // FORMAT_RRF5       LOAD ROUNDED (long to short BFP)
  1839  	op_LEDR    uint32 = 0x3500 // FORMAT_RR         LOAD ROUNDED (long to short HFP)
  1840  	op_LEDTR   uint32 = 0xB3D5 // FORMAT_RRF5       LOAD ROUNDED (long to short DFP)
  1841  	op_LER     uint32 = 0x3800 // FORMAT_RR         LOAD (short)
  1842  	op_LEXBR   uint32 = 0xB346 // FORMAT_RRE        LOAD ROUNDED (extended to short BFP)
  1843  	op_LEXBRA  uint32 = 0xB346 // FORMAT_RRF5       LOAD ROUNDED (extended to short BFP)
  1844  	op_LEXR    uint32 = 0xB366 // FORMAT_RRE        LOAD ROUNDED (extended to short HFP)
  1845  	op_LEY     uint32 = 0xED64 // FORMAT_RXY1       LOAD (short)
  1846  	op_LFAS    uint32 = 0xB2BD // FORMAT_S          LOAD FPC AND SIGNAL
  1847  	op_LFH     uint32 = 0xE3CA // FORMAT_RXY1       LOAD HIGH (32)
  1848  	op_LFHAT   uint32 = 0xE3C8 // FORMAT_RXY1       LOAD HIGH AND TRAP (32H<-32)
  1849  	op_LFPC    uint32 = 0xB29D // FORMAT_S          LOAD FPC
  1850  	op_LG      uint32 = 0xE304 // FORMAT_RXY1       LOAD (64)
  1851  	op_LGAT    uint32 = 0xE385 // FORMAT_RXY1       LOAD AND TRAP (64)
  1852  	op_LGB     uint32 = 0xE377 // FORMAT_RXY1       LOAD BYTE (64)
  1853  	op_LGBR    uint32 = 0xB906 // FORMAT_RRE        LOAD BYTE (64)
  1854  	op_LGDR    uint32 = 0xB3CD // FORMAT_RRE        LOAD GR FROM FPR (long to 64)
  1855  	op_LGF     uint32 = 0xE314 // FORMAT_RXY1       LOAD (64<-32)
  1856  	op_LGFI    uint32 = 0xC001 // FORMAT_RIL1       LOAD IMMEDIATE (64<-32)
  1857  	op_LGFR    uint32 = 0xB914 // FORMAT_RRE        LOAD (64<-32)
  1858  	op_LGFRL   uint32 = 0xC40C // FORMAT_RIL2       LOAD RELATIVE LONG (64<-32)
  1859  	op_LGH     uint32 = 0xE315 // FORMAT_RXY1       LOAD HALFWORD (64)
  1860  	op_LGHI    uint32 = 0xA709 // FORMAT_RI1        LOAD HALFWORD IMMEDIATE (64)
  1861  	op_LGHR    uint32 = 0xB907 // FORMAT_RRE        LOAD HALFWORD (64)
  1862  	op_LGHRL   uint32 = 0xC404 // FORMAT_RIL2       LOAD HALFWORD RELATIVE LONG (64<-16)
  1863  	op_LGR     uint32 = 0xB904 // FORMAT_RRE        LOAD (64)
  1864  	op_LGRL    uint32 = 0xC408 // FORMAT_RIL2       LOAD RELATIVE LONG (64)
  1865  	op_LH      uint32 = 0x4800 // FORMAT_RX1        LOAD HALFWORD (32)
  1866  	op_LHH     uint32 = 0xE3C4 // FORMAT_RXY1       LOAD HALFWORD HIGH (32<-16)
  1867  	op_LHI     uint32 = 0xA708 // FORMAT_RI1        LOAD HALFWORD IMMEDIATE (32)
  1868  	op_LHR     uint32 = 0xB927 // FORMAT_RRE        LOAD HALFWORD (32)
  1869  	op_LHRL    uint32 = 0xC405 // FORMAT_RIL2       LOAD HALFWORD RELATIVE LONG (32<-16)
  1870  	op_LHY     uint32 = 0xE378 // FORMAT_RXY1       LOAD HALFWORD (32)
  1871  	op_LLC     uint32 = 0xE394 // FORMAT_RXY1       LOAD LOGICAL CHARACTER (32)
  1872  	op_LLCH    uint32 = 0xE3C2 // FORMAT_RXY1       LOAD LOGICAL CHARACTER HIGH (32<-8)
  1873  	op_LLCR    uint32 = 0xB994 // FORMAT_RRE        LOAD LOGICAL CHARACTER (32)
  1874  	op_LLGC    uint32 = 0xE390 // FORMAT_RXY1       LOAD LOGICAL CHARACTER (64)
  1875  	op_LLGCR   uint32 = 0xB984 // FORMAT_RRE        LOAD LOGICAL CHARACTER (64)
  1876  	op_LLGF    uint32 = 0xE316 // FORMAT_RXY1       LOAD LOGICAL (64<-32)
  1877  	op_LLGFAT  uint32 = 0xE39D // FORMAT_RXY1       LOAD LOGICAL AND TRAP (64<-32)
  1878  	op_LLGFR   uint32 = 0xB916 // FORMAT_RRE        LOAD LOGICAL (64<-32)
  1879  	op_LLGFRL  uint32 = 0xC40E // FORMAT_RIL2       LOAD LOGICAL RELATIVE LONG (64<-32)
  1880  	op_LLGH    uint32 = 0xE391 // FORMAT_RXY1       LOAD LOGICAL HALFWORD (64)
  1881  	op_LLGHR   uint32 = 0xB985 // FORMAT_RRE        LOAD LOGICAL HALFWORD (64)
  1882  	op_LLGHRL  uint32 = 0xC406 // FORMAT_RIL2       LOAD LOGICAL HALFWORD RELATIVE LONG (64<-16)
  1883  	op_LLGT    uint32 = 0xE317 // FORMAT_RXY1       LOAD LOGICAL THIRTY ONE BITS
  1884  	op_LLGTAT  uint32 = 0xE39C // FORMAT_RXY1       LOAD LOGICAL THIRTY ONE BITS AND TRAP (64<-31)
  1885  	op_LLGTR   uint32 = 0xB917 // FORMAT_RRE        LOAD LOGICAL THIRTY ONE BITS
  1886  	op_LLH     uint32 = 0xE395 // FORMAT_RXY1       LOAD LOGICAL HALFWORD (32)
  1887  	op_LLHH    uint32 = 0xE3C6 // FORMAT_RXY1       LOAD LOGICAL HALFWORD HIGH (32<-16)
  1888  	op_LLHR    uint32 = 0xB995 // FORMAT_RRE        LOAD LOGICAL HALFWORD (32)
  1889  	op_LLHRL   uint32 = 0xC402 // FORMAT_RIL2       LOAD LOGICAL HALFWORD RELATIVE LONG (32<-16)
  1890  	op_LLIHF   uint32 = 0xC00E // FORMAT_RIL1       LOAD LOGICAL IMMEDIATE (high)
  1891  	op_LLIHH   uint32 = 0xA50C // FORMAT_RI1        LOAD LOGICAL IMMEDIATE (high high)
  1892  	op_LLIHL   uint32 = 0xA50D // FORMAT_RI1        LOAD LOGICAL IMMEDIATE (high low)
  1893  	op_LLILF   uint32 = 0xC00F // FORMAT_RIL1       LOAD LOGICAL IMMEDIATE (low)
  1894  	op_LLILH   uint32 = 0xA50E // FORMAT_RI1        LOAD LOGICAL IMMEDIATE (low high)
  1895  	op_LLILL   uint32 = 0xA50F // FORMAT_RI1        LOAD LOGICAL IMMEDIATE (low low)
  1896  	op_LM      uint32 = 0x9800 // FORMAT_RS1        LOAD MULTIPLE (32)
  1897  	op_LMD     uint32 = 0xEF00 // FORMAT_SS5        LOAD MULTIPLE DISJOINT
  1898  	op_LMG     uint32 = 0xEB04 // FORMAT_RSY1       LOAD MULTIPLE (64)
  1899  	op_LMH     uint32 = 0xEB96 // FORMAT_RSY1       LOAD MULTIPLE HIGH
  1900  	op_LMY     uint32 = 0xEB98 // FORMAT_RSY1       LOAD MULTIPLE (32)
  1901  	op_LNDBR   uint32 = 0xB311 // FORMAT_RRE        LOAD NEGATIVE (long BFP)
  1902  	op_LNDFR   uint32 = 0xB371 // FORMAT_RRE        LOAD NEGATIVE (long)
  1903  	op_LNDR    uint32 = 0x2100 // FORMAT_RR         LOAD NEGATIVE (long HFP)
  1904  	op_LNEBR   uint32 = 0xB301 // FORMAT_RRE        LOAD NEGATIVE (short BFP)
  1905  	op_LNER    uint32 = 0x3100 // FORMAT_RR         LOAD NEGATIVE (short HFP)
  1906  	op_LNGFR   uint32 = 0xB911 // FORMAT_RRE        LOAD NEGATIVE (64<-32)
  1907  	op_LNGR    uint32 = 0xB901 // FORMAT_RRE        LOAD NEGATIVE (64)
  1908  	op_LNR     uint32 = 0x1100 // FORMAT_RR         LOAD NEGATIVE (32)
  1909  	op_LNXBR   uint32 = 0xB341 // FORMAT_RRE        LOAD NEGATIVE (extended BFP)
  1910  	op_LNXR    uint32 = 0xB361 // FORMAT_RRE        LOAD NEGATIVE (extended HFP)
  1911  	op_LOC     uint32 = 0xEBF2 // FORMAT_RSY2       LOAD ON CONDITION (32)
  1912  	op_LOCG    uint32 = 0xEBE2 // FORMAT_RSY2       LOAD ON CONDITION (64)
  1913  	op_LOCGR   uint32 = 0xB9E2 // FORMAT_RRF3       LOAD ON CONDITION (64)
  1914  	op_LOCR    uint32 = 0xB9F2 // FORMAT_RRF3       LOAD ON CONDITION (32)
  1915  	op_LPD     uint32 = 0xC804 // FORMAT_SSF        LOAD PAIR DISJOINT (32)
  1916  	op_LPDBR   uint32 = 0xB310 // FORMAT_RRE        LOAD POSITIVE (long BFP)
  1917  	op_LPDFR   uint32 = 0xB370 // FORMAT_RRE        LOAD POSITIVE (long)
  1918  	op_LPDG    uint32 = 0xC805 // FORMAT_SSF        LOAD PAIR DISJOINT (64)
  1919  	op_LPDR    uint32 = 0x2000 // FORMAT_RR         LOAD POSITIVE (long HFP)
  1920  	op_LPEBR   uint32 = 0xB300 // FORMAT_RRE        LOAD POSITIVE (short BFP)
  1921  	op_LPER    uint32 = 0x3000 // FORMAT_RR         LOAD POSITIVE (short HFP)
  1922  	op_LPGFR   uint32 = 0xB910 // FORMAT_RRE        LOAD POSITIVE (64<-32)
  1923  	op_LPGR    uint32 = 0xB900 // FORMAT_RRE        LOAD POSITIVE (64)
  1924  	op_LPQ     uint32 = 0xE38F // FORMAT_RXY1       LOAD PAIR FROM QUADWORD
  1925  	op_LPR     uint32 = 0x1000 // FORMAT_RR         LOAD POSITIVE (32)
  1926  	op_LPSW    uint32 = 0x8200 // FORMAT_S          LOAD PSW
  1927  	op_LPSWE   uint32 = 0xB2B2 // FORMAT_S          LOAD PSW EXTENDED
  1928  	op_LPTEA   uint32 = 0xB9AA // FORMAT_RRF2       LOAD PAGE TABLE ENTRY ADDRESS
  1929  	op_LPXBR   uint32 = 0xB340 // FORMAT_RRE        LOAD POSITIVE (extended BFP)
  1930  	op_LPXR    uint32 = 0xB360 // FORMAT_RRE        LOAD POSITIVE (extended HFP)
  1931  	op_LR      uint32 = 0x1800 // FORMAT_RR         LOAD (32)
  1932  	op_LRA     uint32 = 0xB100 // FORMAT_RX1        LOAD REAL ADDRESS (32)
  1933  	op_LRAG    uint32 = 0xE303 // FORMAT_RXY1       LOAD REAL ADDRESS (64)
  1934  	op_LRAY    uint32 = 0xE313 // FORMAT_RXY1       LOAD REAL ADDRESS (32)
  1935  	op_LRDR    uint32 = 0x2500 // FORMAT_RR         LOAD ROUNDED (extended to long HFP)
  1936  	op_LRER    uint32 = 0x3500 // FORMAT_RR         LOAD ROUNDED (long to short HFP)
  1937  	op_LRL     uint32 = 0xC40D // FORMAT_RIL2       LOAD RELATIVE LONG (32)
  1938  	op_LRV     uint32 = 0xE31E // FORMAT_RXY1       LOAD REVERSED (32)
  1939  	op_LRVG    uint32 = 0xE30F // FORMAT_RXY1       LOAD REVERSED (64)
  1940  	op_LRVGR   uint32 = 0xB90F // FORMAT_RRE        LOAD REVERSED (64)
  1941  	op_LRVH    uint32 = 0xE31F // FORMAT_RXY1       LOAD REVERSED (16)
  1942  	op_LRVR    uint32 = 0xB91F // FORMAT_RRE        LOAD REVERSED (32)
  1943  	op_LT      uint32 = 0xE312 // FORMAT_RXY1       LOAD AND TEST (32)
  1944  	op_LTDBR   uint32 = 0xB312 // FORMAT_RRE        LOAD AND TEST (long BFP)
  1945  	op_LTDR    uint32 = 0x2200 // FORMAT_RR         LOAD AND TEST (long HFP)
  1946  	op_LTDTR   uint32 = 0xB3D6 // FORMAT_RRE        LOAD AND TEST (long DFP)
  1947  	op_LTEBR   uint32 = 0xB302 // FORMAT_RRE        LOAD AND TEST (short BFP)
  1948  	op_LTER    uint32 = 0x3200 // FORMAT_RR         LOAD AND TEST (short HFP)
  1949  	op_LTG     uint32 = 0xE302 // FORMAT_RXY1       LOAD AND TEST (64)
  1950  	op_LTGF    uint32 = 0xE332 // FORMAT_RXY1       LOAD AND TEST (64<-32)
  1951  	op_LTGFR   uint32 = 0xB912 // FORMAT_RRE        LOAD AND TEST (64<-32)
  1952  	op_LTGR    uint32 = 0xB902 // FORMAT_RRE        LOAD AND TEST (64)
  1953  	op_LTR     uint32 = 0x1200 // FORMAT_RR         LOAD AND TEST (32)
  1954  	op_LTXBR   uint32 = 0xB342 // FORMAT_RRE        LOAD AND TEST (extended BFP)
  1955  	op_LTXR    uint32 = 0xB362 // FORMAT_RRE        LOAD AND TEST (extended HFP)
  1956  	op_LTXTR   uint32 = 0xB3DE // FORMAT_RRE        LOAD AND TEST (extended DFP)
  1957  	op_LURA    uint32 = 0xB24B // FORMAT_RRE        LOAD USING REAL ADDRESS (32)
  1958  	op_LURAG   uint32 = 0xB905 // FORMAT_RRE        LOAD USING REAL ADDRESS (64)
  1959  	op_LXD     uint32 = 0xED25 // FORMAT_RXE        LOAD LENGTHENED (long to extended HFP)
  1960  	op_LXDB    uint32 = 0xED05 // FORMAT_RXE        LOAD LENGTHENED (long to extended BFP)
  1961  	op_LXDBR   uint32 = 0xB305 // FORMAT_RRE        LOAD LENGTHENED (long to extended BFP)
  1962  	op_LXDR    uint32 = 0xB325 // FORMAT_RRE        LOAD LENGTHENED (long to extended HFP)
  1963  	op_LXDTR   uint32 = 0xB3DC // FORMAT_RRF4       LOAD LENGTHENED (long to extended DFP)
  1964  	op_LXE     uint32 = 0xED26 // FORMAT_RXE        LOAD LENGTHENED (short to extended HFP)
  1965  	op_LXEB    uint32 = 0xED06 // FORMAT_RXE        LOAD LENGTHENED (short to extended BFP)
  1966  	op_LXEBR   uint32 = 0xB306 // FORMAT_RRE        LOAD LENGTHENED (short to extended BFP)
  1967  	op_LXER    uint32 = 0xB326 // FORMAT_RRE        LOAD LENGTHENED (short to extended HFP)
  1968  	op_LXR     uint32 = 0xB365 // FORMAT_RRE        LOAD (extended)
  1969  	op_LY      uint32 = 0xE358 // FORMAT_RXY1       LOAD (32)
  1970  	op_LZDR    uint32 = 0xB375 // FORMAT_RRE        LOAD ZERO (long)
  1971  	op_LZER    uint32 = 0xB374 // FORMAT_RRE        LOAD ZERO (short)
  1972  	op_LZXR    uint32 = 0xB376 // FORMAT_RRE        LOAD ZERO (extended)
  1973  	op_M       uint32 = 0x5C00 // FORMAT_RX1        MULTIPLY (64<-32)
  1974  	op_MAD     uint32 = 0xED3E // FORMAT_RXF        MULTIPLY AND ADD (long HFP)
  1975  	op_MADB    uint32 = 0xED1E // FORMAT_RXF        MULTIPLY AND ADD (long BFP)
  1976  	op_MADBR   uint32 = 0xB31E // FORMAT_RRD        MULTIPLY AND ADD (long BFP)
  1977  	op_MADR    uint32 = 0xB33E // FORMAT_RRD        MULTIPLY AND ADD (long HFP)
  1978  	op_MAE     uint32 = 0xED2E // FORMAT_RXF        MULTIPLY AND ADD (short HFP)
  1979  	op_MAEB    uint32 = 0xED0E // FORMAT_RXF        MULTIPLY AND ADD (short BFP)
  1980  	op_MAEBR   uint32 = 0xB30E // FORMAT_RRD        MULTIPLY AND ADD (short BFP)
  1981  	op_MAER    uint32 = 0xB32E // FORMAT_RRD        MULTIPLY AND ADD (short HFP)
  1982  	op_MAY     uint32 = 0xED3A // FORMAT_RXF        MULTIPLY & ADD UNNORMALIZED (long to ext. HFP)
  1983  	op_MAYH    uint32 = 0xED3C // FORMAT_RXF        MULTIPLY AND ADD UNNRM. (long to ext. high HFP)
  1984  	op_MAYHR   uint32 = 0xB33C // FORMAT_RRD        MULTIPLY AND ADD UNNRM. (long to ext. high HFP)
  1985  	op_MAYL    uint32 = 0xED38 // FORMAT_RXF        MULTIPLY AND ADD UNNRM. (long to ext. low HFP)
  1986  	op_MAYLR   uint32 = 0xB338 // FORMAT_RRD        MULTIPLY AND ADD UNNRM. (long to ext. low HFP)
  1987  	op_MAYR    uint32 = 0xB33A // FORMAT_RRD        MULTIPLY & ADD UNNORMALIZED (long to ext. HFP)
  1988  	op_MC      uint32 = 0xAF00 // FORMAT_SI         MONITOR CALL
  1989  	op_MD      uint32 = 0x6C00 // FORMAT_RX1        MULTIPLY (long HFP)
  1990  	op_MDB     uint32 = 0xED1C // FORMAT_RXE        MULTIPLY (long BFP)
  1991  	op_MDBR    uint32 = 0xB31C // FORMAT_RRE        MULTIPLY (long BFP)
  1992  	op_MDE     uint32 = 0x7C00 // FORMAT_RX1        MULTIPLY (short to long HFP)
  1993  	op_MDEB    uint32 = 0xED0C // FORMAT_RXE        MULTIPLY (short to long BFP)
  1994  	op_MDEBR   uint32 = 0xB30C // FORMAT_RRE        MULTIPLY (short to long BFP)
  1995  	op_MDER    uint32 = 0x3C00 // FORMAT_RR         MULTIPLY (short to long HFP)
  1996  	op_MDR     uint32 = 0x2C00 // FORMAT_RR         MULTIPLY (long HFP)
  1997  	op_MDTR    uint32 = 0xB3D0 // FORMAT_RRF1       MULTIPLY (long DFP)
  1998  	op_MDTRA   uint32 = 0xB3D0 // FORMAT_RRF1       MULTIPLY (long DFP)
  1999  	op_ME      uint32 = 0x7C00 // FORMAT_RX1        MULTIPLY (short to long HFP)
  2000  	op_MEE     uint32 = 0xED37 // FORMAT_RXE        MULTIPLY (short HFP)
  2001  	op_MEEB    uint32 = 0xED17 // FORMAT_RXE        MULTIPLY (short BFP)
  2002  	op_MEEBR   uint32 = 0xB317 // FORMAT_RRE        MULTIPLY (short BFP)
  2003  	op_MEER    uint32 = 0xB337 // FORMAT_RRE        MULTIPLY (short HFP)
  2004  	op_MER     uint32 = 0x3C00 // FORMAT_RR         MULTIPLY (short to long HFP)
  2005  	op_MFY     uint32 = 0xE35C // FORMAT_RXY1       MULTIPLY (64<-32)
  2006  	op_MGHI    uint32 = 0xA70D // FORMAT_RI1        MULTIPLY HALFWORD IMMEDIATE (64)
  2007  	op_MH      uint32 = 0x4C00 // FORMAT_RX1        MULTIPLY HALFWORD (32)
  2008  	op_MHI     uint32 = 0xA70C // FORMAT_RI1        MULTIPLY HALFWORD IMMEDIATE (32)
  2009  	op_MHY     uint32 = 0xE37C // FORMAT_RXY1       MULTIPLY HALFWORD (32)
  2010  	op_ML      uint32 = 0xE396 // FORMAT_RXY1       MULTIPLY LOGICAL (64<-32)
  2011  	op_MLG     uint32 = 0xE386 // FORMAT_RXY1       MULTIPLY LOGICAL (128<-64)
  2012  	op_MLGR    uint32 = 0xB986 // FORMAT_RRE        MULTIPLY LOGICAL (128<-64)
  2013  	op_MLR     uint32 = 0xB996 // FORMAT_RRE        MULTIPLY LOGICAL (64<-32)
  2014  	op_MP      uint32 = 0xFC00 // FORMAT_SS2        MULTIPLY DECIMAL
  2015  	op_MR      uint32 = 0x1C00 // FORMAT_RR         MULTIPLY (64<-32)
  2016  	op_MS      uint32 = 0x7100 // FORMAT_RX1        MULTIPLY SINGLE (32)
  2017  	op_MSCH    uint32 = 0xB232 // FORMAT_S          MODIFY SUBCHANNEL
  2018  	op_MSD     uint32 = 0xED3F // FORMAT_RXF        MULTIPLY AND SUBTRACT (long HFP)
  2019  	op_MSDB    uint32 = 0xED1F // FORMAT_RXF        MULTIPLY AND SUBTRACT (long BFP)
  2020  	op_MSDBR   uint32 = 0xB31F // FORMAT_RRD        MULTIPLY AND SUBTRACT (long BFP)
  2021  	op_MSDR    uint32 = 0xB33F // FORMAT_RRD        MULTIPLY AND SUBTRACT (long HFP)
  2022  	op_MSE     uint32 = 0xED2F // FORMAT_RXF        MULTIPLY AND SUBTRACT (short HFP)
  2023  	op_MSEB    uint32 = 0xED0F // FORMAT_RXF        MULTIPLY AND SUBTRACT (short BFP)
  2024  	op_MSEBR   uint32 = 0xB30F // FORMAT_RRD        MULTIPLY AND SUBTRACT (short BFP)
  2025  	op_MSER    uint32 = 0xB32F // FORMAT_RRD        MULTIPLY AND SUBTRACT (short HFP)
  2026  	op_MSFI    uint32 = 0xC201 // FORMAT_RIL1       MULTIPLY SINGLE IMMEDIATE (32)
  2027  	op_MSG     uint32 = 0xE30C // FORMAT_RXY1       MULTIPLY SINGLE (64)
  2028  	op_MSGF    uint32 = 0xE31C // FORMAT_RXY1       MULTIPLY SINGLE (64<-32)
  2029  	op_MSGFI   uint32 = 0xC200 // FORMAT_RIL1       MULTIPLY SINGLE IMMEDIATE (64<-32)
  2030  	op_MSGFR   uint32 = 0xB91C // FORMAT_RRE        MULTIPLY SINGLE (64<-32)
  2031  	op_MSGR    uint32 = 0xB90C // FORMAT_RRE        MULTIPLY SINGLE (64)
  2032  	op_MSR     uint32 = 0xB252 // FORMAT_RRE        MULTIPLY SINGLE (32)
  2033  	op_MSTA    uint32 = 0xB247 // FORMAT_RRE        MODIFY STACKED STATE
  2034  	op_MSY     uint32 = 0xE351 // FORMAT_RXY1       MULTIPLY SINGLE (32)
  2035  	op_MVC     uint32 = 0xD200 // FORMAT_SS1        MOVE (character)
  2036  	op_MVCDK   uint32 = 0xE50F // FORMAT_SSE        MOVE WITH DESTINATION KEY
  2037  	op_MVCIN   uint32 = 0xE800 // FORMAT_SS1        MOVE INVERSE
  2038  	op_MVCK    uint32 = 0xD900 // FORMAT_SS4        MOVE WITH KEY
  2039  	op_MVCL    uint32 = 0x0E00 // FORMAT_RR         MOVE LONG
  2040  	op_MVCLE   uint32 = 0xA800 // FORMAT_RS1        MOVE LONG EXTENDED
  2041  	op_MVCLU   uint32 = 0xEB8E // FORMAT_RSY1       MOVE LONG UNICODE
  2042  	op_MVCOS   uint32 = 0xC800 // FORMAT_SSF        MOVE WITH OPTIONAL SPECIFICATIONS
  2043  	op_MVCP    uint32 = 0xDA00 // FORMAT_SS4        MOVE TO PRIMARY
  2044  	op_MVCS    uint32 = 0xDB00 // FORMAT_SS4        MOVE TO SECONDARY
  2045  	op_MVCSK   uint32 = 0xE50E // FORMAT_SSE        MOVE WITH SOURCE KEY
  2046  	op_MVGHI   uint32 = 0xE548 // FORMAT_SIL        MOVE (64<-16)
  2047  	op_MVHHI   uint32 = 0xE544 // FORMAT_SIL        MOVE (16<-16)
  2048  	op_MVHI    uint32 = 0xE54C // FORMAT_SIL        MOVE (32<-16)
  2049  	op_MVI     uint32 = 0x9200 // FORMAT_SI         MOVE (immediate)
  2050  	op_MVIY    uint32 = 0xEB52 // FORMAT_SIY        MOVE (immediate)
  2051  	op_MVN     uint32 = 0xD100 // FORMAT_SS1        MOVE NUMERICS
  2052  	op_MVO     uint32 = 0xF100 // FORMAT_SS2        MOVE WITH OFFSET
  2053  	op_MVPG    uint32 = 0xB254 // FORMAT_RRE        MOVE PAGE
  2054  	op_MVST    uint32 = 0xB255 // FORMAT_RRE        MOVE STRING
  2055  	op_MVZ     uint32 = 0xD300 // FORMAT_SS1        MOVE ZONES
  2056  	op_MXBR    uint32 = 0xB34C // FORMAT_RRE        MULTIPLY (extended BFP)
  2057  	op_MXD     uint32 = 0x6700 // FORMAT_RX1        MULTIPLY (long to extended HFP)
  2058  	op_MXDB    uint32 = 0xED07 // FORMAT_RXE        MULTIPLY (long to extended BFP)
  2059  	op_MXDBR   uint32 = 0xB307 // FORMAT_RRE        MULTIPLY (long to extended BFP)
  2060  	op_MXDR    uint32 = 0x2700 // FORMAT_RR         MULTIPLY (long to extended HFP)
  2061  	op_MXR     uint32 = 0x2600 // FORMAT_RR         MULTIPLY (extended HFP)
  2062  	op_MXTR    uint32 = 0xB3D8 // FORMAT_RRF1       MULTIPLY (extended DFP)
  2063  	op_MXTRA   uint32 = 0xB3D8 // FORMAT_RRF1       MULTIPLY (extended DFP)
  2064  	op_MY      uint32 = 0xED3B // FORMAT_RXF        MULTIPLY UNNORMALIZED (long to ext. HFP)
  2065  	op_MYH     uint32 = 0xED3D // FORMAT_RXF        MULTIPLY UNNORM. (long to ext. high HFP)
  2066  	op_MYHR    uint32 = 0xB33D // FORMAT_RRD        MULTIPLY UNNORM. (long to ext. high HFP)
  2067  	op_MYL     uint32 = 0xED39 // FORMAT_RXF        MULTIPLY UNNORM. (long to ext. low HFP)
  2068  	op_MYLR    uint32 = 0xB339 // FORMAT_RRD        MULTIPLY UNNORM. (long to ext. low HFP)
  2069  	op_MYR     uint32 = 0xB33B // FORMAT_RRD        MULTIPLY UNNORMALIZED (long to ext. HFP)
  2070  	op_N       uint32 = 0x5400 // FORMAT_RX1        AND (32)
  2071  	op_NC      uint32 = 0xD400 // FORMAT_SS1        AND (character)
  2072  	op_NG      uint32 = 0xE380 // FORMAT_RXY1       AND (64)
  2073  	op_NGR     uint32 = 0xB980 // FORMAT_RRE        AND (64)
  2074  	op_NGRK    uint32 = 0xB9E4 // FORMAT_RRF1       AND (64)
  2075  	op_NI      uint32 = 0x9400 // FORMAT_SI         AND (immediate)
  2076  	op_NIAI    uint32 = 0xB2FA // FORMAT_IE         NEXT INSTRUCTION ACCESS INTENT
  2077  	op_NIHF    uint32 = 0xC00A // FORMAT_RIL1       AND IMMEDIATE (high)
  2078  	op_NIHH    uint32 = 0xA504 // FORMAT_RI1        AND IMMEDIATE (high high)
  2079  	op_NIHL    uint32 = 0xA505 // FORMAT_RI1        AND IMMEDIATE (high low)
  2080  	op_NILF    uint32 = 0xC00B // FORMAT_RIL1       AND IMMEDIATE (low)
  2081  	op_NILH    uint32 = 0xA506 // FORMAT_RI1        AND IMMEDIATE (low high)
  2082  	op_NILL    uint32 = 0xA507 // FORMAT_RI1        AND IMMEDIATE (low low)
  2083  	op_NIY     uint32 = 0xEB54 // FORMAT_SIY        AND (immediate)
  2084  	op_NR      uint32 = 0x1400 // FORMAT_RR         AND (32)
  2085  	op_NRK     uint32 = 0xB9F4 // FORMAT_RRF1       AND (32)
  2086  	op_NTSTG   uint32 = 0xE325 // FORMAT_RXY1       NONTRANSACTIONAL STORE
  2087  	op_NY      uint32 = 0xE354 // FORMAT_RXY1       AND (32)
  2088  	op_O       uint32 = 0x5600 // FORMAT_RX1        OR (32)
  2089  	op_OC      uint32 = 0xD600 // FORMAT_SS1        OR (character)
  2090  	op_OG      uint32 = 0xE381 // FORMAT_RXY1       OR (64)
  2091  	op_OGR     uint32 = 0xB981 // FORMAT_RRE        OR (64)
  2092  	op_OGRK    uint32 = 0xB9E6 // FORMAT_RRF1       OR (64)
  2093  	op_OI      uint32 = 0x9600 // FORMAT_SI         OR (immediate)
  2094  	op_OIHF    uint32 = 0xC00C // FORMAT_RIL1       OR IMMEDIATE (high)
  2095  	op_OIHH    uint32 = 0xA508 // FORMAT_RI1        OR IMMEDIATE (high high)
  2096  	op_OIHL    uint32 = 0xA509 // FORMAT_RI1        OR IMMEDIATE (high low)
  2097  	op_OILF    uint32 = 0xC00D // FORMAT_RIL1       OR IMMEDIATE (low)
  2098  	op_OILH    uint32 = 0xA50A // FORMAT_RI1        OR IMMEDIATE (low high)
  2099  	op_OILL    uint32 = 0xA50B // FORMAT_RI1        OR IMMEDIATE (low low)
  2100  	op_OIY     uint32 = 0xEB56 // FORMAT_SIY        OR (immediate)
  2101  	op_OR      uint32 = 0x1600 // FORMAT_RR         OR (32)
  2102  	op_ORK     uint32 = 0xB9F6 // FORMAT_RRF1       OR (32)
  2103  	op_OY      uint32 = 0xE356 // FORMAT_RXY1       OR (32)
  2104  	op_PACK    uint32 = 0xF200 // FORMAT_SS2        PACK
  2105  	op_PALB    uint32 = 0xB248 // FORMAT_RRE        PURGE ALB
  2106  	op_PC      uint32 = 0xB218 // FORMAT_S          PROGRAM CALL
  2107  	op_PCC     uint32 = 0xB92C // FORMAT_RRE        PERFORM CRYPTOGRAPHIC COMPUTATION
  2108  	op_PCKMO   uint32 = 0xB928 // FORMAT_RRE        PERFORM CRYPTOGRAPHIC KEY MGMT. OPERATIONS
  2109  	op_PFD     uint32 = 0xE336 // FORMAT_RXY2       PREFETCH DATA
  2110  	op_PFDRL   uint32 = 0xC602 // FORMAT_RIL3       PREFETCH DATA RELATIVE LONG
  2111  	op_PFMF    uint32 = 0xB9AF // FORMAT_RRE        PERFORM FRAME MANAGEMENT FUNCTION
  2112  	op_PFPO    uint32 = 0x010A // FORMAT_E          PERFORM FLOATING-POINT OPERATION
  2113  	op_PGIN    uint32 = 0xB22E // FORMAT_RRE        PAGE IN
  2114  	op_PGOUT   uint32 = 0xB22F // FORMAT_RRE        PAGE OUT
  2115  	op_PKA     uint32 = 0xE900 // FORMAT_SS6        PACK ASCII
  2116  	op_PKU     uint32 = 0xE100 // FORMAT_SS6        PACK UNICODE
  2117  	op_PLO     uint32 = 0xEE00 // FORMAT_SS5        PERFORM LOCKED OPERATION
  2118  	op_POPCNT  uint32 = 0xB9E1 // FORMAT_RRE        POPULATION COUNT
  2119  	op_PPA     uint32 = 0xB2E8 // FORMAT_RRF3       PERFORM PROCESSOR ASSIST
  2120  	op_PR      uint32 = 0x0101 // FORMAT_E          PROGRAM RETURN
  2121  	op_PT      uint32 = 0xB228 // FORMAT_RRE        PROGRAM TRANSFER
  2122  	op_PTF     uint32 = 0xB9A2 // FORMAT_RRE        PERFORM TOPOLOGY FUNCTION
  2123  	op_PTFF    uint32 = 0x0104 // FORMAT_E          PERFORM TIMING FACILITY FUNCTION
  2124  	op_PTI     uint32 = 0xB99E // FORMAT_RRE        PROGRAM TRANSFER WITH INSTANCE
  2125  	op_PTLB    uint32 = 0xB20D // FORMAT_S          PURGE TLB
  2126  	op_QADTR   uint32 = 0xB3F5 // FORMAT_RRF2       QUANTIZE (long DFP)
  2127  	op_QAXTR   uint32 = 0xB3FD // FORMAT_RRF2       QUANTIZE (extended DFP)
  2128  	op_RCHP    uint32 = 0xB23B // FORMAT_S          RESET CHANNEL PATH
  2129  	op_RISBG   uint32 = 0xEC55 // FORMAT_RIE6       ROTATE THEN INSERT SELECTED BITS
  2130  	op_RISBGN  uint32 = 0xEC59 // FORMAT_RIE6       ROTATE THEN INSERT SELECTED BITS
  2131  	op_RISBHG  uint32 = 0xEC5D // FORMAT_RIE6       ROTATE THEN INSERT SELECTED BITS HIGH
  2132  	op_RISBLG  uint32 = 0xEC51 // FORMAT_RIE6       ROTATE THEN INSERT SELECTED BITS LOW
  2133  	op_RLL     uint32 = 0xEB1D // FORMAT_RSY1       ROTATE LEFT SINGLE LOGICAL (32)
  2134  	op_RLLG    uint32 = 0xEB1C // FORMAT_RSY1       ROTATE LEFT SINGLE LOGICAL (64)
  2135  	op_RNSBG   uint32 = 0xEC54 // FORMAT_RIE6       ROTATE THEN AND SELECTED BITS
  2136  	op_ROSBG   uint32 = 0xEC56 // FORMAT_RIE6       ROTATE THEN OR SELECTED BITS
  2137  	op_RP      uint32 = 0xB277 // FORMAT_S          RESUME PROGRAM
  2138  	op_RRBE    uint32 = 0xB22A // FORMAT_RRE        RESET REFERENCE BIT EXTENDED
  2139  	op_RRBM    uint32 = 0xB9AE // FORMAT_RRE        RESET REFERENCE BITS MULTIPLE
  2140  	op_RRDTR   uint32 = 0xB3F7 // FORMAT_RRF2       REROUND (long DFP)
  2141  	op_RRXTR   uint32 = 0xB3FF // FORMAT_RRF2       REROUND (extended DFP)
  2142  	op_RSCH    uint32 = 0xB238 // FORMAT_S          RESUME SUBCHANNEL
  2143  	op_RXSBG   uint32 = 0xEC57 // FORMAT_RIE6       ROTATE THEN EXCLUSIVE OR SELECTED BITS
  2144  	op_S       uint32 = 0x5B00 // FORMAT_RX1        SUBTRACT (32)
  2145  	op_SAC     uint32 = 0xB219 // FORMAT_S          SET ADDRESS SPACE CONTROL
  2146  	op_SACF    uint32 = 0xB279 // FORMAT_S          SET ADDRESS SPACE CONTROL FAST
  2147  	op_SAL     uint32 = 0xB237 // FORMAT_S          SET ADDRESS LIMIT
  2148  	op_SAM24   uint32 = 0x010C // FORMAT_E          SET ADDRESSING MODE (24)
  2149  	op_SAM31   uint32 = 0x010D // FORMAT_E          SET ADDRESSING MODE (31)
  2150  	op_SAM64   uint32 = 0x010E // FORMAT_E          SET ADDRESSING MODE (64)
  2151  	op_SAR     uint32 = 0xB24E // FORMAT_RRE        SET ACCESS
  2152  	op_SCHM    uint32 = 0xB23C // FORMAT_S          SET CHANNEL MONITOR
  2153  	op_SCK     uint32 = 0xB204 // FORMAT_S          SET CLOCK
  2154  	op_SCKC    uint32 = 0xB206 // FORMAT_S          SET CLOCK COMPARATOR
  2155  	op_SCKPF   uint32 = 0x0107 // FORMAT_E          SET CLOCK PROGRAMMABLE FIELD
  2156  	op_SD      uint32 = 0x6B00 // FORMAT_RX1        SUBTRACT NORMALIZED (long HFP)
  2157  	op_SDB     uint32 = 0xED1B // FORMAT_RXE        SUBTRACT (long BFP)
  2158  	op_SDBR    uint32 = 0xB31B // FORMAT_RRE        SUBTRACT (long BFP)
  2159  	op_SDR     uint32 = 0x2B00 // FORMAT_RR         SUBTRACT NORMALIZED (long HFP)
  2160  	op_SDTR    uint32 = 0xB3D3 // FORMAT_RRF1       SUBTRACT (long DFP)
  2161  	op_SDTRA   uint32 = 0xB3D3 // FORMAT_RRF1       SUBTRACT (long DFP)
  2162  	op_SE      uint32 = 0x7B00 // FORMAT_RX1        SUBTRACT NORMALIZED (short HFP)
  2163  	op_SEB     uint32 = 0xED0B // FORMAT_RXE        SUBTRACT (short BFP)
  2164  	op_SEBR    uint32 = 0xB30B // FORMAT_RRE        SUBTRACT (short BFP)
  2165  	op_SER     uint32 = 0x3B00 // FORMAT_RR         SUBTRACT NORMALIZED (short HFP)
  2166  	op_SFASR   uint32 = 0xB385 // FORMAT_RRE        SET FPC AND SIGNAL
  2167  	op_SFPC    uint32 = 0xB384 // FORMAT_RRE        SET FPC
  2168  	op_SG      uint32 = 0xE309 // FORMAT_RXY1       SUBTRACT (64)
  2169  	op_SGF     uint32 = 0xE319 // FORMAT_RXY1       SUBTRACT (64<-32)
  2170  	op_SGFR    uint32 = 0xB919 // FORMAT_RRE        SUBTRACT (64<-32)
  2171  	op_SGR     uint32 = 0xB909 // FORMAT_RRE        SUBTRACT (64)
  2172  	op_SGRK    uint32 = 0xB9E9 // FORMAT_RRF1       SUBTRACT (64)
  2173  	op_SH      uint32 = 0x4B00 // FORMAT_RX1        SUBTRACT HALFWORD
  2174  	op_SHHHR   uint32 = 0xB9C9 // FORMAT_RRF1       SUBTRACT HIGH (32)
  2175  	op_SHHLR   uint32 = 0xB9D9 // FORMAT_RRF1       SUBTRACT HIGH (32)
  2176  	op_SHY     uint32 = 0xE37B // FORMAT_RXY1       SUBTRACT HALFWORD
  2177  	op_SIGP    uint32 = 0xAE00 // FORMAT_RS1        SIGNAL PROCESSOR
  2178  	op_SL      uint32 = 0x5F00 // FORMAT_RX1        SUBTRACT LOGICAL (32)
  2179  	op_SLA     uint32 = 0x8B00 // FORMAT_RS1        SHIFT LEFT SINGLE (32)
  2180  	op_SLAG    uint32 = 0xEB0B // FORMAT_RSY1       SHIFT LEFT SINGLE (64)
  2181  	op_SLAK    uint32 = 0xEBDD // FORMAT_RSY1       SHIFT LEFT SINGLE (32)
  2182  	op_SLB     uint32 = 0xE399 // FORMAT_RXY1       SUBTRACT LOGICAL WITH BORROW (32)
  2183  	op_SLBG    uint32 = 0xE389 // FORMAT_RXY1       SUBTRACT LOGICAL WITH BORROW (64)
  2184  	op_SLBGR   uint32 = 0xB989 // FORMAT_RRE        SUBTRACT LOGICAL WITH BORROW (64)
  2185  	op_SLBR    uint32 = 0xB999 // FORMAT_RRE        SUBTRACT LOGICAL WITH BORROW (32)
  2186  	op_SLDA    uint32 = 0x8F00 // FORMAT_RS1        SHIFT LEFT DOUBLE
  2187  	op_SLDL    uint32 = 0x8D00 // FORMAT_RS1        SHIFT LEFT DOUBLE LOGICAL
  2188  	op_SLDT    uint32 = 0xED40 // FORMAT_RXF        SHIFT SIGNIFICAND LEFT (long DFP)
  2189  	op_SLFI    uint32 = 0xC205 // FORMAT_RIL1       SUBTRACT LOGICAL IMMEDIATE (32)
  2190  	op_SLG     uint32 = 0xE30B // FORMAT_RXY1       SUBTRACT LOGICAL (64)
  2191  	op_SLGF    uint32 = 0xE31B // FORMAT_RXY1       SUBTRACT LOGICAL (64<-32)
  2192  	op_SLGFI   uint32 = 0xC204 // FORMAT_RIL1       SUBTRACT LOGICAL IMMEDIATE (64<-32)
  2193  	op_SLGFR   uint32 = 0xB91B // FORMAT_RRE        SUBTRACT LOGICAL (64<-32)
  2194  	op_SLGR    uint32 = 0xB90B // FORMAT_RRE        SUBTRACT LOGICAL (64)
  2195  	op_SLGRK   uint32 = 0xB9EB // FORMAT_RRF1       SUBTRACT LOGICAL (64)
  2196  	op_SLHHHR  uint32 = 0xB9CB // FORMAT_RRF1       SUBTRACT LOGICAL HIGH (32)
  2197  	op_SLHHLR  uint32 = 0xB9DB // FORMAT_RRF1       SUBTRACT LOGICAL HIGH (32)
  2198  	op_SLL     uint32 = 0x8900 // FORMAT_RS1        SHIFT LEFT SINGLE LOGICAL (32)
  2199  	op_SLLG    uint32 = 0xEB0D // FORMAT_RSY1       SHIFT LEFT SINGLE LOGICAL (64)
  2200  	op_SLLK    uint32 = 0xEBDF // FORMAT_RSY1       SHIFT LEFT SINGLE LOGICAL (32)
  2201  	op_SLR     uint32 = 0x1F00 // FORMAT_RR         SUBTRACT LOGICAL (32)
  2202  	op_SLRK    uint32 = 0xB9FB // FORMAT_RRF1       SUBTRACT LOGICAL (32)
  2203  	op_SLXT    uint32 = 0xED48 // FORMAT_RXF        SHIFT SIGNIFICAND LEFT (extended DFP)
  2204  	op_SLY     uint32 = 0xE35F // FORMAT_RXY1       SUBTRACT LOGICAL (32)
  2205  	op_SP      uint32 = 0xFB00 // FORMAT_SS2        SUBTRACT DECIMAL
  2206  	op_SPKA    uint32 = 0xB20A // FORMAT_S          SET PSW KEY FROM ADDRESS
  2207  	op_SPM     uint32 = 0x0400 // FORMAT_RR         SET PROGRAM MASK
  2208  	op_SPT     uint32 = 0xB208 // FORMAT_S          SET CPU TIMER
  2209  	op_SPX     uint32 = 0xB210 // FORMAT_S          SET PREFIX
  2210  	op_SQD     uint32 = 0xED35 // FORMAT_RXE        SQUARE ROOT (long HFP)
  2211  	op_SQDB    uint32 = 0xED15 // FORMAT_RXE        SQUARE ROOT (long BFP)
  2212  	op_SQDBR   uint32 = 0xB315 // FORMAT_RRE        SQUARE ROOT (long BFP)
  2213  	op_SQDR    uint32 = 0xB244 // FORMAT_RRE        SQUARE ROOT (long HFP)
  2214  	op_SQE     uint32 = 0xED34 // FORMAT_RXE        SQUARE ROOT (short HFP)
  2215  	op_SQEB    uint32 = 0xED14 // FORMAT_RXE        SQUARE ROOT (short BFP)
  2216  	op_SQEBR   uint32 = 0xB314 // FORMAT_RRE        SQUARE ROOT (short BFP)
  2217  	op_SQER    uint32 = 0xB245 // FORMAT_RRE        SQUARE ROOT (short HFP)
  2218  	op_SQXBR   uint32 = 0xB316 // FORMAT_RRE        SQUARE ROOT (extended BFP)
  2219  	op_SQXR    uint32 = 0xB336 // FORMAT_RRE        SQUARE ROOT (extended HFP)
  2220  	op_SR      uint32 = 0x1B00 // FORMAT_RR         SUBTRACT (32)
  2221  	op_SRA     uint32 = 0x8A00 // FORMAT_RS1        SHIFT RIGHT SINGLE (32)
  2222  	op_SRAG    uint32 = 0xEB0A // FORMAT_RSY1       SHIFT RIGHT SINGLE (64)
  2223  	op_SRAK    uint32 = 0xEBDC // FORMAT_RSY1       SHIFT RIGHT SINGLE (32)
  2224  	op_SRDA    uint32 = 0x8E00 // FORMAT_RS1        SHIFT RIGHT DOUBLE
  2225  	op_SRDL    uint32 = 0x8C00 // FORMAT_RS1        SHIFT RIGHT DOUBLE LOGICAL
  2226  	op_SRDT    uint32 = 0xED41 // FORMAT_RXF        SHIFT SIGNIFICAND RIGHT (long DFP)
  2227  	op_SRK     uint32 = 0xB9F9 // FORMAT_RRF1       SUBTRACT (32)
  2228  	op_SRL     uint32 = 0x8800 // FORMAT_RS1        SHIFT RIGHT SINGLE LOGICAL (32)
  2229  	op_SRLG    uint32 = 0xEB0C // FORMAT_RSY1       SHIFT RIGHT SINGLE LOGICAL (64)
  2230  	op_SRLK    uint32 = 0xEBDE // FORMAT_RSY1       SHIFT RIGHT SINGLE LOGICAL (32)
  2231  	op_SRNM    uint32 = 0xB299 // FORMAT_S          SET BFP ROUNDING MODE (2 bit)
  2232  	op_SRNMB   uint32 = 0xB2B8 // FORMAT_S          SET BFP ROUNDING MODE (3 bit)
  2233  	op_SRNMT   uint32 = 0xB2B9 // FORMAT_S          SET DFP ROUNDING MODE
  2234  	op_SRP     uint32 = 0xF000 // FORMAT_SS3        SHIFT AND ROUND DECIMAL
  2235  	op_SRST    uint32 = 0xB25E // FORMAT_RRE        SEARCH STRING
  2236  	op_SRSTU   uint32 = 0xB9BE // FORMAT_RRE        SEARCH STRING UNICODE
  2237  	op_SRXT    uint32 = 0xED49 // FORMAT_RXF        SHIFT SIGNIFICAND RIGHT (extended DFP)
  2238  	op_SSAIR   uint32 = 0xB99F // FORMAT_RRE        SET SECONDARY ASN WITH INSTANCE
  2239  	op_SSAR    uint32 = 0xB225 // FORMAT_RRE        SET SECONDARY ASN
  2240  	op_SSCH    uint32 = 0xB233 // FORMAT_S          START SUBCHANNEL
  2241  	op_SSKE    uint32 = 0xB22B // FORMAT_RRF3       SET STORAGE KEY EXTENDED
  2242  	op_SSM     uint32 = 0x8000 // FORMAT_S          SET SYSTEM MASK
  2243  	op_ST      uint32 = 0x5000 // FORMAT_RX1        STORE (32)
  2244  	op_STAM    uint32 = 0x9B00 // FORMAT_RS1        STORE ACCESS MULTIPLE
  2245  	op_STAMY   uint32 = 0xEB9B // FORMAT_RSY1       STORE ACCESS MULTIPLE
  2246  	op_STAP    uint32 = 0xB212 // FORMAT_S          STORE CPU ADDRESS
  2247  	op_STC     uint32 = 0x4200 // FORMAT_RX1        STORE CHARACTER
  2248  	op_STCH    uint32 = 0xE3C3 // FORMAT_RXY1       STORE CHARACTER HIGH (8)
  2249  	op_STCK    uint32 = 0xB205 // FORMAT_S          STORE CLOCK
  2250  	op_STCKC   uint32 = 0xB207 // FORMAT_S          STORE CLOCK COMPARATOR
  2251  	op_STCKE   uint32 = 0xB278 // FORMAT_S          STORE CLOCK EXTENDED
  2252  	op_STCKF   uint32 = 0xB27C // FORMAT_S          STORE CLOCK FAST
  2253  	op_STCM    uint32 = 0xBE00 // FORMAT_RS2        STORE CHARACTERS UNDER MASK (low)
  2254  	op_STCMH   uint32 = 0xEB2C // FORMAT_RSY2       STORE CHARACTERS UNDER MASK (high)
  2255  	op_STCMY   uint32 = 0xEB2D // FORMAT_RSY2       STORE CHARACTERS UNDER MASK (low)
  2256  	op_STCPS   uint32 = 0xB23A // FORMAT_S          STORE CHANNEL PATH STATUS
  2257  	op_STCRW   uint32 = 0xB239 // FORMAT_S          STORE CHANNEL REPORT WORD
  2258  	op_STCTG   uint32 = 0xEB25 // FORMAT_RSY1       STORE CONTROL (64)
  2259  	op_STCTL   uint32 = 0xB600 // FORMAT_RS1        STORE CONTROL (32)
  2260  	op_STCY    uint32 = 0xE372 // FORMAT_RXY1       STORE CHARACTER
  2261  	op_STD     uint32 = 0x6000 // FORMAT_RX1        STORE (long)
  2262  	op_STDY    uint32 = 0xED67 // FORMAT_RXY1       STORE (long)
  2263  	op_STE     uint32 = 0x7000 // FORMAT_RX1        STORE (short)
  2264  	op_STEY    uint32 = 0xED66 // FORMAT_RXY1       STORE (short)
  2265  	op_STFH    uint32 = 0xE3CB // FORMAT_RXY1       STORE HIGH (32)
  2266  	op_STFL    uint32 = 0xB2B1 // FORMAT_S          STORE FACILITY LIST
  2267  	op_STFLE   uint32 = 0xB2B0 // FORMAT_S          STORE FACILITY LIST EXTENDED
  2268  	op_STFPC   uint32 = 0xB29C // FORMAT_S          STORE FPC
  2269  	op_STG     uint32 = 0xE324 // FORMAT_RXY1       STORE (64)
  2270  	op_STGRL   uint32 = 0xC40B // FORMAT_RIL2       STORE RELATIVE LONG (64)
  2271  	op_STH     uint32 = 0x4000 // FORMAT_RX1        STORE HALFWORD
  2272  	op_STHH    uint32 = 0xE3C7 // FORMAT_RXY1       STORE HALFWORD HIGH (16)
  2273  	op_STHRL   uint32 = 0xC407 // FORMAT_RIL2       STORE HALFWORD RELATIVE LONG
  2274  	op_STHY    uint32 = 0xE370 // FORMAT_RXY1       STORE HALFWORD
  2275  	op_STIDP   uint32 = 0xB202 // FORMAT_S          STORE CPU ID
  2276  	op_STM     uint32 = 0x9000 // FORMAT_RS1        STORE MULTIPLE (32)
  2277  	op_STMG    uint32 = 0xEB24 // FORMAT_RSY1       STORE MULTIPLE (64)
  2278  	op_STMH    uint32 = 0xEB26 // FORMAT_RSY1       STORE MULTIPLE HIGH
  2279  	op_STMY    uint32 = 0xEB90 // FORMAT_RSY1       STORE MULTIPLE (32)
  2280  	op_STNSM   uint32 = 0xAC00 // FORMAT_SI         STORE THEN AND SYSTEM MASK
  2281  	op_STOC    uint32 = 0xEBF3 // FORMAT_RSY2       STORE ON CONDITION (32)
  2282  	op_STOCG   uint32 = 0xEBE3 // FORMAT_RSY2       STORE ON CONDITION (64)
  2283  	op_STOSM   uint32 = 0xAD00 // FORMAT_SI         STORE THEN OR SYSTEM MASK
  2284  	op_STPQ    uint32 = 0xE38E // FORMAT_RXY1       STORE PAIR TO QUADWORD
  2285  	op_STPT    uint32 = 0xB209 // FORMAT_S          STORE CPU TIMER
  2286  	op_STPX    uint32 = 0xB211 // FORMAT_S          STORE PREFIX
  2287  	op_STRAG   uint32 = 0xE502 // FORMAT_SSE        STORE REAL ADDRESS
  2288  	op_STRL    uint32 = 0xC40F // FORMAT_RIL2       STORE RELATIVE LONG (32)
  2289  	op_STRV    uint32 = 0xE33E // FORMAT_RXY1       STORE REVERSED (32)
  2290  	op_STRVG   uint32 = 0xE32F // FORMAT_RXY1       STORE REVERSED (64)
  2291  	op_STRVH   uint32 = 0xE33F // FORMAT_RXY1       STORE REVERSED (16)
  2292  	op_STSCH   uint32 = 0xB234 // FORMAT_S          STORE SUBCHANNEL
  2293  	op_STSI    uint32 = 0xB27D // FORMAT_S          STORE SYSTEM INFORMATION
  2294  	op_STURA   uint32 = 0xB246 // FORMAT_RRE        STORE USING REAL ADDRESS (32)
  2295  	op_STURG   uint32 = 0xB925 // FORMAT_RRE        STORE USING REAL ADDRESS (64)
  2296  	op_STY     uint32 = 0xE350 // FORMAT_RXY1       STORE (32)
  2297  	op_SU      uint32 = 0x7F00 // FORMAT_RX1        SUBTRACT UNNORMALIZED (short HFP)
  2298  	op_SUR     uint32 = 0x3F00 // FORMAT_RR         SUBTRACT UNNORMALIZED (short HFP)
  2299  	op_SVC     uint32 = 0x0A00 // FORMAT_I          SUPERVISOR CALL
  2300  	op_SW      uint32 = 0x6F00 // FORMAT_RX1        SUBTRACT UNNORMALIZED (long HFP)
  2301  	op_SWR     uint32 = 0x2F00 // FORMAT_RR         SUBTRACT UNNORMALIZED (long HFP)
  2302  	op_SXBR    uint32 = 0xB34B // FORMAT_RRE        SUBTRACT (extended BFP)
  2303  	op_SXR     uint32 = 0x3700 // FORMAT_RR         SUBTRACT NORMALIZED (extended HFP)
  2304  	op_SXTR    uint32 = 0xB3DB // FORMAT_RRF1       SUBTRACT (extended DFP)
  2305  	op_SXTRA   uint32 = 0xB3DB // FORMAT_RRF1       SUBTRACT (extended DFP)
  2306  	op_SY      uint32 = 0xE35B // FORMAT_RXY1       SUBTRACT (32)
  2307  	op_TABORT  uint32 = 0xB2FC // FORMAT_S          TRANSACTION ABORT
  2308  	op_TAM     uint32 = 0x010B // FORMAT_E          TEST ADDRESSING MODE
  2309  	op_TAR     uint32 = 0xB24C // FORMAT_RRE        TEST ACCESS
  2310  	op_TB      uint32 = 0xB22C // FORMAT_RRE        TEST BLOCK
  2311  	op_TBDR    uint32 = 0xB351 // FORMAT_RRF5       CONVERT HFP TO BFP (long)
  2312  	op_TBEDR   uint32 = 0xB350 // FORMAT_RRF5       CONVERT HFP TO BFP (long to short)
  2313  	op_TBEGIN  uint32 = 0xE560 // FORMAT_SIL        TRANSACTION BEGIN
  2314  	op_TBEGINC uint32 = 0xE561 // FORMAT_SIL        TRANSACTION BEGIN
  2315  	op_TCDB    uint32 = 0xED11 // FORMAT_RXE        TEST DATA CLASS (long BFP)
  2316  	op_TCEB    uint32 = 0xED10 // FORMAT_RXE        TEST DATA CLASS (short BFP)
  2317  	op_TCXB    uint32 = 0xED12 // FORMAT_RXE        TEST DATA CLASS (extended BFP)
  2318  	op_TDCDT   uint32 = 0xED54 // FORMAT_RXE        TEST DATA CLASS (long DFP)
  2319  	op_TDCET   uint32 = 0xED50 // FORMAT_RXE        TEST DATA CLASS (short DFP)
  2320  	op_TDCXT   uint32 = 0xED58 // FORMAT_RXE        TEST DATA CLASS (extended DFP)
  2321  	op_TDGDT   uint32 = 0xED55 // FORMAT_RXE        TEST DATA GROUP (long DFP)
  2322  	op_TDGET   uint32 = 0xED51 // FORMAT_RXE        TEST DATA GROUP (short DFP)
  2323  	op_TDGXT   uint32 = 0xED59 // FORMAT_RXE        TEST DATA GROUP (extended DFP)
  2324  	op_TEND    uint32 = 0xB2F8 // FORMAT_S          TRANSACTION END
  2325  	op_THDER   uint32 = 0xB358 // FORMAT_RRE        CONVERT BFP TO HFP (short to long)
  2326  	op_THDR    uint32 = 0xB359 // FORMAT_RRE        CONVERT BFP TO HFP (long)
  2327  	op_TM      uint32 = 0x9100 // FORMAT_SI         TEST UNDER MASK
  2328  	op_TMH     uint32 = 0xA700 // FORMAT_RI1        TEST UNDER MASK HIGH
  2329  	op_TMHH    uint32 = 0xA702 // FORMAT_RI1        TEST UNDER MASK (high high)
  2330  	op_TMHL    uint32 = 0xA703 // FORMAT_RI1        TEST UNDER MASK (high low)
  2331  	op_TML     uint32 = 0xA701 // FORMAT_RI1        TEST UNDER MASK LOW
  2332  	op_TMLH    uint32 = 0xA700 // FORMAT_RI1        TEST UNDER MASK (low high)
  2333  	op_TMLL    uint32 = 0xA701 // FORMAT_RI1        TEST UNDER MASK (low low)
  2334  	op_TMY     uint32 = 0xEB51 // FORMAT_SIY        TEST UNDER MASK
  2335  	op_TP      uint32 = 0xEBC0 // FORMAT_RSL        TEST DECIMAL
  2336  	op_TPI     uint32 = 0xB236 // FORMAT_S          TEST PENDING INTERRUPTION
  2337  	op_TPROT   uint32 = 0xE501 // FORMAT_SSE        TEST PROTECTION
  2338  	op_TR      uint32 = 0xDC00 // FORMAT_SS1        TRANSLATE
  2339  	op_TRACE   uint32 = 0x9900 // FORMAT_RS1        TRACE (32)
  2340  	op_TRACG   uint32 = 0xEB0F // FORMAT_RSY1       TRACE (64)
  2341  	op_TRAP2   uint32 = 0x01FF // FORMAT_E          TRAP
  2342  	op_TRAP4   uint32 = 0xB2FF // FORMAT_S          TRAP
  2343  	op_TRE     uint32 = 0xB2A5 // FORMAT_RRE        TRANSLATE EXTENDED
  2344  	op_TROO    uint32 = 0xB993 // FORMAT_RRF3       TRANSLATE ONE TO ONE
  2345  	op_TROT    uint32 = 0xB992 // FORMAT_RRF3       TRANSLATE ONE TO TWO
  2346  	op_TRT     uint32 = 0xDD00 // FORMAT_SS1        TRANSLATE AND TEST
  2347  	op_TRTE    uint32 = 0xB9BF // FORMAT_RRF3       TRANSLATE AND TEST EXTENDED
  2348  	op_TRTO    uint32 = 0xB991 // FORMAT_RRF3       TRANSLATE TWO TO ONE
  2349  	op_TRTR    uint32 = 0xD000 // FORMAT_SS1        TRANSLATE AND TEST REVERSE
  2350  	op_TRTRE   uint32 = 0xB9BD // FORMAT_RRF3       TRANSLATE AND TEST REVERSE EXTENDED
  2351  	op_TRTT    uint32 = 0xB990 // FORMAT_RRF3       TRANSLATE TWO TO TWO
  2352  	op_TS      uint32 = 0x9300 // FORMAT_S          TEST AND SET
  2353  	op_TSCH    uint32 = 0xB235 // FORMAT_S          TEST SUBCHANNEL
  2354  	op_UNPK    uint32 = 0xF300 // FORMAT_SS2        UNPACK
  2355  	op_UNPKA   uint32 = 0xEA00 // FORMAT_SS1        UNPACK ASCII
  2356  	op_UNPKU   uint32 = 0xE200 // FORMAT_SS1        UNPACK UNICODE
  2357  	op_UPT     uint32 = 0x0102 // FORMAT_E          UPDATE TREE
  2358  	op_X       uint32 = 0x5700 // FORMAT_RX1        EXCLUSIVE OR (32)
  2359  	op_XC      uint32 = 0xD700 // FORMAT_SS1        EXCLUSIVE OR (character)
  2360  	op_XG      uint32 = 0xE382 // FORMAT_RXY1       EXCLUSIVE OR (64)
  2361  	op_XGR     uint32 = 0xB982 // FORMAT_RRE        EXCLUSIVE OR (64)
  2362  	op_XGRK    uint32 = 0xB9E7 // FORMAT_RRF1       EXCLUSIVE OR (64)
  2363  	op_XI      uint32 = 0x9700 // FORMAT_SI         EXCLUSIVE OR (immediate)
  2364  	op_XIHF    uint32 = 0xC006 // FORMAT_RIL1       EXCLUSIVE OR IMMEDIATE (high)
  2365  	op_XILF    uint32 = 0xC007 // FORMAT_RIL1       EXCLUSIVE OR IMMEDIATE (low)
  2366  	op_XIY     uint32 = 0xEB57 // FORMAT_SIY        EXCLUSIVE OR (immediate)
  2367  	op_XR      uint32 = 0x1700 // FORMAT_RR         EXCLUSIVE OR (32)
  2368  	op_XRK     uint32 = 0xB9F7 // FORMAT_RRF1       EXCLUSIVE OR (32)
  2369  	op_XSCH    uint32 = 0xB276 // FORMAT_S          CANCEL SUBCHANNEL
  2370  	op_XY      uint32 = 0xE357 // FORMAT_RXY1       EXCLUSIVE OR (32)
  2371  	op_ZAP     uint32 = 0xF800 // FORMAT_SS2        ZERO AND ADD
  2372  
  2373  	// added in z13
  2374  	op_CXPT   uint32 = 0xEDAF // 	RSL-b	CONVERT FROM PACKED (to extended DFP)
  2375  	op_CDPT   uint32 = 0xEDAE // 	RSL-b	CONVERT FROM PACKED (to long DFP)
  2376  	op_CPXT   uint32 = 0xEDAD // 	RSL-b	CONVERT TO PACKED (from extended DFP)
  2377  	op_CPDT   uint32 = 0xEDAC // 	RSL-b	CONVERT TO PACKED (from long DFP)
  2378  	op_LZRF   uint32 = 0xE33B // 	RXY-a	LOAD AND ZERO RIGHTMOST BYTE (32)
  2379  	op_LZRG   uint32 = 0xE32A // 	RXY-a	LOAD AND ZERO RIGHTMOST BYTE (64)
  2380  	op_LCCB   uint32 = 0xE727 // 	RXE	LOAD COUNT TO BLOCK BOUNDARY
  2381  	op_LOCHHI uint32 = 0xEC4E // 	RIE-g	LOAD HALFWORD HIGH IMMEDIATE ON CONDITION (32←16)
  2382  	op_LOCHI  uint32 = 0xEC42 // 	RIE-g	LOAD HALFWORD IMMEDIATE ON CONDITION (32←16)
  2383  	op_LOCGHI uint32 = 0xEC46 // 	RIE-g	LOAD HALFWORD IMMEDIATE ON CONDITION (64←16)
  2384  	op_LOCFH  uint32 = 0xEBE0 // 	RSY-b	LOAD HIGH ON CONDITION (32)
  2385  	op_LOCFHR uint32 = 0xB9E0 // 	RRF-c	LOAD HIGH ON CONDITION (32)
  2386  	op_LLZRGF uint32 = 0xE33A // 	RXY-a	LOAD LOGICAL AND ZERO RIGHTMOST BYTE (64←32)
  2387  	op_STOCFH uint32 = 0xEBE1 // 	RSY-b	STORE HIGH ON CONDITION
  2388  	op_VA     uint32 = 0xE7F3 // 	VRR-c	VECTOR ADD
  2389  	op_VACC   uint32 = 0xE7F1 // 	VRR-c	VECTOR ADD COMPUTE CARRY
  2390  	op_VAC    uint32 = 0xE7BB // 	VRR-d	VECTOR ADD WITH CARRY
  2391  	op_VACCC  uint32 = 0xE7B9 // 	VRR-d	VECTOR ADD WITH CARRY COMPUTE CARRY
  2392  	op_VN     uint32 = 0xE768 // 	VRR-c	VECTOR AND
  2393  	op_VNC    uint32 = 0xE769 // 	VRR-c	VECTOR AND WITH COMPLEMENT
  2394  	op_VAVG   uint32 = 0xE7F2 // 	VRR-c	VECTOR AVERAGE
  2395  	op_VAVGL  uint32 = 0xE7F0 // 	VRR-c	VECTOR AVERAGE LOGICAL
  2396  	op_VCKSM  uint32 = 0xE766 // 	VRR-c	VECTOR CHECKSUM
  2397  	op_VCEQ   uint32 = 0xE7F8 // 	VRR-b	VECTOR COMPARE EQUAL
  2398  	op_VCH    uint32 = 0xE7FB // 	VRR-b	VECTOR COMPARE HIGH
  2399  	op_VCHL   uint32 = 0xE7F9 // 	VRR-b	VECTOR COMPARE HIGH LOGICAL
  2400  	op_VCLZ   uint32 = 0xE753 // 	VRR-a	VECTOR COUNT LEADING ZEROS
  2401  	op_VCTZ   uint32 = 0xE752 // 	VRR-a	VECTOR COUNT TRAILING ZEROS
  2402  	op_VEC    uint32 = 0xE7DB // 	VRR-a	VECTOR ELEMENT COMPARE
  2403  	op_VECL   uint32 = 0xE7D9 // 	VRR-a	VECTOR ELEMENT COMPARE LOGICAL
  2404  	op_VERIM  uint32 = 0xE772 // 	VRI-d	VECTOR ELEMENT ROTATE AND INSERT UNDER MASK
  2405  	op_VERLL  uint32 = 0xE733 // 	VRS-a	VECTOR ELEMENT ROTATE LEFT LOGICAL
  2406  	op_VERLLV uint32 = 0xE773 // 	VRR-c	VECTOR ELEMENT ROTATE LEFT LOGICAL
  2407  	op_VESLV  uint32 = 0xE770 // 	VRR-c	VECTOR ELEMENT SHIFT LEFT
  2408  	op_VESL   uint32 = 0xE730 // 	VRS-a	VECTOR ELEMENT SHIFT LEFT
  2409  	op_VESRA  uint32 = 0xE73A // 	VRS-a	VECTOR ELEMENT SHIFT RIGHT ARITHMETIC
  2410  	op_VESRAV uint32 = 0xE77A // 	VRR-c	VECTOR ELEMENT SHIFT RIGHT ARITHMETIC
  2411  	op_VESRL  uint32 = 0xE738 // 	VRS-a	VECTOR ELEMENT SHIFT RIGHT LOGICAL
  2412  	op_VESRLV uint32 = 0xE778 // 	VRR-c	VECTOR ELEMENT SHIFT RIGHT LOGICAL
  2413  	op_VX     uint32 = 0xE76D // 	VRR-c	VECTOR EXCLUSIVE OR
  2414  	op_VFAE   uint32 = 0xE782 // 	VRR-b	VECTOR FIND ANY ELEMENT EQUAL
  2415  	op_VFEE   uint32 = 0xE780 // 	VRR-b	VECTOR FIND ELEMENT EQUAL
  2416  	op_VFENE  uint32 = 0xE781 // 	VRR-b	VECTOR FIND ELEMENT NOT EQUAL
  2417  	op_VFA    uint32 = 0xE7E3 // 	VRR-c	VECTOR FP ADD
  2418  	op_WFK    uint32 = 0xE7CA // 	VRR-a	VECTOR FP COMPARE AND SIGNAL SCALAR
  2419  	op_VFCE   uint32 = 0xE7E8 // 	VRR-c	VECTOR FP COMPARE EQUAL
  2420  	op_VFCH   uint32 = 0xE7EB // 	VRR-c	VECTOR FP COMPARE HIGH
  2421  	op_VFCHE  uint32 = 0xE7EA // 	VRR-c	VECTOR FP COMPARE HIGH OR EQUAL
  2422  	op_WFC    uint32 = 0xE7CB // 	VRR-a	VECTOR FP COMPARE SCALAR
  2423  	op_VCDG   uint32 = 0xE7C3 // 	VRR-a	VECTOR FP CONVERT FROM FIXED 64-BIT
  2424  	op_VCDLG  uint32 = 0xE7C1 // 	VRR-a	VECTOR FP CONVERT FROM LOGICAL 64-BIT
  2425  	op_VCGD   uint32 = 0xE7C2 // 	VRR-a	VECTOR FP CONVERT TO FIXED 64-BIT
  2426  	op_VCLGD  uint32 = 0xE7C0 // 	VRR-a	VECTOR FP CONVERT TO LOGICAL 64-BIT
  2427  	op_VFD    uint32 = 0xE7E5 // 	VRR-c	VECTOR FP DIVIDE
  2428  	op_VLDE   uint32 = 0xE7C4 // 	VRR-a	VECTOR FP LOAD LENGTHENED
  2429  	op_VLED   uint32 = 0xE7C5 // 	VRR-a	VECTOR FP LOAD ROUNDED
  2430  	op_VFM    uint32 = 0xE7E7 // 	VRR-c	VECTOR FP MULTIPLY
  2431  	op_VFMA   uint32 = 0xE78F // 	VRR-e	VECTOR FP MULTIPLY AND ADD
  2432  	op_VFMS   uint32 = 0xE78E // 	VRR-e	VECTOR FP MULTIPLY AND SUBTRACT
  2433  	op_VFPSO  uint32 = 0xE7CC // 	VRR-a	VECTOR FP PERFORM SIGN OPERATION
  2434  	op_VFSQ   uint32 = 0xE7CE // 	VRR-a	VECTOR FP SQUARE ROOT
  2435  	op_VFS    uint32 = 0xE7E2 // 	VRR-c	VECTOR FP SUBTRACT
  2436  	op_VFTCI  uint32 = 0xE74A // 	VRI-e	VECTOR FP TEST DATA CLASS IMMEDIATE
  2437  	op_VGFM   uint32 = 0xE7B4 // 	VRR-c	VECTOR GALOIS FIELD MULTIPLY SUM
  2438  	op_VGFMA  uint32 = 0xE7BC // 	VRR-d	VECTOR GALOIS FIELD MULTIPLY SUM AND ACCUMULATE
  2439  	op_VGEF   uint32 = 0xE713 // 	VRV	VECTOR GATHER ELEMENT (32)
  2440  	op_VGEG   uint32 = 0xE712 // 	VRV	VECTOR GATHER ELEMENT (64)
  2441  	op_VGBM   uint32 = 0xE744 // 	VRI-a	VECTOR GENERATE BYTE MASK
  2442  	op_VGM    uint32 = 0xE746 // 	VRI-b	VECTOR GENERATE MASK
  2443  	op_VISTR  uint32 = 0xE75C // 	VRR-a	VECTOR ISOLATE STRING
  2444  	op_VL     uint32 = 0xE706 // 	VRX	VECTOR LOAD
  2445  	op_VLR    uint32 = 0xE756 // 	VRR-a	VECTOR LOAD
  2446  	op_VLREP  uint32 = 0xE705 // 	VRX	VECTOR LOAD AND REPLICATE
  2447  	op_VLC    uint32 = 0xE7DE // 	VRR-a	VECTOR LOAD COMPLEMENT
  2448  	op_VLEH   uint32 = 0xE701 // 	VRX	VECTOR LOAD ELEMENT (16)
  2449  	op_VLEF   uint32 = 0xE703 // 	VRX	VECTOR LOAD ELEMENT (32)
  2450  	op_VLEG   uint32 = 0xE702 // 	VRX	VECTOR LOAD ELEMENT (64)
  2451  	op_VLEB   uint32 = 0xE700 // 	VRX	VECTOR LOAD ELEMENT (8)
  2452  	op_VLEIH  uint32 = 0xE741 // 	VRI-a	VECTOR LOAD ELEMENT IMMEDIATE (16)
  2453  	op_VLEIF  uint32 = 0xE743 // 	VRI-a	VECTOR LOAD ELEMENT IMMEDIATE (32)
  2454  	op_VLEIG  uint32 = 0xE742 // 	VRI-a	VECTOR LOAD ELEMENT IMMEDIATE (64)
  2455  	op_VLEIB  uint32 = 0xE740 // 	VRI-a	VECTOR LOAD ELEMENT IMMEDIATE (8)
  2456  	op_VFI    uint32 = 0xE7C7 // 	VRR-a	VECTOR LOAD FP INTEGER
  2457  	op_VLGV   uint32 = 0xE721 // 	VRS-c	VECTOR LOAD GR FROM VR ELEMENT
  2458  	op_VLLEZ  uint32 = 0xE704 // 	VRX	VECTOR LOAD LOGICAL ELEMENT AND ZERO
  2459  	op_VLM    uint32 = 0xE736 // 	VRS-a	VECTOR LOAD MULTIPLE
  2460  	op_VLP    uint32 = 0xE7DF // 	VRR-a	VECTOR LOAD POSITIVE
  2461  	op_VLBB   uint32 = 0xE707 // 	VRX	VECTOR LOAD TO BLOCK BOUNDARY
  2462  	op_VLVG   uint32 = 0xE722 // 	VRS-b	VECTOR LOAD VR ELEMENT FROM GR
  2463  	op_VLVGP  uint32 = 0xE762 // 	VRR-f	VECTOR LOAD VR FROM GRS DISJOINT
  2464  	op_VLL    uint32 = 0xE737 // 	VRS-b	VECTOR LOAD WITH LENGTH
  2465  	op_VMX    uint32 = 0xE7FF // 	VRR-c	VECTOR MAXIMUM
  2466  	op_VMXL   uint32 = 0xE7FD // 	VRR-c	VECTOR MAXIMUM LOGICAL
  2467  	op_VMRH   uint32 = 0xE761 // 	VRR-c	VECTOR MERGE HIGH
  2468  	op_VMRL   uint32 = 0xE760 // 	VRR-c	VECTOR MERGE LOW
  2469  	op_VMN    uint32 = 0xE7FE // 	VRR-c	VECTOR MINIMUM
  2470  	op_VMNL   uint32 = 0xE7FC // 	VRR-c	VECTOR MINIMUM LOGICAL
  2471  	op_VMAE   uint32 = 0xE7AE // 	VRR-d	VECTOR MULTIPLY AND ADD EVEN
  2472  	op_VMAH   uint32 = 0xE7AB // 	VRR-d	VECTOR MULTIPLY AND ADD HIGH
  2473  	op_VMALE  uint32 = 0xE7AC // 	VRR-d	VECTOR MULTIPLY AND ADD LOGICAL EVEN
  2474  	op_VMALH  uint32 = 0xE7A9 // 	VRR-d	VECTOR MULTIPLY AND ADD LOGICAL HIGH
  2475  	op_VMALO  uint32 = 0xE7AD // 	VRR-d	VECTOR MULTIPLY AND ADD LOGICAL ODD
  2476  	op_VMAL   uint32 = 0xE7AA // 	VRR-d	VECTOR MULTIPLY AND ADD LOW
  2477  	op_VMAO   uint32 = 0xE7AF // 	VRR-d	VECTOR MULTIPLY AND ADD ODD
  2478  	op_VME    uint32 = 0xE7A6 // 	VRR-c	VECTOR MULTIPLY EVEN
  2479  	op_VMH    uint32 = 0xE7A3 // 	VRR-c	VECTOR MULTIPLY HIGH
  2480  	op_VMLE   uint32 = 0xE7A4 // 	VRR-c	VECTOR MULTIPLY EVEN LOGICAL
  2481  	op_VMLH   uint32 = 0xE7A1 // 	VRR-c	VECTOR MULTIPLY HIGH LOGICAL
  2482  	op_VMLO   uint32 = 0xE7A5 // 	VRR-c	VECTOR MULTIPLY ODD LOGICAL
  2483  	op_VML    uint32 = 0xE7A2 // 	VRR-c	VECTOR MULTIPLY LOW
  2484  	op_VMO    uint32 = 0xE7A7 // 	VRR-c	VECTOR MULTIPLY ODD
  2485  	op_VNO    uint32 = 0xE76B // 	VRR-c	VECTOR NOR
  2486  	op_VO     uint32 = 0xE76A // 	VRR-c	VECTOR OR
  2487  	op_VPK    uint32 = 0xE794 // 	VRR-c	VECTOR PACK
  2488  	op_VPKLS  uint32 = 0xE795 // 	VRR-b	VECTOR PACK LOGICAL SATURATE
  2489  	op_VPKS   uint32 = 0xE797 // 	VRR-b	VECTOR PACK SATURATE
  2490  	op_VPERM  uint32 = 0xE78C // 	VRR-e	VECTOR PERMUTE
  2491  	op_VPDI   uint32 = 0xE784 // 	VRR-c	VECTOR PERMUTE DOUBLEWORD IMMEDIATE
  2492  	op_VPOPCT uint32 = 0xE750 // 	VRR-a	VECTOR POPULATION COUNT
  2493  	op_VREP   uint32 = 0xE74D // 	VRI-c	VECTOR REPLICATE
  2494  	op_VREPI  uint32 = 0xE745 // 	VRI-a	VECTOR REPLICATE IMMEDIATE
  2495  	op_VSCEF  uint32 = 0xE71B // 	VRV	VECTOR SCATTER ELEMENT (32)
  2496  	op_VSCEG  uint32 = 0xE71A // 	VRV	VECTOR SCATTER ELEMENT (64)
  2497  	op_VSEL   uint32 = 0xE78D // 	VRR-e	VECTOR SELECT
  2498  	op_VSL    uint32 = 0xE774 // 	VRR-c	VECTOR SHIFT LEFT
  2499  	op_VSLB   uint32 = 0xE775 // 	VRR-c	VECTOR SHIFT LEFT BY BYTE
  2500  	op_VSLDB  uint32 = 0xE777 // 	VRI-d	VECTOR SHIFT LEFT DOUBLE BY BYTE
  2501  	op_VSRA   uint32 = 0xE77E // 	VRR-c	VECTOR SHIFT RIGHT ARITHMETIC
  2502  	op_VSRAB  uint32 = 0xE77F // 	VRR-c	VECTOR SHIFT RIGHT ARITHMETIC BY BYTE
  2503  	op_VSRL   uint32 = 0xE77C // 	VRR-c	VECTOR SHIFT RIGHT LOGICAL
  2504  	op_VSRLB  uint32 = 0xE77D // 	VRR-c	VECTOR SHIFT RIGHT LOGICAL BY BYTE
  2505  	op_VSEG   uint32 = 0xE75F // 	VRR-a	VECTOR SIGN EXTEND TO DOUBLEWORD
  2506  	op_VST    uint32 = 0xE70E // 	VRX	VECTOR STORE
  2507  	op_VSTEH  uint32 = 0xE709 // 	VRX	VECTOR STORE ELEMENT (16)
  2508  	op_VSTEF  uint32 = 0xE70B // 	VRX	VECTOR STORE ELEMENT (32)
  2509  	op_VSTEG  uint32 = 0xE70A // 	VRX	VECTOR STORE ELEMENT (64)
  2510  	op_VSTEB  uint32 = 0xE708 // 	VRX	VECTOR STORE ELEMENT (8)
  2511  	op_VSTM   uint32 = 0xE73E // 	VRS-a	VECTOR STORE MULTIPLE
  2512  	op_VSTL   uint32 = 0xE73F // 	VRS-b	VECTOR STORE WITH LENGTH
  2513  	op_VSTRC  uint32 = 0xE78A // 	VRR-d	VECTOR STRING RANGE COMPARE
  2514  	op_VS     uint32 = 0xE7F7 // 	VRR-c	VECTOR SUBTRACT
  2515  	op_VSCBI  uint32 = 0xE7F5 // 	VRR-c	VECTOR SUBTRACT COMPUTE BORROW INDICATION
  2516  	op_VSBCBI uint32 = 0xE7BD // 	VRR-d	VECTOR SUBTRACT WITH BORROW COMPUTE BORROW INDICATION
  2517  	op_VSBI   uint32 = 0xE7BF // 	VRR-d	VECTOR SUBTRACT WITH BORROW INDICATION
  2518  	op_VSUMG  uint32 = 0xE765 // 	VRR-c	VECTOR SUM ACROSS DOUBLEWORD
  2519  	op_VSUMQ  uint32 = 0xE767 // 	VRR-c	VECTOR SUM ACROSS QUADWORD
  2520  	op_VSUM   uint32 = 0xE764 // 	VRR-c	VECTOR SUM ACROSS WORD
  2521  	op_VTM    uint32 = 0xE7D8 // 	VRR-a	VECTOR TEST UNDER MASK
  2522  	op_VUPH   uint32 = 0xE7D7 // 	VRR-a	VECTOR UNPACK HIGH
  2523  	op_VUPLH  uint32 = 0xE7D5 // 	VRR-a	VECTOR UNPACK LOGICAL HIGH
  2524  	op_VUPLL  uint32 = 0xE7D4 // 	VRR-a	VECTOR UNPACK LOGICAL LOW
  2525  	op_VUPL   uint32 = 0xE7D6 // 	VRR-a	VECTOR UNPACK LOW
  2526  )
  2527  
  2528  func oclass(a *obj.Addr) int {
  2529  	return int(a.Class) - 1
  2530  }
  2531  
  2532  // Add a relocation for the immediate in a RIL style instruction.
  2533  // The addend will be adjusted as required.
  2534  func (c *ctxtz) addrilreloc(sym *obj.LSym, add int64) *obj.Reloc {
  2535  	if sym == nil {
  2536  		c.ctxt.Diag("require symbol to apply relocation")
  2537  	}
  2538  	offset := int64(2) // relocation offset from start of instruction
  2539  	rel := obj.Addrel(c.cursym)
  2540  	rel.Off = int32(c.pc + offset)
  2541  	rel.Siz = 4
  2542  	rel.Sym = sym
  2543  	rel.Add = add + offset + int64(rel.Siz)
  2544  	rel.Type = objabi.R_PCRELDBL
  2545  	return rel
  2546  }
  2547  
  2548  func (c *ctxtz) addrilrelocoffset(sym *obj.LSym, add, offset int64) *obj.Reloc {
  2549  	if sym == nil {
  2550  		c.ctxt.Diag("require symbol to apply relocation")
  2551  	}
  2552  	offset += int64(2) // relocation offset from start of instruction
  2553  	rel := obj.Addrel(c.cursym)
  2554  	rel.Off = int32(c.pc + offset)
  2555  	rel.Siz = 4
  2556  	rel.Sym = sym
  2557  	rel.Add = add + offset + int64(rel.Siz)
  2558  	rel.Type = objabi.R_PCRELDBL
  2559  	return rel
  2560  }
  2561  
  2562  // Add a CALL relocation for the immediate in a RIL style instruction.
  2563  // The addend will be adjusted as required.
  2564  func (c *ctxtz) addcallreloc(sym *obj.LSym, add int64) *obj.Reloc {
  2565  	if sym == nil {
  2566  		c.ctxt.Diag("require symbol to apply relocation")
  2567  	}
  2568  	offset := int64(2) // relocation offset from start of instruction
  2569  	rel := obj.Addrel(c.cursym)
  2570  	rel.Off = int32(c.pc + offset)
  2571  	rel.Siz = 4
  2572  	rel.Sym = sym
  2573  	rel.Add = add + offset + int64(rel.Siz)
  2574  	rel.Type = objabi.R_CALL
  2575  	return rel
  2576  }
  2577  
  2578  func (c *ctxtz) branchMask(p *obj.Prog) uint32 {
  2579  	switch p.As {
  2580  	case ABEQ, ACMPBEQ, ACMPUBEQ, AMOVDEQ:
  2581  		return 0x8
  2582  	case ABGE, ACMPBGE, ACMPUBGE, AMOVDGE:
  2583  		return 0xA
  2584  	case ABGT, ACMPBGT, ACMPUBGT, AMOVDGT:
  2585  		return 0x2
  2586  	case ABLE, ACMPBLE, ACMPUBLE, AMOVDLE:
  2587  		return 0xC
  2588  	case ABLT, ACMPBLT, ACMPUBLT, AMOVDLT:
  2589  		return 0x4
  2590  	case ABNE, ACMPBNE, ACMPUBNE, AMOVDNE:
  2591  		return 0x7
  2592  	case ABLEU: // LE or unordered
  2593  		return 0xD
  2594  	case ABLTU: // LT or unordered
  2595  		return 0x5
  2596  	case ABVC:
  2597  		return 0x0 // needs extra instruction
  2598  	case ABVS:
  2599  		return 0x1 // unordered
  2600  	}
  2601  	c.ctxt.Diag("unknown conditional branch %v", p.As)
  2602  	return 0xF
  2603  }
  2604  
  2605  func (c *ctxtz) asmout(p *obj.Prog, asm *[]byte) {
  2606  	o := c.oplook(p)
  2607  
  2608  	switch o.type_ {
  2609  	default:
  2610  		c.ctxt.Diag("unknown type %d", o.type_)
  2611  
  2612  	case 0: // PSEUDO OPS
  2613  		break
  2614  
  2615  	case 1: // mov reg reg
  2616  		switch p.As {
  2617  		default:
  2618  			c.ctxt.Diag("unhandled operation: %v", p.As)
  2619  		case AMOVD:
  2620  			zRRE(op_LGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2621  		// sign extend
  2622  		case AMOVW:
  2623  			zRRE(op_LGFR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2624  		case AMOVH:
  2625  			zRRE(op_LGHR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2626  		case AMOVB:
  2627  			zRRE(op_LGBR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2628  		// zero extend
  2629  		case AMOVWZ:
  2630  			zRRE(op_LLGFR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2631  		case AMOVHZ:
  2632  			zRRE(op_LLGHR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2633  		case AMOVBZ:
  2634  			zRRE(op_LLGCR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2635  		// reverse bytes
  2636  		case AMOVDBR:
  2637  			zRRE(op_LRVGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2638  		case AMOVWBR:
  2639  			zRRE(op_LRVR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2640  		// floating point
  2641  		case AFMOVD, AFMOVS:
  2642  			zRR(op_LDR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2643  		}
  2644  
  2645  	case 2: // arithmetic op reg [reg] reg
  2646  		r := p.Reg
  2647  		if r == 0 {
  2648  			r = p.To.Reg
  2649  		}
  2650  
  2651  		var opcode uint32
  2652  
  2653  		switch p.As {
  2654  		default:
  2655  			c.ctxt.Diag("invalid opcode")
  2656  		case AADD:
  2657  			opcode = op_AGRK
  2658  		case AADDC:
  2659  			opcode = op_ALGRK
  2660  		case AADDE:
  2661  			opcode = op_ALCGR
  2662  		case AADDW:
  2663  			opcode = op_ARK
  2664  		case AMULLW:
  2665  			opcode = op_MSGFR
  2666  		case AMULLD:
  2667  			opcode = op_MSGR
  2668  		case ADIVW, AMODW:
  2669  			opcode = op_DSGFR
  2670  		case ADIVWU, AMODWU:
  2671  			opcode = op_DLR
  2672  		case ADIVD, AMODD:
  2673  			opcode = op_DSGR
  2674  		case ADIVDU, AMODDU:
  2675  			opcode = op_DLGR
  2676  		}
  2677  
  2678  		switch p.As {
  2679  		default:
  2680  
  2681  		case AADD, AADDC, AADDW:
  2682  			if p.As == AADDW && r == p.To.Reg {
  2683  				zRR(op_AR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2684  			} else {
  2685  				zRRF(opcode, uint32(p.From.Reg), 0, uint32(p.To.Reg), uint32(r), asm)
  2686  			}
  2687  
  2688  		case AADDE, AMULLW, AMULLD:
  2689  			if r == p.To.Reg {
  2690  				zRRE(opcode, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2691  			} else if p.From.Reg == p.To.Reg {
  2692  				zRRE(opcode, uint32(p.To.Reg), uint32(r), asm)
  2693  			} else {
  2694  				zRRE(op_LGR, uint32(p.To.Reg), uint32(r), asm)
  2695  				zRRE(opcode, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2696  			}
  2697  
  2698  		case ADIVW, ADIVWU, ADIVD, ADIVDU:
  2699  			if p.As == ADIVWU || p.As == ADIVDU {
  2700  				zRI(op_LGHI, REGTMP, 0, asm)
  2701  			}
  2702  			zRRE(op_LGR, REGTMP2, uint32(r), asm)
  2703  			zRRE(opcode, REGTMP, uint32(p.From.Reg), asm)
  2704  			zRRE(op_LGR, uint32(p.To.Reg), REGTMP2, asm)
  2705  
  2706  		case AMODW, AMODWU, AMODD, AMODDU:
  2707  			if p.As == AMODWU || p.As == AMODDU {
  2708  				zRI(op_LGHI, REGTMP, 0, asm)
  2709  			}
  2710  			zRRE(op_LGR, REGTMP2, uint32(r), asm)
  2711  			zRRE(opcode, REGTMP, uint32(p.From.Reg), asm)
  2712  			zRRE(op_LGR, uint32(p.To.Reg), REGTMP, asm)
  2713  
  2714  		}
  2715  
  2716  	case 3: // mov $constant reg
  2717  		v := c.vregoff(&p.From)
  2718  		switch p.As {
  2719  		case AMOVBZ:
  2720  			v = int64(uint8(v))
  2721  		case AMOVHZ:
  2722  			v = int64(uint16(v))
  2723  		case AMOVWZ:
  2724  			v = int64(uint32(v))
  2725  		case AMOVB:
  2726  			v = int64(int8(v))
  2727  		case AMOVH:
  2728  			v = int64(int16(v))
  2729  		case AMOVW:
  2730  			v = int64(int32(v))
  2731  		}
  2732  		if int64(int16(v)) == v {
  2733  			zRI(op_LGHI, uint32(p.To.Reg), uint32(v), asm)
  2734  		} else if v&0xffff0000 == v {
  2735  			zRI(op_LLILH, uint32(p.To.Reg), uint32(v>>16), asm)
  2736  		} else if v&0xffff00000000 == v {
  2737  			zRI(op_LLIHL, uint32(p.To.Reg), uint32(v>>32), asm)
  2738  		} else if uint64(v)&0xffff000000000000 == uint64(v) {
  2739  			zRI(op_LLIHH, uint32(p.To.Reg), uint32(v>>48), asm)
  2740  		} else if int64(int32(v)) == v {
  2741  			zRIL(_a, op_LGFI, uint32(p.To.Reg), uint32(v), asm)
  2742  		} else if int64(uint32(v)) == v {
  2743  			zRIL(_a, op_LLILF, uint32(p.To.Reg), uint32(v), asm)
  2744  		} else if uint64(v)&0xffffffff00000000 == uint64(v) {
  2745  			zRIL(_a, op_LLIHF, uint32(p.To.Reg), uint32(v>>32), asm)
  2746  		} else {
  2747  			zRIL(_a, op_LLILF, uint32(p.To.Reg), uint32(v), asm)
  2748  			zRIL(_a, op_IIHF, uint32(p.To.Reg), uint32(v>>32), asm)
  2749  		}
  2750  
  2751  	case 4: // multiply high (a*b)>>64
  2752  		r := p.Reg
  2753  		if r == 0 {
  2754  			r = p.To.Reg
  2755  		}
  2756  		zRRE(op_LGR, REGTMP2, uint32(r), asm)
  2757  		zRRE(op_MLGR, REGTMP, uint32(p.From.Reg), asm)
  2758  		switch p.As {
  2759  		case AMULHDU:
  2760  			// Unsigned: move result into correct register.
  2761  			zRRE(op_LGR, uint32(p.To.Reg), REGTMP, asm)
  2762  		case AMULHD:
  2763  			// Signed: need to convert result.
  2764  			// See Hacker's Delight 8-3.
  2765  			zRSY(op_SRAG, REGTMP2, uint32(p.From.Reg), 0, 63, asm)
  2766  			zRRE(op_NGR, REGTMP2, uint32(r), asm)
  2767  			zRRE(op_SGR, REGTMP, REGTMP2, asm)
  2768  			zRSY(op_SRAG, REGTMP2, uint32(r), 0, 63, asm)
  2769  			zRRE(op_NGR, REGTMP2, uint32(p.From.Reg), asm)
  2770  			zRRF(op_SGRK, REGTMP2, 0, uint32(p.To.Reg), REGTMP, asm)
  2771  		}
  2772  
  2773  	case 5: // syscall
  2774  		zI(op_SVC, 0, asm)
  2775  
  2776  	case 6: // logical op reg [reg] reg
  2777  		var oprr, oprre, oprrf uint32
  2778  		switch p.As {
  2779  		case AAND:
  2780  			oprre = op_NGR
  2781  			oprrf = op_NGRK
  2782  		case AANDW:
  2783  			oprr = op_NR
  2784  			oprrf = op_NRK
  2785  		case AOR:
  2786  			oprre = op_OGR
  2787  			oprrf = op_OGRK
  2788  		case AORW:
  2789  			oprr = op_OR
  2790  			oprrf = op_ORK
  2791  		case AXOR:
  2792  			oprre = op_XGR
  2793  			oprrf = op_XGRK
  2794  		case AXORW:
  2795  			oprr = op_XR
  2796  			oprrf = op_XRK
  2797  		}
  2798  		if p.Reg == 0 {
  2799  			if oprr != 0 {
  2800  				zRR(oprr, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2801  			} else {
  2802  				zRRE(oprre, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2803  			}
  2804  		} else {
  2805  			zRRF(oprrf, uint32(p.Reg), 0, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2806  		}
  2807  
  2808  	case 7: // shift/rotate reg [reg] reg
  2809  		d2 := c.vregoff(&p.From)
  2810  		b2 := p.From.Reg
  2811  		r3 := p.Reg
  2812  		if r3 == 0 {
  2813  			r3 = p.To.Reg
  2814  		}
  2815  		r1 := p.To.Reg
  2816  		var opcode uint32
  2817  		switch p.As {
  2818  		default:
  2819  		case ASLD:
  2820  			opcode = op_SLLG
  2821  		case ASRD:
  2822  			opcode = op_SRLG
  2823  		case ASLW:
  2824  			opcode = op_SLLK
  2825  		case ASRW:
  2826  			opcode = op_SRLK
  2827  		case ARLL:
  2828  			opcode = op_RLL
  2829  		case ARLLG:
  2830  			opcode = op_RLLG
  2831  		case ASRAW:
  2832  			opcode = op_SRAK
  2833  		case ASRAD:
  2834  			opcode = op_SRAG
  2835  		}
  2836  		zRSY(opcode, uint32(r1), uint32(r3), uint32(b2), uint32(d2), asm)
  2837  
  2838  	case 8: // find leftmost one
  2839  		if p.To.Reg&1 != 0 {
  2840  			c.ctxt.Diag("target must be an even-numbered register")
  2841  		}
  2842  		// FLOGR also writes a mask to p.To.Reg+1.
  2843  		zRRE(op_FLOGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2844  
  2845  	case 10: // subtract reg [reg] reg
  2846  		r := int(p.Reg)
  2847  
  2848  		switch p.As {
  2849  		default:
  2850  		case ASUB:
  2851  			if r == 0 {
  2852  				zRRE(op_SGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2853  			} else {
  2854  				zRRF(op_SGRK, uint32(p.From.Reg), 0, uint32(p.To.Reg), uint32(r), asm)
  2855  			}
  2856  		case ASUBC:
  2857  			if r == 0 {
  2858  				zRRE(op_SLGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2859  			} else {
  2860  				zRRF(op_SLGRK, uint32(p.From.Reg), 0, uint32(p.To.Reg), uint32(r), asm)
  2861  			}
  2862  		case ASUBE:
  2863  			if r == 0 {
  2864  				r = int(p.To.Reg)
  2865  			}
  2866  			if r == int(p.To.Reg) {
  2867  				zRRE(op_SLBGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2868  			} else if p.From.Reg == p.To.Reg {
  2869  				zRRE(op_LGR, REGTMP, uint32(p.From.Reg), asm)
  2870  				zRRE(op_LGR, uint32(p.To.Reg), uint32(r), asm)
  2871  				zRRE(op_SLBGR, uint32(p.To.Reg), REGTMP, asm)
  2872  			} else {
  2873  				zRRE(op_LGR, uint32(p.To.Reg), uint32(r), asm)
  2874  				zRRE(op_SLBGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2875  			}
  2876  		case ASUBW:
  2877  			if r == 0 {
  2878  				zRR(op_SR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2879  			} else {
  2880  				zRRF(op_SRK, uint32(p.From.Reg), 0, uint32(p.To.Reg), uint32(r), asm)
  2881  			}
  2882  		}
  2883  
  2884  	case 11: // br/bl
  2885  		v := int32(0)
  2886  
  2887  		if p.Pcond != nil {
  2888  			v = int32((p.Pcond.Pc - p.Pc) >> 1)
  2889  		}
  2890  
  2891  		if p.As == ABR && p.To.Sym == nil && int32(int16(v)) == v {
  2892  			zRI(op_BRC, 0xF, uint32(v), asm)
  2893  		} else {
  2894  			if p.As == ABL {
  2895  				zRIL(_b, op_BRASL, uint32(REG_LR), uint32(v), asm)
  2896  			} else {
  2897  				zRIL(_c, op_BRCL, 0xF, uint32(v), asm)
  2898  			}
  2899  			if p.To.Sym != nil {
  2900  				c.addcallreloc(p.To.Sym, p.To.Offset)
  2901  			}
  2902  		}
  2903  
  2904  	case 12:
  2905  		r1 := p.To.Reg
  2906  		d2 := c.vregoff(&p.From)
  2907  		b2 := p.From.Reg
  2908  		if b2 == 0 {
  2909  			b2 = o.param
  2910  		}
  2911  		x2 := p.From.Index
  2912  		if -DISP20/2 > d2 || d2 >= DISP20/2 {
  2913  			zRIL(_a, op_LGFI, REGTMP, uint32(d2), asm)
  2914  			if x2 != 0 {
  2915  				zRX(op_LA, REGTMP, REGTMP, uint32(x2), 0, asm)
  2916  			}
  2917  			x2 = REGTMP
  2918  			d2 = 0
  2919  		}
  2920  		var opx, opxy uint32
  2921  		switch p.As {
  2922  		case AADD:
  2923  			opxy = op_AG
  2924  		case AADDC:
  2925  			opxy = op_ALG
  2926  		case AADDW:
  2927  			opx = op_A
  2928  			opxy = op_AY
  2929  		case AMULLW:
  2930  			opx = op_MS
  2931  			opxy = op_MSY
  2932  		case AMULLD:
  2933  			opxy = op_MSG
  2934  		case ASUB:
  2935  			opxy = op_SG
  2936  		case ASUBC:
  2937  			opxy = op_SLG
  2938  		case ASUBE:
  2939  			opxy = op_SLBG
  2940  		case ASUBW:
  2941  			opx = op_S
  2942  			opxy = op_SY
  2943  		case AAND:
  2944  			opxy = op_NG
  2945  		case AANDW:
  2946  			opx = op_N
  2947  			opxy = op_NY
  2948  		case AOR:
  2949  			opxy = op_OG
  2950  		case AORW:
  2951  			opx = op_O
  2952  			opxy = op_OY
  2953  		case AXOR:
  2954  			opxy = op_XG
  2955  		case AXORW:
  2956  			opx = op_X
  2957  			opxy = op_XY
  2958  		}
  2959  		if opx != 0 && 0 <= d2 && d2 < DISP12 {
  2960  			zRX(opx, uint32(r1), uint32(x2), uint32(b2), uint32(d2), asm)
  2961  		} else {
  2962  			zRXY(opxy, uint32(r1), uint32(x2), uint32(b2), uint32(d2), asm)
  2963  		}
  2964  
  2965  	case 15: // br/bl (reg)
  2966  		r := p.To.Reg
  2967  		if p.As == ABCL || p.As == ABL {
  2968  			zRR(op_BASR, uint32(REG_LR), uint32(r), asm)
  2969  		} else {
  2970  			zRR(op_BCR, 0xF, uint32(r), asm)
  2971  		}
  2972  
  2973  	case 16: // conditional branch
  2974  		v := int32(0)
  2975  		if p.Pcond != nil {
  2976  			v = int32((p.Pcond.Pc - p.Pc) >> 1)
  2977  		}
  2978  		mask := c.branchMask(p)
  2979  		if p.To.Sym == nil && int32(int16(v)) == v {
  2980  			zRI(op_BRC, mask, uint32(v), asm)
  2981  		} else {
  2982  			zRIL(_c, op_BRCL, mask, uint32(v), asm)
  2983  		}
  2984  		if p.To.Sym != nil {
  2985  			c.addrilreloc(p.To.Sym, p.To.Offset)
  2986  		}
  2987  
  2988  	case 17: // move on condition
  2989  		m3 := c.branchMask(p)
  2990  		zRRF(op_LOCGR, m3, 0, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2991  
  2992  	case 18: // br/bl reg
  2993  		if p.As == ABL {
  2994  			zRR(op_BASR, uint32(REG_LR), uint32(p.To.Reg), asm)
  2995  		} else {
  2996  			zRR(op_BCR, 0xF, uint32(p.To.Reg), asm)
  2997  		}
  2998  
  2999  	case 19: // mov $sym+n(SB) reg
  3000  		d := c.vregoff(&p.From)
  3001  		zRIL(_b, op_LARL, uint32(p.To.Reg), 0, asm)
  3002  		if d&1 != 0 {
  3003  			zRX(op_LA, uint32(p.To.Reg), uint32(p.To.Reg), 0, 1, asm)
  3004  			d -= 1
  3005  		}
  3006  		c.addrilreloc(p.From.Sym, d)
  3007  
  3008  	case 21: // subtract $constant [reg] reg
  3009  		v := c.vregoff(&p.From)
  3010  		r := p.Reg
  3011  		if r == 0 {
  3012  			r = p.To.Reg
  3013  		}
  3014  		switch p.As {
  3015  		case ASUB:
  3016  			zRIL(_a, op_LGFI, uint32(REGTMP), uint32(v), asm)
  3017  			zRRF(op_SLGRK, uint32(REGTMP), 0, uint32(p.To.Reg), uint32(r), asm)
  3018  		case ASUBC:
  3019  			if r != p.To.Reg {
  3020  				zRRE(op_LGR, uint32(p.To.Reg), uint32(r), asm)
  3021  			}
  3022  			zRIL(_a, op_SLGFI, uint32(p.To.Reg), uint32(v), asm)
  3023  		case ASUBW:
  3024  			if r != p.To.Reg {
  3025  				zRR(op_LR, uint32(p.To.Reg), uint32(r), asm)
  3026  			}
  3027  			zRIL(_a, op_SLFI, uint32(p.To.Reg), uint32(v), asm)
  3028  		}
  3029  
  3030  	case 22: // add/multiply $constant [reg] reg
  3031  		v := c.vregoff(&p.From)
  3032  		r := p.Reg
  3033  		if r == 0 {
  3034  			r = p.To.Reg
  3035  		}
  3036  		var opri, opril, oprie uint32
  3037  		switch p.As {
  3038  		case AADD:
  3039  			opri = op_AGHI
  3040  			opril = op_AGFI
  3041  			oprie = op_AGHIK
  3042  		case AADDC:
  3043  			opril = op_ALGFI
  3044  			oprie = op_ALGHSIK
  3045  		case AADDW:
  3046  			opri = op_AHI
  3047  			opril = op_AFI
  3048  			oprie = op_AHIK
  3049  		case AMULLW:
  3050  			opri = op_MHI
  3051  			opril = op_MSFI
  3052  		case AMULLD:
  3053  			opri = op_MGHI
  3054  			opril = op_MSGFI
  3055  		}
  3056  		if r != p.To.Reg && (oprie == 0 || int64(int16(v)) != v) {
  3057  			switch p.As {
  3058  			case AADD, AADDC, AMULLD:
  3059  				zRRE(op_LGR, uint32(p.To.Reg), uint32(r), asm)
  3060  			case AADDW, AMULLW:
  3061  				zRR(op_LR, uint32(p.To.Reg), uint32(r), asm)
  3062  			}
  3063  			r = p.To.Reg
  3064  		}
  3065  		if r == p.To.Reg {
  3066  			if opri != 0 && int64(int16(v)) == v {
  3067  				zRI(opri, uint32(p.To.Reg), uint32(v), asm)
  3068  			} else {
  3069  				zRIL(_a, opril, uint32(p.To.Reg), uint32(v), asm)
  3070  			}
  3071  		} else {
  3072  			zRIE(_d, oprie, uint32(p.To.Reg), uint32(r), uint32(v), 0, 0, 0, 0, asm)
  3073  		}
  3074  
  3075  	case 23: // 64-bit logical op $constant reg
  3076  		// TODO(mundaym): merge with case 24.
  3077  		v := c.vregoff(&p.From)
  3078  		switch p.As {
  3079  		default:
  3080  			c.ctxt.Diag("%v is not supported", p)
  3081  		case AAND:
  3082  			if v >= 0 { // needs zero extend
  3083  				zRIL(_a, op_LGFI, REGTMP, uint32(v), asm)
  3084  				zRRE(op_NGR, uint32(p.To.Reg), REGTMP, asm)
  3085  			} else if int64(int16(v)) == v {
  3086  				zRI(op_NILL, uint32(p.To.Reg), uint32(v), asm)
  3087  			} else { //  r.To.Reg & 0xffffffff00000000 & uint32(v)
  3088  				zRIL(_a, op_NILF, uint32(p.To.Reg), uint32(v), asm)
  3089  			}
  3090  		case AOR:
  3091  			if int64(uint32(v)) != v { // needs sign extend
  3092  				zRIL(_a, op_LGFI, REGTMP, uint32(v), asm)
  3093  				zRRE(op_OGR, uint32(p.To.Reg), REGTMP, asm)
  3094  			} else if int64(uint16(v)) == v {
  3095  				zRI(op_OILL, uint32(p.To.Reg), uint32(v), asm)
  3096  			} else {
  3097  				zRIL(_a, op_OILF, uint32(p.To.Reg), uint32(v), asm)
  3098  			}
  3099  		case AXOR:
  3100  			if int64(uint32(v)) != v { // needs sign extend
  3101  				zRIL(_a, op_LGFI, REGTMP, uint32(v), asm)
  3102  				zRRE(op_XGR, uint32(p.To.Reg), REGTMP, asm)
  3103  			} else {
  3104  				zRIL(_a, op_XILF, uint32(p.To.Reg), uint32(v), asm)
  3105  			}
  3106  		}
  3107  
  3108  	case 24: // 32-bit logical op $constant reg
  3109  		v := c.vregoff(&p.From)
  3110  		switch p.As {
  3111  		case AANDW:
  3112  			if uint32(v&0xffff0000) == 0xffff0000 {
  3113  				zRI(op_NILL, uint32(p.To.Reg), uint32(v), asm)
  3114  			} else if uint32(v&0x0000ffff) == 0x0000ffff {
  3115  				zRI(op_NILH, uint32(p.To.Reg), uint32(v)>>16, asm)
  3116  			} else {
  3117  				zRIL(_a, op_NILF, uint32(p.To.Reg), uint32(v), asm)
  3118  			}
  3119  		case AORW:
  3120  			if uint32(v&0xffff0000) == 0 {
  3121  				zRI(op_OILL, uint32(p.To.Reg), uint32(v), asm)
  3122  			} else if uint32(v&0x0000ffff) == 0 {
  3123  				zRI(op_OILH, uint32(p.To.Reg), uint32(v)>>16, asm)
  3124  			} else {
  3125  				zRIL(_a, op_OILF, uint32(p.To.Reg), uint32(v), asm)
  3126  			}
  3127  		case AXORW:
  3128  			zRIL(_a, op_XILF, uint32(p.To.Reg), uint32(v), asm)
  3129  		}
  3130  
  3131  	case 26: // MOVD $offset(base)(index), reg
  3132  		v := c.regoff(&p.From)
  3133  		r := p.From.Reg
  3134  		if r == 0 {
  3135  			r = o.param
  3136  		}
  3137  		i := p.From.Index
  3138  		if v >= 0 && v < DISP12 {
  3139  			zRX(op_LA, uint32(p.To.Reg), uint32(r), uint32(i), uint32(v), asm)
  3140  		} else if v >= -DISP20/2 && v < DISP20/2 {
  3141  			zRXY(op_LAY, uint32(p.To.Reg), uint32(r), uint32(i), uint32(v), asm)
  3142  		} else {
  3143  			zRIL(_a, op_LGFI, REGTMP, uint32(v), asm)
  3144  			zRX(op_LA, uint32(p.To.Reg), uint32(r), REGTMP, uint32(i), asm)
  3145  		}
  3146  
  3147  	case 31: // dword
  3148  		wd := uint64(c.vregoff(&p.From))
  3149  		*asm = append(*asm,
  3150  			uint8(wd>>56),
  3151  			uint8(wd>>48),
  3152  			uint8(wd>>40),
  3153  			uint8(wd>>32),
  3154  			uint8(wd>>24),
  3155  			uint8(wd>>16),
  3156  			uint8(wd>>8),
  3157  			uint8(wd))
  3158  
  3159  	case 32: // float op freg freg
  3160  		var opcode uint32
  3161  		switch p.As {
  3162  		default:
  3163  			c.ctxt.Diag("invalid opcode")
  3164  		case AFADD:
  3165  			opcode = op_ADBR
  3166  		case AFADDS:
  3167  			opcode = op_AEBR
  3168  		case AFDIV:
  3169  			opcode = op_DDBR
  3170  		case AFDIVS:
  3171  			opcode = op_DEBR
  3172  		case AFMUL:
  3173  			opcode = op_MDBR
  3174  		case AFMULS:
  3175  			opcode = op_MEEBR
  3176  		case AFSUB:
  3177  			opcode = op_SDBR
  3178  		case AFSUBS:
  3179  			opcode = op_SEBR
  3180  		}
  3181  		zRRE(opcode, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  3182  
  3183  	case 33: // float op [freg] freg
  3184  		r := p.From.Reg
  3185  		if oclass(&p.From) == C_NONE {
  3186  			r = p.To.Reg
  3187  		}
  3188  		var opcode uint32
  3189  		switch p.As {
  3190  		default:
  3191  		case AFABS:
  3192  			opcode = op_LPDBR
  3193  		case AFNABS:
  3194  			opcode = op_LNDBR
  3195  		case ALPDFR:
  3196  			opcode = op_LPDFR
  3197  		case ALNDFR:
  3198  			opcode = op_LNDFR
  3199  		case AFNEG:
  3200  			opcode = op_LCDFR
  3201  		case AFNEGS:
  3202  			opcode = op_LCEBR
  3203  		case ALEDBR:
  3204  			opcode = op_LEDBR
  3205  		case ALDEBR:
  3206  			opcode = op_LDEBR
  3207  		case AFSQRT:
  3208  			opcode = op_SQDBR
  3209  		case AFSQRTS:
  3210  			opcode = op_SQEBR
  3211  		}
  3212  		zRRE(opcode, uint32(p.To.Reg), uint32(r), asm)
  3213  
  3214  	case 34: // float multiply-add freg freg freg
  3215  		var opcode uint32
  3216  		switch p.As {
  3217  		default:
  3218  			c.ctxt.Diag("invalid opcode")
  3219  		case AFMADD:
  3220  			opcode = op_MADBR
  3221  		case AFMADDS:
  3222  			opcode = op_MAEBR
  3223  		case AFMSUB:
  3224  			opcode = op_MSDBR
  3225  		case AFMSUBS:
  3226  			opcode = op_MSEBR
  3227  		}
  3228  		zRRD(opcode, uint32(p.To.Reg), uint32(p.From.Reg), uint32(p.Reg), asm)
  3229  
  3230  	case 35: // mov reg mem (no relocation)
  3231  		d2 := c.regoff(&p.To)
  3232  		b2 := p.To.Reg
  3233  		if b2 == 0 {
  3234  			b2 = o.param
  3235  		}
  3236  		x2 := p.To.Index
  3237  		if d2 < -DISP20/2 || d2 >= DISP20/2 {
  3238  			zRIL(_a, op_LGFI, REGTMP, uint32(d2), asm)
  3239  			if x2 != 0 {
  3240  				zRX(op_LA, REGTMP, REGTMP, uint32(x2), 0, asm)
  3241  			}
  3242  			x2 = REGTMP
  3243  			d2 = 0
  3244  		}
  3245  		zRXY(c.zopstore(p.As), uint32(p.From.Reg), uint32(x2), uint32(b2), uint32(d2), asm)
  3246  
  3247  	case 36: // mov mem reg (no relocation)
  3248  		d2 := c.regoff(&p.From)
  3249  		b2 := p.From.Reg
  3250  		if b2 == 0 {
  3251  			b2 = o.param
  3252  		}
  3253  		x2 := p.From.Index
  3254  		if d2 < -DISP20/2 || d2 >= DISP20/2 {
  3255  			zRIL(_a, op_LGFI, REGTMP, uint32(d2), asm)
  3256  			if x2 != 0 {
  3257  				zRX(op_LA, REGTMP, REGTMP, uint32(x2), 0, asm)
  3258  			}
  3259  			x2 = REGTMP
  3260  			d2 = 0
  3261  		}
  3262  		zRXY(c.zopload(p.As), uint32(p.To.Reg), uint32(x2), uint32(b2), uint32(d2), asm)
  3263  
  3264  	case 40: // word/byte
  3265  		wd := uint32(c.regoff(&p.From))
  3266  		if p.As == AWORD { //WORD
  3267  			*asm = append(*asm, uint8(wd>>24), uint8(wd>>16), uint8(wd>>8), uint8(wd))
  3268  		} else { //BYTE
  3269  			*asm = append(*asm, uint8(wd))
  3270  		}
  3271  
  3272  	case 47: // negate [reg] reg
  3273  		r := p.From.Reg
  3274  		if r == 0 {
  3275  			r = p.To.Reg
  3276  		}
  3277  		switch p.As {
  3278  		case ANEG:
  3279  			zRRE(op_LCGR, uint32(p.To.Reg), uint32(r), asm)
  3280  		case ANEGW:
  3281  			zRRE(op_LCGFR, uint32(p.To.Reg), uint32(r), asm)
  3282  		}
  3283  
  3284  	case 48: // floating-point round to integer
  3285  		m3 := c.vregoff(&p.From)
  3286  		if 0 > m3 || m3 > 7 {
  3287  			c.ctxt.Diag("mask (%v) must be in the range [0, 7]", m3)
  3288  		}
  3289  		var opcode uint32
  3290  		switch p.As {
  3291  		case AFIEBR:
  3292  			opcode = op_FIEBR
  3293  		case AFIDBR:
  3294  			opcode = op_FIDBR
  3295  		}
  3296  		zRRF(opcode, uint32(m3), 0, uint32(p.To.Reg), uint32(p.Reg), asm)
  3297  
  3298  	case 49: // copysign
  3299  		zRRF(op_CPSDR, uint32(p.From.Reg), 0, uint32(p.To.Reg), uint32(p.Reg), asm)
  3300  
  3301  	case 67: // fmov $0 freg
  3302  		var opcode uint32
  3303  		switch p.As {
  3304  		case AFMOVS:
  3305  			opcode = op_LZER
  3306  		case AFMOVD:
  3307  			opcode = op_LZDR
  3308  		}
  3309  		zRRE(opcode, uint32(p.To.Reg), 0, asm)
  3310  
  3311  	case 68: // movw areg reg
  3312  		zRRE(op_EAR, uint32(p.To.Reg), uint32(p.From.Reg-REG_AR0), asm)
  3313  
  3314  	case 69: // movw reg areg
  3315  		zRRE(op_SAR, uint32(p.To.Reg-REG_AR0), uint32(p.From.Reg), asm)
  3316  
  3317  	case 70: // cmp reg reg
  3318  		if p.As == ACMPW || p.As == ACMPWU {
  3319  			zRR(c.zoprr(p.As), uint32(p.From.Reg), uint32(p.To.Reg), asm)
  3320  		} else {
  3321  			zRRE(c.zoprre(p.As), uint32(p.From.Reg), uint32(p.To.Reg), asm)
  3322  		}
  3323  
  3324  	case 71: // cmp reg $constant
  3325  		v := c.vregoff(&p.To)
  3326  		switch p.As {
  3327  		case ACMP, ACMPW:
  3328  			if int64(int32(v)) != v {
  3329  				c.ctxt.Diag("%v overflows an int32", v)
  3330  			}
  3331  		case ACMPU, ACMPWU:
  3332  			if int64(uint32(v)) != v {
  3333  				c.ctxt.Diag("%v overflows a uint32", v)
  3334  			}
  3335  		}
  3336  		if p.As == ACMP && int64(int16(v)) == v {
  3337  			zRI(op_CGHI, uint32(p.From.Reg), uint32(v), asm)
  3338  		} else if p.As == ACMPW && int64(int16(v)) == v {
  3339  			zRI(op_CHI, uint32(p.From.Reg), uint32(v), asm)
  3340  		} else {
  3341  			zRIL(_a, c.zopril(p.As), uint32(p.From.Reg), uint32(v), asm)
  3342  		}
  3343  
  3344  	case 72: // mov $constant mem
  3345  		v := c.regoff(&p.From)
  3346  		d := c.regoff(&p.To)
  3347  		r := p.To.Reg
  3348  		if p.To.Index != 0 {
  3349  			c.ctxt.Diag("cannot use index register")
  3350  		}
  3351  		if r == 0 {
  3352  			r = o.param
  3353  		}
  3354  		var opcode uint32
  3355  		switch p.As {
  3356  		case AMOVD:
  3357  			opcode = op_MVGHI
  3358  		case AMOVW, AMOVWZ:
  3359  			opcode = op_MVHI
  3360  		case AMOVH, AMOVHZ:
  3361  			opcode = op_MVHHI
  3362  		case AMOVB, AMOVBZ:
  3363  			opcode = op_MVI
  3364  		}
  3365  		if d < 0 || d >= DISP12 {
  3366  			if r == REGTMP {
  3367  				c.ctxt.Diag("displacement must be in range [0, 4096) to use %v", r)
  3368  			}
  3369  			if d >= -DISP20/2 && d < DISP20/2 {
  3370  				if opcode == op_MVI {
  3371  					opcode = op_MVIY
  3372  				} else {
  3373  					zRXY(op_LAY, uint32(REGTMP), 0, uint32(r), uint32(d), asm)
  3374  					r = REGTMP
  3375  					d = 0
  3376  				}
  3377  			} else {
  3378  				zRIL(_a, op_LGFI, REGTMP, uint32(d), asm)
  3379  				zRX(op_LA, REGTMP, REGTMP, uint32(r), 0, asm)
  3380  				r = REGTMP
  3381  				d = 0
  3382  			}
  3383  		}
  3384  		switch opcode {
  3385  		case op_MVI:
  3386  			zSI(opcode, uint32(v), uint32(r), uint32(d), asm)
  3387  		case op_MVIY:
  3388  			zSIY(opcode, uint32(v), uint32(r), uint32(d), asm)
  3389  		default:
  3390  			zSIL(opcode, uint32(r), uint32(d), uint32(v), asm)
  3391  		}
  3392  
  3393  	case 74: // mov reg addr (including relocation)
  3394  		i2 := c.regoff(&p.To)
  3395  		switch p.As {
  3396  		case AMOVD:
  3397  			zRIL(_b, op_STGRL, uint32(p.From.Reg), 0, asm)
  3398  		case AMOVW, AMOVWZ: // The zero extension doesn't affect store instructions
  3399  			zRIL(_b, op_STRL, uint32(p.From.Reg), 0, asm)
  3400  		case AMOVH, AMOVHZ: // The zero extension doesn't affect store instructions
  3401  			zRIL(_b, op_STHRL, uint32(p.From.Reg), 0, asm)
  3402  		case AMOVB, AMOVBZ: // The zero extension doesn't affect store instructions
  3403  			zRIL(_b, op_LARL, REGTMP, 0, asm)
  3404  			adj := uint32(0) // adjustment needed for odd addresses
  3405  			if i2&1 != 0 {
  3406  				i2 -= 1
  3407  				adj = 1
  3408  			}
  3409  			zRX(op_STC, uint32(p.From.Reg), 0, REGTMP, adj, asm)
  3410  		case AFMOVD:
  3411  			zRIL(_b, op_LARL, REGTMP, 0, asm)
  3412  			zRX(op_STD, uint32(p.From.Reg), 0, REGTMP, 0, asm)
  3413  		case AFMOVS:
  3414  			zRIL(_b, op_LARL, REGTMP, 0, asm)
  3415  			zRX(op_STE, uint32(p.From.Reg), 0, REGTMP, 0, asm)
  3416  		}
  3417  		c.addrilreloc(p.To.Sym, int64(i2))
  3418  
  3419  	case 75: // mov addr reg (including relocation)
  3420  		i2 := c.regoff(&p.From)
  3421  		switch p.As {
  3422  		case AMOVD:
  3423  			if i2&1 != 0 {
  3424  				zRIL(_b, op_LARL, REGTMP, 0, asm)
  3425  				zRXY(op_LG, uint32(p.To.Reg), REGTMP, 0, 1, asm)
  3426  				i2 -= 1
  3427  			} else {
  3428  				zRIL(_b, op_LGRL, uint32(p.To.Reg), 0, asm)
  3429  			}
  3430  		case AMOVW:
  3431  			zRIL(_b, op_LGFRL, uint32(p.To.Reg), 0, asm)
  3432  		case AMOVWZ:
  3433  			zRIL(_b, op_LLGFRL, uint32(p.To.Reg), 0, asm)
  3434  		case AMOVH:
  3435  			zRIL(_b, op_LGHRL, uint32(p.To.Reg), 0, asm)
  3436  		case AMOVHZ:
  3437  			zRIL(_b, op_LLGHRL, uint32(p.To.Reg), 0, asm)
  3438  		case AMOVB, AMOVBZ:
  3439  			zRIL(_b, op_LARL, REGTMP, 0, asm)
  3440  			adj := uint32(0) // adjustment needed for odd addresses
  3441  			if i2&1 != 0 {
  3442  				i2 -= 1
  3443  				adj = 1
  3444  			}
  3445  			switch p.As {
  3446  			case AMOVB:
  3447  				zRXY(op_LGB, uint32(p.To.Reg), 0, REGTMP, adj, asm)
  3448  			case AMOVBZ:
  3449  				zRXY(op_LLGC, uint32(p.To.Reg), 0, REGTMP, adj, asm)
  3450  			}
  3451  		case AFMOVD:
  3452  			zRIL(_a, op_LARL, REGTMP, 0, asm)
  3453  			zRX(op_LD, uint32(p.To.Reg), 0, REGTMP, 0, asm)
  3454  		case AFMOVS:
  3455  			zRIL(_a, op_LARL, REGTMP, 0, asm)
  3456  			zRX(op_LE, uint32(p.To.Reg), 0, REGTMP, 0, asm)
  3457  		}
  3458  		c.addrilreloc(p.From.Sym, int64(i2))
  3459  
  3460  	case 77: // syscall $constant
  3461  		if p.From.Offset > 255 || p.From.Offset < 1 {
  3462  			c.ctxt.Diag("illegal system call; system call number out of range: %v", p)
  3463  			zE(op_TRAP2, asm) // trap always
  3464  		} else {
  3465  			zI(op_SVC, uint32(p.From.Offset), asm)
  3466  		}
  3467  
  3468  	case 78: // undef
  3469  		// "An instruction consisting entirely of binary 0s is guaranteed
  3470  		// always to be an illegal instruction."
  3471  		*asm = append(*asm, 0, 0, 0, 0)
  3472  
  3473  	case 79: // compare and swap reg reg reg
  3474  		v := c.regoff(&p.To)
  3475  		if v < 0 {
  3476  			v = 0
  3477  		}
  3478  		if p.As == ACS {
  3479  			zRS(op_CS, uint32(p.From.Reg), uint32(p.Reg), uint32(p.To.Reg), uint32(v), asm)
  3480  		} else if p.As == ACSG {
  3481  			zRSY(op_CSG, uint32(p.From.Reg), uint32(p.Reg), uint32(p.To.Reg), uint32(v), asm)
  3482  		}
  3483  
  3484  	case 80: // sync
  3485  		zRR(op_BCR, 0xE, 0, asm)
  3486  
  3487  	case 81: // float to fixed and fixed to float moves (no conversion)
  3488  		switch p.As {
  3489  		case ALDGR:
  3490  			zRRE(op_LDGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  3491  		case ALGDR:
  3492  			zRRE(op_LGDR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  3493  		}
  3494  
  3495  	case 82: // fixed to float conversion
  3496  		var opcode uint32
  3497  		switch p.As {
  3498  		default:
  3499  			log.Fatalf("unexpected opcode %v", p.As)
  3500  		case ACEFBRA:
  3501  			opcode = op_CEFBRA
  3502  		case ACDFBRA:
  3503  			opcode = op_CDFBRA
  3504  		case ACEGBRA:
  3505  			opcode = op_CEGBRA
  3506  		case ACDGBRA:
  3507  			opcode = op_CDGBRA
  3508  		case ACELFBR:
  3509  			opcode = op_CELFBR
  3510  		case ACDLFBR:
  3511  			opcode = op_CDLFBR
  3512  		case ACELGBR:
  3513  			opcode = op_CELGBR
  3514  		case ACDLGBR:
  3515  			opcode = op_CDLGBR
  3516  		}
  3517  		// set immediate operand M3 to 0 to use the default BFP rounding mode
  3518  		// (usually round to nearest, ties to even)
  3519  		// TODO(mundaym): should this be fixed at round to nearest, ties to even?
  3520  		// M4 is reserved and must be 0
  3521  		zRRF(opcode, 0, 0, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  3522  
  3523  	case 83: // float to fixed conversion
  3524  		var opcode uint32
  3525  		switch p.As {
  3526  		default:
  3527  			log.Fatalf("unexpected opcode %v", p.As)
  3528  		case ACFEBRA:
  3529  			opcode = op_CFEBRA
  3530  		case ACFDBRA:
  3531  			opcode = op_CFDBRA
  3532  		case ACGEBRA:
  3533  			opcode = op_CGEBRA
  3534  		case ACGDBRA:
  3535  			opcode = op_CGDBRA
  3536  		case ACLFEBR:
  3537  			opcode = op_CLFEBR
  3538  		case ACLFDBR:
  3539  			opcode = op_CLFDBR
  3540  		case ACLGEBR:
  3541  			opcode = op_CLGEBR
  3542  		case ACLGDBR:
  3543  			opcode = op_CLGDBR
  3544  		}
  3545  		// set immediate operand M3 to 5 for rounding toward zero (required by Go spec)
  3546  		// M4 is reserved and must be 0
  3547  		zRRF(opcode, 5, 0, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  3548  
  3549  	case 84: // storage-and-storage operations $length mem mem
  3550  		l := c.regoff(&p.From)
  3551  		if l < 1 || l > 256 {
  3552  			c.ctxt.Diag("number of bytes (%v) not in range [1,256]", l)
  3553  		}
  3554  		if p.GetFrom3().Index != 0 || p.To.Index != 0 {
  3555  			c.ctxt.Diag("cannot use index reg")
  3556  		}
  3557  		b1 := p.To.Reg
  3558  		b2 := p.GetFrom3().Reg
  3559  		if b1 == 0 {
  3560  			b1 = o.param
  3561  		}
  3562  		if b2 == 0 {
  3563  			b2 = o.param
  3564  		}
  3565  		d1 := c.regoff(&p.To)
  3566  		d2 := c.regoff(p.GetFrom3())
  3567  		if d1 < 0 || d1 >= DISP12 {
  3568  			if b2 == REGTMP {
  3569  				c.ctxt.Diag("REGTMP conflict")
  3570  			}
  3571  			if b1 != REGTMP {
  3572  				zRRE(op_LGR, REGTMP, uint32(b1), asm)
  3573  			}
  3574  			zRIL(_a, op_AGFI, REGTMP, uint32(d1), asm)
  3575  			if d1 == d2 && b1 == b2 {
  3576  				d2 = 0
  3577  				b2 = REGTMP
  3578  			}
  3579  			d1 = 0
  3580  			b1 = REGTMP
  3581  		}
  3582  		if d2 < 0 || d2 >= DISP12 {
  3583  			if b1 == REGTMP2 {
  3584  				c.ctxt.Diag("REGTMP2 conflict")
  3585  			}
  3586  			if b2 != REGTMP2 {
  3587  				zRRE(op_LGR, REGTMP2, uint32(b2), asm)
  3588  			}
  3589  			zRIL(_a, op_AGFI, REGTMP2, uint32(d2), asm)
  3590  			d2 = 0
  3591  			b2 = REGTMP2
  3592  		}
  3593  		var opcode uint32
  3594  		switch p.As {
  3595  		default:
  3596  			c.ctxt.Diag("unexpected opcode %v", p.As)
  3597  		case AMVC:
  3598  			opcode = op_MVC
  3599  		case ACLC:
  3600  			opcode = op_CLC
  3601  			// swap operand order for CLC so that it matches CMP
  3602  			b1, b2 = b2, b1
  3603  			d1, d2 = d2, d1
  3604  		case AXC:
  3605  			opcode = op_XC
  3606  		case AOC:
  3607  			opcode = op_OC
  3608  		case ANC:
  3609  			opcode = op_NC
  3610  		}
  3611  		zSS(_a, opcode, uint32(l-1), 0, uint32(b1), uint32(d1), uint32(b2), uint32(d2), asm)
  3612  
  3613  	case 85: // load address relative long
  3614  		v := c.regoff(&p.From)
  3615  		if p.From.Sym == nil {
  3616  			if (v & 1) != 0 {
  3617  				c.ctxt.Diag("cannot use LARL with odd offset: %v", v)
  3618  			}
  3619  		} else {
  3620  			c.addrilreloc(p.From.Sym, int64(v))
  3621  			v = 0
  3622  		}
  3623  		zRIL(_b, op_LARL, uint32(p.To.Reg), uint32(v>>1), asm)
  3624  
  3625  	case 86: // load address
  3626  		d := c.vregoff(&p.From)
  3627  		x := p.From.Index
  3628  		b := p.From.Reg
  3629  		if b == 0 {
  3630  			b = o.param
  3631  		}
  3632  		switch p.As {
  3633  		case ALA:
  3634  			zRX(op_LA, uint32(p.To.Reg), uint32(x), uint32(b), uint32(d), asm)
  3635  		case ALAY:
  3636  			zRXY(op_LAY, uint32(p.To.Reg), uint32(x), uint32(b), uint32(d), asm)
  3637  		}
  3638  
  3639  	case 87: // execute relative long
  3640  		v := c.vregoff(&p.From)
  3641  		if p.From.Sym == nil {
  3642  			if v&1 != 0 {
  3643  				c.ctxt.Diag("cannot use EXRL with odd offset: %v", v)
  3644  			}
  3645  		} else {
  3646  			c.addrilreloc(p.From.Sym, v)
  3647  			v = 0
  3648  		}
  3649  		zRIL(_b, op_EXRL, uint32(p.To.Reg), uint32(v>>1), asm)
  3650  
  3651  	case 88: // store clock
  3652  		var opcode uint32
  3653  		switch p.As {
  3654  		case ASTCK:
  3655  			opcode = op_STCK
  3656  		case ASTCKC:
  3657  			opcode = op_STCKC
  3658  		case ASTCKE:
  3659  			opcode = op_STCKE
  3660  		case ASTCKF:
  3661  			opcode = op_STCKF
  3662  		}
  3663  		v := c.vregoff(&p.To)
  3664  		r := int(p.To.Reg)
  3665  		if r == 0 {
  3666  			r = int(o.param)
  3667  		}
  3668  		zS(opcode, uint32(r), uint32(v), asm)
  3669  
  3670  	case 89: // compare and branch reg reg
  3671  		var v int32
  3672  		if p.Pcond != nil {
  3673  			v = int32((p.Pcond.Pc - p.Pc) >> 1)
  3674  		}
  3675  		var opcode, opcode2 uint32
  3676  		switch p.As {
  3677  		case ACMPBEQ, ACMPBGE, ACMPBGT, ACMPBLE, ACMPBLT, ACMPBNE:
  3678  			opcode = op_CGRJ
  3679  			opcode2 = op_CGR
  3680  		case ACMPUBEQ, ACMPUBGE, ACMPUBGT, ACMPUBLE, ACMPUBLT, ACMPUBNE:
  3681  			opcode = op_CLGRJ
  3682  			opcode2 = op_CLGR
  3683  		}
  3684  		mask := c.branchMask(p)
  3685  		if int32(int16(v)) != v {
  3686  			zRRE(opcode2, uint32(p.From.Reg), uint32(p.Reg), asm)
  3687  			zRIL(_c, op_BRCL, mask, uint32(v-sizeRRE/2), asm)
  3688  		} else {
  3689  			zRIE(_b, opcode, uint32(p.From.Reg), uint32(p.Reg), uint32(v), 0, 0, mask, 0, asm)
  3690  		}
  3691  
  3692  	case 90: // compare and branch reg $constant
  3693  		var v int32
  3694  		if p.Pcond != nil {
  3695  			v = int32((p.Pcond.Pc - p.Pc) >> 1)
  3696  		}
  3697  		var opcode, opcode2 uint32
  3698  		switch p.As {
  3699  		case ACMPBEQ, ACMPBGE, ACMPBGT, ACMPBLE, ACMPBLT, ACMPBNE:
  3700  			opcode = op_CGIJ
  3701  			opcode2 = op_CGFI
  3702  		case ACMPUBEQ, ACMPUBGE, ACMPUBGT, ACMPUBLE, ACMPUBLT, ACMPUBNE:
  3703  			opcode = op_CLGIJ
  3704  			opcode2 = op_CLGFI
  3705  		}
  3706  		mask := c.branchMask(p)
  3707  		if int32(int16(v)) != v {
  3708  			zRIL(_a, opcode2, uint32(p.From.Reg), uint32(c.regoff(p.GetFrom3())), asm)
  3709  			zRIL(_c, op_BRCL, mask, uint32(v-sizeRIL/2), asm)
  3710  		} else {
  3711  			zRIE(_c, opcode, uint32(p.From.Reg), mask, uint32(v), 0, 0, 0, uint32(c.regoff(p.GetFrom3())), asm)
  3712  		}
  3713  
  3714  	case 91: // test under mask (immediate)
  3715  		var opcode uint32
  3716  		switch p.As {
  3717  		case ATMHH:
  3718  			opcode = op_TMHH
  3719  		case ATMHL:
  3720  			opcode = op_TMHL
  3721  		case ATMLH:
  3722  			opcode = op_TMLH
  3723  		case ATMLL:
  3724  			opcode = op_TMLL
  3725  		}
  3726  		zRI(opcode, uint32(p.From.Reg), uint32(c.vregoff(&p.To)), asm)
  3727  
  3728  	case 93: // GOT lookup
  3729  		v := c.vregoff(&p.To)
  3730  		if v != 0 {
  3731  			c.ctxt.Diag("invalid offset against GOT slot %v", p)
  3732  		}
  3733  		zRIL(_b, op_LGRL, uint32(p.To.Reg), 0, asm)
  3734  		rel := obj.Addrel(c.cursym)
  3735  		rel.Off = int32(c.pc + 2)
  3736  		rel.Siz = 4
  3737  		rel.Sym = p.From.Sym
  3738  		rel.Type = objabi.R_GOTPCREL
  3739  		rel.Add = 2 + int64(rel.Siz)
  3740  
  3741  	case 94: // TLS local exec model
  3742  		zRIL(_b, op_LARL, REGTMP, (sizeRIL+sizeRXY+sizeRI)>>1, asm)
  3743  		zRXY(op_LG, uint32(p.To.Reg), REGTMP, 0, 0, asm)
  3744  		zRI(op_BRC, 0xF, (sizeRI+8)>>1, asm)
  3745  		*asm = append(*asm, 0, 0, 0, 0, 0, 0, 0, 0)
  3746  		rel := obj.Addrel(c.cursym)
  3747  		rel.Off = int32(c.pc + sizeRIL + sizeRXY + sizeRI)
  3748  		rel.Siz = 8
  3749  		rel.Sym = p.From.Sym
  3750  		rel.Type = objabi.R_TLS_LE
  3751  		rel.Add = 0
  3752  
  3753  	case 95: // TLS initial exec model
  3754  		// Assembly                   | Relocation symbol    | Done Here?
  3755  		// --------------------------------------------------------------
  3756  		// ear  %r11, %a0             |                      |
  3757  		// sllg %r11, %r11, 32        |                      |
  3758  		// ear  %r11, %a1             |                      |
  3759  		// larl %r10, <var>@indntpoff | R_390_TLS_IEENT      | Y
  3760  		// lg   %r10, 0(%r10)         | R_390_TLS_LOAD (tag) | Y
  3761  		// la   %r10, 0(%r10, %r11)   |                      |
  3762  		// --------------------------------------------------------------
  3763  
  3764  		// R_390_TLS_IEENT
  3765  		zRIL(_b, op_LARL, REGTMP, 0, asm)
  3766  		ieent := obj.Addrel(c.cursym)
  3767  		ieent.Off = int32(c.pc + 2)
  3768  		ieent.Siz = 4
  3769  		ieent.Sym = p.From.Sym
  3770  		ieent.Type = objabi.R_TLS_IE
  3771  		ieent.Add = 2 + int64(ieent.Siz)
  3772  
  3773  		// R_390_TLS_LOAD
  3774  		zRXY(op_LGF, uint32(p.To.Reg), REGTMP, 0, 0, asm)
  3775  		// TODO(mundaym): add R_390_TLS_LOAD relocation here
  3776  		// not strictly required but might allow the linker to optimize
  3777  
  3778  	case 96: // clear macro
  3779  		length := c.vregoff(&p.From)
  3780  		offset := c.vregoff(&p.To)
  3781  		reg := p.To.Reg
  3782  		if reg == 0 {
  3783  			reg = o.param
  3784  		}
  3785  		if length <= 0 {
  3786  			c.ctxt.Diag("cannot CLEAR %d bytes, must be greater than 0", length)
  3787  		}
  3788  		for length > 0 {
  3789  			if offset < 0 || offset >= DISP12 {
  3790  				if offset >= -DISP20/2 && offset < DISP20/2 {
  3791  					zRXY(op_LAY, REGTMP, uint32(reg), 0, uint32(offset), asm)
  3792  				} else {
  3793  					if reg != REGTMP {
  3794  						zRRE(op_LGR, REGTMP, uint32(reg), asm)
  3795  					}
  3796  					zRIL(_a, op_AGFI, REGTMP, uint32(offset), asm)
  3797  				}
  3798  				reg = REGTMP
  3799  				offset = 0
  3800  			}
  3801  			size := length
  3802  			if size > 256 {
  3803  				size = 256
  3804  			}
  3805  
  3806  			switch size {
  3807  			case 1:
  3808  				zSI(op_MVI, 0, uint32(reg), uint32(offset), asm)
  3809  			case 2:
  3810  				zSIL(op_MVHHI, uint32(reg), uint32(offset), 0, asm)
  3811  			case 4:
  3812  				zSIL(op_MVHI, uint32(reg), uint32(offset), 0, asm)
  3813  			case 8:
  3814  				zSIL(op_MVGHI, uint32(reg), uint32(offset), 0, asm)
  3815  			default:
  3816  				zSS(_a, op_XC, uint32(size-1), 0, uint32(reg), uint32(offset), uint32(reg), uint32(offset), asm)
  3817  			}
  3818  
  3819  			length -= size
  3820  			offset += size
  3821  		}
  3822  
  3823  	case 97: // store multiple
  3824  		rstart := p.From.Reg
  3825  		rend := p.Reg
  3826  		offset := c.regoff(&p.To)
  3827  		reg := p.To.Reg
  3828  		if reg == 0 {
  3829  			reg = o.param
  3830  		}
  3831  		if offset < -DISP20/2 || offset >= DISP20/2 {
  3832  			if reg != REGTMP {
  3833  				zRRE(op_LGR, REGTMP, uint32(reg), asm)
  3834  			}
  3835  			zRIL(_a, op_AGFI, REGTMP, uint32(offset), asm)
  3836  			reg = REGTMP
  3837  			offset = 0
  3838  		}
  3839  		switch p.As {
  3840  		case ASTMY:
  3841  			if offset >= 0 && offset < DISP12 {
  3842  				zRS(op_STM, uint32(rstart), uint32(rend), uint32(reg), uint32(offset), asm)
  3843  			} else {
  3844  				zRSY(op_STMY, uint32(rstart), uint32(rend), uint32(reg), uint32(offset), asm)
  3845  			}
  3846  		case ASTMG:
  3847  			zRSY(op_STMG, uint32(rstart), uint32(rend), uint32(reg), uint32(offset), asm)
  3848  		}
  3849  
  3850  	case 98: // load multiple
  3851  		rstart := p.Reg
  3852  		rend := p.To.Reg
  3853  		offset := c.regoff(&p.From)
  3854  		reg := p.From.Reg
  3855  		if reg == 0 {
  3856  			reg = o.param
  3857  		}
  3858  		if offset < -DISP20/2 || offset >= DISP20/2 {
  3859  			if reg != REGTMP {
  3860  				zRRE(op_LGR, REGTMP, uint32(reg), asm)
  3861  			}
  3862  			zRIL(_a, op_AGFI, REGTMP, uint32(offset), asm)
  3863  			reg = REGTMP
  3864  			offset = 0
  3865  		}
  3866  		switch p.As {
  3867  		case ALMY:
  3868  			if offset >= 0 && offset < DISP12 {
  3869  				zRS(op_LM, uint32(rstart), uint32(rend), uint32(reg), uint32(offset), asm)
  3870  			} else {
  3871  				zRSY(op_LMY, uint32(rstart), uint32(rend), uint32(reg), uint32(offset), asm)
  3872  			}
  3873  		case ALMG:
  3874  			zRSY(op_LMG, uint32(rstart), uint32(rend), uint32(reg), uint32(offset), asm)
  3875  		}
  3876  
  3877  	case 99: // interlocked load and op
  3878  		if p.To.Index != 0 {
  3879  			c.ctxt.Diag("cannot use indexed address")
  3880  		}
  3881  		offset := c.regoff(&p.To)
  3882  		if offset < -DISP20/2 || offset >= DISP20/2 {
  3883  			c.ctxt.Diag("%v does not fit into 20-bit signed integer", offset)
  3884  		}
  3885  		var opcode uint32
  3886  		switch p.As {
  3887  		case ALAA:
  3888  			opcode = op_LAA
  3889  		case ALAAG:
  3890  			opcode = op_LAAG
  3891  		case ALAAL:
  3892  			opcode = op_LAAL
  3893  		case ALAALG:
  3894  			opcode = op_LAALG
  3895  		case ALAN:
  3896  			opcode = op_LAN
  3897  		case ALANG:
  3898  			opcode = op_LANG
  3899  		case ALAX:
  3900  			opcode = op_LAX
  3901  		case ALAXG:
  3902  			opcode = op_LAXG
  3903  		case ALAO:
  3904  			opcode = op_LAO
  3905  		case ALAOG:
  3906  			opcode = op_LAOG
  3907  		}
  3908  		zRSY(opcode, uint32(p.Reg), uint32(p.From.Reg), uint32(p.To.Reg), uint32(offset), asm)
  3909  
  3910  	case 100: // VRX STORE
  3911  		op, m3, _ := vop(p.As)
  3912  		v1 := p.From.Reg
  3913  		if p.Reg != 0 {
  3914  			m3 = uint32(c.vregoff(&p.From))
  3915  			v1 = p.Reg
  3916  		}
  3917  		b2 := p.To.Reg
  3918  		if b2 == 0 {
  3919  			b2 = o.param
  3920  		}
  3921  		d2 := uint32(c.vregoff(&p.To))
  3922  		zVRX(op, uint32(v1), uint32(p.To.Index), uint32(b2), d2, m3, asm)
  3923  
  3924  	case 101: // VRX LOAD
  3925  		op, m3, _ := vop(p.As)
  3926  		src := &p.From
  3927  		if p.GetFrom3() != nil {
  3928  			m3 = uint32(c.vregoff(&p.From))
  3929  			src = p.GetFrom3()
  3930  		}
  3931  		b2 := src.Reg
  3932  		if b2 == 0 {
  3933  			b2 = o.param
  3934  		}
  3935  		d2 := uint32(c.vregoff(src))
  3936  		zVRX(op, uint32(p.To.Reg), uint32(src.Index), uint32(b2), d2, m3, asm)
  3937  
  3938  	case 102: // VRV SCATTER
  3939  		op, _, _ := vop(p.As)
  3940  		m3 := uint32(c.vregoff(&p.From))
  3941  		b2 := p.To.Reg
  3942  		if b2 == 0 {
  3943  			b2 = o.param
  3944  		}
  3945  		d2 := uint32(c.vregoff(&p.To))
  3946  		zVRV(op, uint32(p.Reg), uint32(p.To.Index), uint32(b2), d2, m3, asm)
  3947  
  3948  	case 103: // VRV GATHER
  3949  		op, _, _ := vop(p.As)
  3950  		m3 := uint32(c.vregoff(&p.From))
  3951  		b2 := p.GetFrom3().Reg
  3952  		if b2 == 0 {
  3953  			b2 = o.param
  3954  		}
  3955  		d2 := uint32(c.vregoff(p.GetFrom3()))
  3956  		zVRV(op, uint32(p.To.Reg), uint32(p.GetFrom3().Index), uint32(b2), d2, m3, asm)
  3957  
  3958  	case 104: // VRS SHIFT/ROTATE and LOAD GR FROM VR ELEMENT
  3959  		op, m4, _ := vop(p.As)
  3960  		fr := p.Reg
  3961  		if fr == 0 {
  3962  			fr = p.To.Reg
  3963  		}
  3964  		bits := uint32(c.vregoff(&p.From))
  3965  		zVRS(op, uint32(p.To.Reg), uint32(fr), uint32(p.From.Reg), bits, m4, asm)
  3966  
  3967  	case 105: // VRS STORE MULTIPLE
  3968  		op, _, _ := vop(p.As)
  3969  		offset := uint32(c.vregoff(&p.To))
  3970  		reg := p.To.Reg
  3971  		if reg == 0 {
  3972  			reg = o.param
  3973  		}
  3974  		zVRS(op, uint32(p.From.Reg), uint32(p.Reg), uint32(reg), offset, 0, asm)
  3975  
  3976  	case 106: // VRS LOAD MULTIPLE
  3977  		op, _, _ := vop(p.As)
  3978  		offset := uint32(c.vregoff(&p.From))
  3979  		reg := p.From.Reg
  3980  		if reg == 0 {
  3981  			reg = o.param
  3982  		}
  3983  		zVRS(op, uint32(p.Reg), uint32(p.To.Reg), uint32(reg), offset, 0, asm)
  3984  
  3985  	case 107: // VRS STORE WITH LENGTH
  3986  		op, _, _ := vop(p.As)
  3987  		offset := uint32(c.vregoff(&p.To))
  3988  		reg := p.To.Reg
  3989  		if reg == 0 {
  3990  			reg = o.param
  3991  		}
  3992  		zVRS(op, uint32(p.Reg), uint32(p.From.Reg), uint32(reg), offset, 0, asm)
  3993  
  3994  	case 108: // VRS LOAD WITH LENGTH
  3995  		op, _, _ := vop(p.As)
  3996  		offset := uint32(c.vregoff(p.GetFrom3()))
  3997  		reg := p.GetFrom3().Reg
  3998  		if reg == 0 {
  3999  			reg = o.param
  4000  		}
  4001  		zVRS(op, uint32(p.To.Reg), uint32(p.From.Reg), uint32(reg), offset, 0, asm)
  4002  
  4003  	case 109: // VRI-a
  4004  		op, m3, _ := vop(p.As)
  4005  		i2 := uint32(c.vregoff(&p.From))
  4006  		if p.GetFrom3() != nil {
  4007  			m3 = uint32(c.vregoff(&p.From))
  4008  			i2 = uint32(c.vregoff(p.GetFrom3()))
  4009  		}
  4010  		switch p.As {
  4011  		case AVZERO:
  4012  			i2 = 0
  4013  		case AVONE:
  4014  			i2 = 0xffff
  4015  		}
  4016  		zVRIa(op, uint32(p.To.Reg), i2, m3, asm)
  4017  
  4018  	case 110:
  4019  		op, m4, _ := vop(p.As)
  4020  		i2 := uint32(c.vregoff(&p.From))
  4021  		i3 := uint32(c.vregoff(p.GetFrom3()))
  4022  		zVRIb(op, uint32(p.To.Reg), i2, i3, m4, asm)
  4023  
  4024  	case 111:
  4025  		op, m4, _ := vop(p.As)
  4026  		i2 := uint32(c.vregoff(&p.From))
  4027  		zVRIc(op, uint32(p.To.Reg), uint32(p.Reg), i2, m4, asm)
  4028  
  4029  	case 112:
  4030  		op, m5, _ := vop(p.As)
  4031  		i4 := uint32(c.vregoff(&p.From))
  4032  		zVRId(op, uint32(p.To.Reg), uint32(p.Reg), uint32(p.GetFrom3().Reg), i4, m5, asm)
  4033  
  4034  	case 113:
  4035  		op, m4, _ := vop(p.As)
  4036  		m5 := singleElementMask(p.As)
  4037  		i3 := uint32(c.vregoff(&p.From))
  4038  		zVRIe(op, uint32(p.To.Reg), uint32(p.Reg), i3, m5, m4, asm)
  4039  
  4040  	case 114: // VRR-a
  4041  		op, m3, m5 := vop(p.As)
  4042  		m4 := singleElementMask(p.As)
  4043  		zVRRa(op, uint32(p.To.Reg), uint32(p.From.Reg), m5, m4, m3, asm)
  4044  
  4045  	case 115: // VRR-a COMPARE
  4046  		op, m3, m5 := vop(p.As)
  4047  		m4 := singleElementMask(p.As)
  4048  		zVRRa(op, uint32(p.From.Reg), uint32(p.To.Reg), m5, m4, m3, asm)
  4049  
  4050  	case 117: // VRR-b
  4051  		op, m4, m5 := vop(p.As)
  4052  		zVRRb(op, uint32(p.To.Reg), uint32(p.From.Reg), uint32(p.Reg), m5, m4, asm)
  4053  
  4054  	case 118: // VRR-c
  4055  		op, m4, m6 := vop(p.As)
  4056  		m5 := singleElementMask(p.As)
  4057  		v3 := p.Reg
  4058  		if v3 == 0 {
  4059  			v3 = p.To.Reg
  4060  		}
  4061  		zVRRc(op, uint32(p.To.Reg), uint32(p.From.Reg), uint32(v3), m6, m5, m4, asm)
  4062  
  4063  	case 119: // VRR-c SHIFT/ROTATE/DIVIDE/SUB (rhs value on the left, like SLD, DIV etc.)
  4064  		op, m4, m6 := vop(p.As)
  4065  		m5 := singleElementMask(p.As)
  4066  		v2 := p.Reg
  4067  		if v2 == 0 {
  4068  			v2 = p.To.Reg
  4069  		}
  4070  		zVRRc(op, uint32(p.To.Reg), uint32(v2), uint32(p.From.Reg), m6, m5, m4, asm)
  4071  
  4072  	case 120: // VRR-d
  4073  		op, m6, _ := vop(p.As)
  4074  		m5 := singleElementMask(p.As)
  4075  		v1 := uint32(p.To.Reg)
  4076  		v2 := uint32(p.From.Reg)
  4077  		v3 := uint32(p.Reg)
  4078  		v4 := uint32(p.GetFrom3().Reg)
  4079  		zVRRd(op, v1, v2, v3, m6, m5, v4, asm)
  4080  
  4081  	case 121: // VRR-e
  4082  		op, m6, _ := vop(p.As)
  4083  		m5 := singleElementMask(p.As)
  4084  		v1 := uint32(p.To.Reg)
  4085  		v2 := uint32(p.From.Reg)
  4086  		v3 := uint32(p.Reg)
  4087  		v4 := uint32(p.GetFrom3().Reg)
  4088  		zVRRe(op, v1, v2, v3, m6, m5, v4, asm)
  4089  
  4090  	case 122: // VRR-f LOAD VRS FROM GRS DISJOINT
  4091  		op, _, _ := vop(p.As)
  4092  		zVRRf(op, uint32(p.To.Reg), uint32(p.From.Reg), uint32(p.Reg), asm)
  4093  
  4094  	case 123: // VPDI $m4, V2, V3, V1
  4095  		op, _, _ := vop(p.As)
  4096  		m4 := c.regoff(&p.From)
  4097  		zVRRc(op, uint32(p.To.Reg), uint32(p.Reg), uint32(p.GetFrom3().Reg), 0, 0, uint32(m4), asm)
  4098  	}
  4099  }
  4100  
  4101  func (c *ctxtz) vregoff(a *obj.Addr) int64 {
  4102  	c.instoffset = 0
  4103  	if a != nil {
  4104  		c.aclass(a)
  4105  	}
  4106  	return c.instoffset
  4107  }
  4108  
  4109  func (c *ctxtz) regoff(a *obj.Addr) int32 {
  4110  	return int32(c.vregoff(a))
  4111  }
  4112  
  4113  // zopload returns the RXY op for the given load
  4114  func (c *ctxtz) zopload(a obj.As) uint32 {
  4115  	switch a {
  4116  	// fixed point load
  4117  	case AMOVD:
  4118  		return op_LG
  4119  	case AMOVW:
  4120  		return op_LGF
  4121  	case AMOVWZ:
  4122  		return op_LLGF
  4123  	case AMOVH:
  4124  		return op_LGH
  4125  	case AMOVHZ:
  4126  		return op_LLGH
  4127  	case AMOVB:
  4128  		return op_LGB
  4129  	case AMOVBZ:
  4130  		return op_LLGC
  4131  
  4132  	// floating point load
  4133  	case AFMOVD:
  4134  		return op_LDY
  4135  	case AFMOVS:
  4136  		return op_LEY
  4137  
  4138  	// byte reversed load
  4139  	case AMOVDBR:
  4140  		return op_LRVG
  4141  	case AMOVWBR:
  4142  		return op_LRV
  4143  	case AMOVHBR:
  4144  		return op_LRVH
  4145  	}
  4146  
  4147  	c.ctxt.Diag("unknown store opcode %v", a)
  4148  	return 0
  4149  }
  4150  
  4151  // zopstore returns the RXY op for the given store
  4152  func (c *ctxtz) zopstore(a obj.As) uint32 {
  4153  	switch a {
  4154  	// fixed point store
  4155  	case AMOVD:
  4156  		return op_STG
  4157  	case AMOVW, AMOVWZ:
  4158  		return op_STY
  4159  	case AMOVH, AMOVHZ:
  4160  		return op_STHY
  4161  	case AMOVB, AMOVBZ:
  4162  		return op_STCY
  4163  
  4164  	// floating point store
  4165  	case AFMOVD:
  4166  		return op_STDY
  4167  	case AFMOVS:
  4168  		return op_STEY
  4169  
  4170  	// byte reversed store
  4171  	case AMOVDBR:
  4172  		return op_STRVG
  4173  	case AMOVWBR:
  4174  		return op_STRV
  4175  	case AMOVHBR:
  4176  		return op_STRVH
  4177  	}
  4178  
  4179  	c.ctxt.Diag("unknown store opcode %v", a)
  4180  	return 0
  4181  }
  4182  
  4183  // zoprre returns the RRE op for the given a
  4184  func (c *ctxtz) zoprre(a obj.As) uint32 {
  4185  	switch a {
  4186  	case ACMP:
  4187  		return op_CGR
  4188  	case ACMPU:
  4189  		return op_CLGR
  4190  	case AFCMPO: //ordered
  4191  		return op_KDBR
  4192  	case AFCMPU: //unordered
  4193  		return op_CDBR
  4194  	case ACEBR:
  4195  		return op_CEBR
  4196  	}
  4197  	c.ctxt.Diag("unknown rre opcode %v", a)
  4198  	return 0
  4199  }
  4200  
  4201  // zoprr returns the RR op for the given a
  4202  func (c *ctxtz) zoprr(a obj.As) uint32 {
  4203  	switch a {
  4204  	case ACMPW:
  4205  		return op_CR
  4206  	case ACMPWU:
  4207  		return op_CLR
  4208  	}
  4209  	c.ctxt.Diag("unknown rr opcode %v", a)
  4210  	return 0
  4211  }
  4212  
  4213  // zopril returns the RIL op for the given a
  4214  func (c *ctxtz) zopril(a obj.As) uint32 {
  4215  	switch a {
  4216  	case ACMP:
  4217  		return op_CGFI
  4218  	case ACMPU:
  4219  		return op_CLGFI
  4220  	case ACMPW:
  4221  		return op_CFI
  4222  	case ACMPWU:
  4223  		return op_CLFI
  4224  	}
  4225  	c.ctxt.Diag("unknown ril opcode %v", a)
  4226  	return 0
  4227  }
  4228  
  4229  // z instructions sizes
  4230  const (
  4231  	sizeE    = 2
  4232  	sizeI    = 2
  4233  	sizeIE   = 4
  4234  	sizeMII  = 6
  4235  	sizeRI   = 4
  4236  	sizeRI1  = 4
  4237  	sizeRI2  = 4
  4238  	sizeRI3  = 4
  4239  	sizeRIE  = 6
  4240  	sizeRIE1 = 6
  4241  	sizeRIE2 = 6
  4242  	sizeRIE3 = 6
  4243  	sizeRIE4 = 6
  4244  	sizeRIE5 = 6
  4245  	sizeRIE6 = 6
  4246  	sizeRIL  = 6
  4247  	sizeRIL1 = 6
  4248  	sizeRIL2 = 6
  4249  	sizeRIL3 = 6
  4250  	sizeRIS  = 6
  4251  	sizeRR   = 2
  4252  	sizeRRD  = 4
  4253  	sizeRRE  = 4
  4254  	sizeRRF  = 4
  4255  	sizeRRF1 = 4
  4256  	sizeRRF2 = 4
  4257  	sizeRRF3 = 4
  4258  	sizeRRF4 = 4
  4259  	sizeRRF5 = 4
  4260  	sizeRRR  = 2
  4261  	sizeRRS  = 6
  4262  	sizeRS   = 4
  4263  	sizeRS1  = 4
  4264  	sizeRS2  = 4
  4265  	sizeRSI  = 4
  4266  	sizeRSL  = 6
  4267  	sizeRSY  = 6
  4268  	sizeRSY1 = 6
  4269  	sizeRSY2 = 6
  4270  	sizeRX   = 4
  4271  	sizeRX1  = 4
  4272  	sizeRX2  = 4
  4273  	sizeRXE  = 6
  4274  	sizeRXF  = 6
  4275  	sizeRXY  = 6
  4276  	sizeRXY1 = 6
  4277  	sizeRXY2 = 6
  4278  	sizeS    = 4
  4279  	sizeSI   = 4
  4280  	sizeSIL  = 6
  4281  	sizeSIY  = 6
  4282  	sizeSMI  = 6
  4283  	sizeSS   = 6
  4284  	sizeSS1  = 6
  4285  	sizeSS2  = 6
  4286  	sizeSS3  = 6
  4287  	sizeSS4  = 6
  4288  	sizeSS5  = 6
  4289  	sizeSS6  = 6
  4290  	sizeSSE  = 6
  4291  	sizeSSF  = 6
  4292  )
  4293  
  4294  // instruction format variations
  4295  type form int
  4296  
  4297  const (
  4298  	_a form = iota
  4299  	_b
  4300  	_c
  4301  	_d
  4302  	_e
  4303  	_f
  4304  )
  4305  
  4306  func zE(op uint32, asm *[]byte) {
  4307  	*asm = append(*asm, uint8(op>>8), uint8(op))
  4308  }
  4309  
  4310  func zI(op, i1 uint32, asm *[]byte) {
  4311  	*asm = append(*asm, uint8(op>>8), uint8(i1))
  4312  }
  4313  
  4314  func zMII(op, m1, ri2, ri3 uint32, asm *[]byte) {
  4315  	*asm = append(*asm,
  4316  		uint8(op>>8),
  4317  		(uint8(m1)<<4)|uint8((ri2>>8)&0x0F),
  4318  		uint8(ri2),
  4319  		uint8(ri3>>16),
  4320  		uint8(ri3>>8),
  4321  		uint8(ri3))
  4322  }
  4323  
  4324  func zRI(op, r1_m1, i2_ri2 uint32, asm *[]byte) {
  4325  	*asm = append(*asm,
  4326  		uint8(op>>8),
  4327  		(uint8(r1_m1)<<4)|(uint8(op)&0x0F),
  4328  		uint8(i2_ri2>>8),
  4329  		uint8(i2_ri2))
  4330  }
  4331  
  4332  // Expected argument values for the instruction formats.
  4333  //
  4334  // Format    a1  a2   a3  a4  a5  a6  a7
  4335  // ------------------------------------
  4336  // a         r1,  0,  i2,  0,  0, m3,  0
  4337  // b         r1, r2, ri4,  0,  0, m3,  0
  4338  // c         r1, m3, ri4,  0,  0,  0, i2
  4339  // d         r1, r3,  i2,  0,  0,  0,  0
  4340  // e         r1, r3, ri2,  0,  0,  0,  0
  4341  // f         r1, r2,   0, i3, i4,  0, i5
  4342  // g         r1, m3,  i2,  0,  0,  0,  0
  4343  func zRIE(f form, op, r1, r2_m3_r3, i2_ri4_ri2, i3, i4, m3, i2_i5 uint32, asm *[]byte) {
  4344  	*asm = append(*asm, uint8(op>>8), uint8(r1)<<4|uint8(r2_m3_r3&0x0F))
  4345  
  4346  	switch f {
  4347  	default:
  4348  		*asm = append(*asm, uint8(i2_ri4_ri2>>8), uint8(i2_ri4_ri2))
  4349  	case _f:
  4350  		*asm = append(*asm, uint8(i3), uint8(i4))
  4351  	}
  4352  
  4353  	switch f {
  4354  	case _a, _b:
  4355  		*asm = append(*asm, uint8(m3)<<4)
  4356  	default:
  4357  		*asm = append(*asm, uint8(i2_i5))
  4358  	}
  4359  
  4360  	*asm = append(*asm, uint8(op))
  4361  }
  4362  
  4363  func zRIL(f form, op, r1_m1, i2_ri2 uint32, asm *[]byte) {
  4364  	if f == _a || f == _b {
  4365  		r1_m1 = r1_m1 - obj.RBaseS390X // this is a register base
  4366  	}
  4367  	*asm = append(*asm,
  4368  		uint8(op>>8),
  4369  		(uint8(r1_m1)<<4)|(uint8(op)&0x0F),
  4370  		uint8(i2_ri2>>24),
  4371  		uint8(i2_ri2>>16),
  4372  		uint8(i2_ri2>>8),
  4373  		uint8(i2_ri2))
  4374  }
  4375  
  4376  func zRIS(op, r1, m3, b4, d4, i2 uint32, asm *[]byte) {
  4377  	*asm = append(*asm,
  4378  		uint8(op>>8),
  4379  		(uint8(r1)<<4)|uint8(m3&0x0F),
  4380  		(uint8(b4)<<4)|(uint8(d4>>8)&0x0F),
  4381  		uint8(d4),
  4382  		uint8(i2),
  4383  		uint8(op))
  4384  }
  4385  
  4386  func zRR(op, r1, r2 uint32, asm *[]byte) {
  4387  	*asm = append(*asm, uint8(op>>8), (uint8(r1)<<4)|uint8(r2&0x0F))
  4388  }
  4389  
  4390  func zRRD(op, r1, r3, r2 uint32, asm *[]byte) {
  4391  	*asm = append(*asm,
  4392  		uint8(op>>8),
  4393  		uint8(op),
  4394  		uint8(r1)<<4,
  4395  		(uint8(r3)<<4)|uint8(r2&0x0F))
  4396  }
  4397  
  4398  func zRRE(op, r1, r2 uint32, asm *[]byte) {
  4399  	*asm = append(*asm,
  4400  		uint8(op>>8),
  4401  		uint8(op),
  4402  		0,
  4403  		(uint8(r1)<<4)|uint8(r2&0x0F))
  4404  }
  4405  
  4406  func zRRF(op, r3_m3, m4, r1, r2 uint32, asm *[]byte) {
  4407  	*asm = append(*asm,
  4408  		uint8(op>>8),
  4409  		uint8(op),
  4410  		(uint8(r3_m3)<<4)|uint8(m4&0x0F),
  4411  		(uint8(r1)<<4)|uint8(r2&0x0F))
  4412  }
  4413  
  4414  func zRRS(op, r1, r2, b4, d4, m3 uint32, asm *[]byte) {
  4415  	*asm = append(*asm,
  4416  		uint8(op>>8),
  4417  		(uint8(r1)<<4)|uint8(r2&0x0F),
  4418  		(uint8(b4)<<4)|uint8((d4>>8)&0x0F),
  4419  		uint8(d4),
  4420  		uint8(m3)<<4,
  4421  		uint8(op))
  4422  }
  4423  
  4424  func zRS(op, r1, r3_m3, b2, d2 uint32, asm *[]byte) {
  4425  	*asm = append(*asm,
  4426  		uint8(op>>8),
  4427  		(uint8(r1)<<4)|uint8(r3_m3&0x0F),
  4428  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4429  		uint8(d2))
  4430  }
  4431  
  4432  func zRSI(op, r1, r3, ri2 uint32, asm *[]byte) {
  4433  	*asm = append(*asm,
  4434  		uint8(op>>8),
  4435  		(uint8(r1)<<4)|uint8(r3&0x0F),
  4436  		uint8(ri2>>8),
  4437  		uint8(ri2))
  4438  }
  4439  
  4440  func zRSL(op, l1, b2, d2 uint32, asm *[]byte) {
  4441  	*asm = append(*asm,
  4442  		uint8(op>>8),
  4443  		uint8(l1),
  4444  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4445  		uint8(d2),
  4446  		uint8(op))
  4447  }
  4448  
  4449  func zRSY(op, r1, r3_m3, b2, d2 uint32, asm *[]byte) {
  4450  	dl2 := uint16(d2) & 0x0FFF
  4451  	*asm = append(*asm,
  4452  		uint8(op>>8),
  4453  		(uint8(r1)<<4)|uint8(r3_m3&0x0F),
  4454  		(uint8(b2)<<4)|(uint8(dl2>>8)&0x0F),
  4455  		uint8(dl2),
  4456  		uint8(d2>>12),
  4457  		uint8(op))
  4458  }
  4459  
  4460  func zRX(op, r1_m1, x2, b2, d2 uint32, asm *[]byte) {
  4461  	*asm = append(*asm,
  4462  		uint8(op>>8),
  4463  		(uint8(r1_m1)<<4)|uint8(x2&0x0F),
  4464  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4465  		uint8(d2))
  4466  }
  4467  
  4468  func zRXE(op, r1, x2, b2, d2, m3 uint32, asm *[]byte) {
  4469  	*asm = append(*asm,
  4470  		uint8(op>>8),
  4471  		(uint8(r1)<<4)|uint8(x2&0x0F),
  4472  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4473  		uint8(d2),
  4474  		uint8(m3)<<4,
  4475  		uint8(op))
  4476  }
  4477  
  4478  func zRXF(op, r3, x2, b2, d2, m1 uint32, asm *[]byte) {
  4479  	*asm = append(*asm,
  4480  		uint8(op>>8),
  4481  		(uint8(r3)<<4)|uint8(x2&0x0F),
  4482  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4483  		uint8(d2),
  4484  		uint8(m1)<<4,
  4485  		uint8(op))
  4486  }
  4487  
  4488  func zRXY(op, r1_m1, x2, b2, d2 uint32, asm *[]byte) {
  4489  	dl2 := uint16(d2) & 0x0FFF
  4490  	*asm = append(*asm,
  4491  		uint8(op>>8),
  4492  		(uint8(r1_m1)<<4)|uint8(x2&0x0F),
  4493  		(uint8(b2)<<4)|(uint8(dl2>>8)&0x0F),
  4494  		uint8(dl2),
  4495  		uint8(d2>>12),
  4496  		uint8(op))
  4497  }
  4498  
  4499  func zS(op, b2, d2 uint32, asm *[]byte) {
  4500  	*asm = append(*asm,
  4501  		uint8(op>>8),
  4502  		uint8(op),
  4503  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4504  		uint8(d2))
  4505  }
  4506  
  4507  func zSI(op, i2, b1, d1 uint32, asm *[]byte) {
  4508  	*asm = append(*asm,
  4509  		uint8(op>>8),
  4510  		uint8(i2),
  4511  		(uint8(b1)<<4)|uint8((d1>>8)&0x0F),
  4512  		uint8(d1))
  4513  }
  4514  
  4515  func zSIL(op, b1, d1, i2 uint32, asm *[]byte) {
  4516  	*asm = append(*asm,
  4517  		uint8(op>>8),
  4518  		uint8(op),
  4519  		(uint8(b1)<<4)|uint8((d1>>8)&0x0F),
  4520  		uint8(d1),
  4521  		uint8(i2>>8),
  4522  		uint8(i2))
  4523  }
  4524  
  4525  func zSIY(op, i2, b1, d1 uint32, asm *[]byte) {
  4526  	dl1 := uint16(d1) & 0x0FFF
  4527  	*asm = append(*asm,
  4528  		uint8(op>>8),
  4529  		uint8(i2),
  4530  		(uint8(b1)<<4)|(uint8(dl1>>8)&0x0F),
  4531  		uint8(dl1),
  4532  		uint8(d1>>12),
  4533  		uint8(op))
  4534  }
  4535  
  4536  func zSMI(op, m1, b3, d3, ri2 uint32, asm *[]byte) {
  4537  	*asm = append(*asm,
  4538  		uint8(op>>8),
  4539  		uint8(m1)<<4,
  4540  		(uint8(b3)<<4)|uint8((d3>>8)&0x0F),
  4541  		uint8(d3),
  4542  		uint8(ri2>>8),
  4543  		uint8(ri2))
  4544  }
  4545  
  4546  // Expected argument values for the instruction formats.
  4547  //
  4548  // Format    a1  a2  a3  a4  a5  a6
  4549  // -------------------------------
  4550  // a         l1,  0, b1, d1, b2, d2
  4551  // b         l1, l2, b1, d1, b2, d2
  4552  // c         l1, i3, b1, d1, b2, d2
  4553  // d         r1, r3, b1, d1, b2, d2
  4554  // e         r1, r3, b2, d2, b4, d4
  4555  // f          0, l2, b1, d1, b2, d2
  4556  func zSS(f form, op, l1_r1, l2_i3_r3, b1_b2, d1_d2, b2_b4, d2_d4 uint32, asm *[]byte) {
  4557  	*asm = append(*asm, uint8(op>>8))
  4558  
  4559  	switch f {
  4560  	case _a:
  4561  		*asm = append(*asm, uint8(l1_r1))
  4562  	case _b, _c, _d, _e:
  4563  		*asm = append(*asm, (uint8(l1_r1)<<4)|uint8(l2_i3_r3&0x0F))
  4564  	case _f:
  4565  		*asm = append(*asm, uint8(l2_i3_r3))
  4566  	}
  4567  
  4568  	*asm = append(*asm,
  4569  		(uint8(b1_b2)<<4)|uint8((d1_d2>>8)&0x0F),
  4570  		uint8(d1_d2),
  4571  		(uint8(b2_b4)<<4)|uint8((d2_d4>>8)&0x0F),
  4572  		uint8(d2_d4))
  4573  }
  4574  
  4575  func zSSE(op, b1, d1, b2, d2 uint32, asm *[]byte) {
  4576  	*asm = append(*asm,
  4577  		uint8(op>>8),
  4578  		uint8(op),
  4579  		(uint8(b1)<<4)|uint8((d1>>8)&0x0F),
  4580  		uint8(d1),
  4581  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4582  		uint8(d2))
  4583  }
  4584  
  4585  func zSSF(op, r3, b1, d1, b2, d2 uint32, asm *[]byte) {
  4586  	*asm = append(*asm,
  4587  		uint8(op>>8),
  4588  		(uint8(r3)<<4)|(uint8(op)&0x0F),
  4589  		(uint8(b1)<<4)|uint8((d1>>8)&0x0F),
  4590  		uint8(d1),
  4591  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4592  		uint8(d2))
  4593  }
  4594  
  4595  func rxb(va, vb, vc, vd uint32) uint8 {
  4596  	mask := uint8(0)
  4597  	if va >= REG_V16 && va <= REG_V31 {
  4598  		mask |= 0x8
  4599  	}
  4600  	if vb >= REG_V16 && vb <= REG_V31 {
  4601  		mask |= 0x4
  4602  	}
  4603  	if vc >= REG_V16 && vc <= REG_V31 {
  4604  		mask |= 0x2
  4605  	}
  4606  	if vd >= REG_V16 && vd <= REG_V31 {
  4607  		mask |= 0x1
  4608  	}
  4609  	return mask
  4610  }
  4611  
  4612  func zVRX(op, v1, x2, b2, d2, m3 uint32, asm *[]byte) {
  4613  	*asm = append(*asm,
  4614  		uint8(op>>8),
  4615  		(uint8(v1)<<4)|(uint8(x2)&0xf),
  4616  		(uint8(b2)<<4)|(uint8(d2>>8)&0xf),
  4617  		uint8(d2),
  4618  		(uint8(m3)<<4)|rxb(v1, 0, 0, 0),
  4619  		uint8(op))
  4620  }
  4621  
  4622  func zVRV(op, v1, v2, b2, d2, m3 uint32, asm *[]byte) {
  4623  	*asm = append(*asm,
  4624  		uint8(op>>8),
  4625  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  4626  		(uint8(b2)<<4)|(uint8(d2>>8)&0xf),
  4627  		uint8(d2),
  4628  		(uint8(m3)<<4)|rxb(v1, v2, 0, 0),
  4629  		uint8(op))
  4630  }
  4631  
  4632  func zVRS(op, v1, v3_r3, b2, d2, m4 uint32, asm *[]byte) {
  4633  	*asm = append(*asm,
  4634  		uint8(op>>8),
  4635  		(uint8(v1)<<4)|(uint8(v3_r3)&0xf),
  4636  		(uint8(b2)<<4)|(uint8(d2>>8)&0xf),
  4637  		uint8(d2),
  4638  		(uint8(m4)<<4)|rxb(v1, v3_r3, 0, 0),
  4639  		uint8(op))
  4640  }
  4641  
  4642  func zVRRa(op, v1, v2, m5, m4, m3 uint32, asm *[]byte) {
  4643  	*asm = append(*asm,
  4644  		uint8(op>>8),
  4645  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  4646  		0,
  4647  		(uint8(m5)<<4)|(uint8(m4)&0xf),
  4648  		(uint8(m3)<<4)|rxb(v1, v2, 0, 0),
  4649  		uint8(op))
  4650  }
  4651  
  4652  func zVRRb(op, v1, v2, v3, m5, m4 uint32, asm *[]byte) {
  4653  	*asm = append(*asm,
  4654  		uint8(op>>8),
  4655  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  4656  		uint8(v3)<<4,
  4657  		uint8(m5)<<4,
  4658  		(uint8(m4)<<4)|rxb(v1, v2, v3, 0),
  4659  		uint8(op))
  4660  }
  4661  
  4662  func zVRRc(op, v1, v2, v3, m6, m5, m4 uint32, asm *[]byte) {
  4663  	*asm = append(*asm,
  4664  		uint8(op>>8),
  4665  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  4666  		uint8(v3)<<4,
  4667  		(uint8(m6)<<4)|(uint8(m5)&0xf),
  4668  		(uint8(m4)<<4)|rxb(v1, v2, v3, 0),
  4669  		uint8(op))
  4670  }
  4671  
  4672  func zVRRd(op, v1, v2, v3, m5, m6, v4 uint32, asm *[]byte) {
  4673  	*asm = append(*asm,
  4674  		uint8(op>>8),
  4675  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  4676  		(uint8(v3)<<4)|(uint8(m5)&0xf),
  4677  		uint8(m6)<<4,
  4678  		(uint8(v4)<<4)|rxb(v1, v2, v3, v4),
  4679  		uint8(op))
  4680  }
  4681  
  4682  func zVRRe(op, v1, v2, v3, m6, m5, v4 uint32, asm *[]byte) {
  4683  	*asm = append(*asm,
  4684  		uint8(op>>8),
  4685  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  4686  		(uint8(v3)<<4)|(uint8(m6)&0xf),
  4687  		uint8(m5),
  4688  		(uint8(v4)<<4)|rxb(v1, v2, v3, v4),
  4689  		uint8(op))
  4690  }
  4691  
  4692  func zVRRf(op, v1, r2, r3 uint32, asm *[]byte) {
  4693  	*asm = append(*asm,
  4694  		uint8(op>>8),
  4695  		(uint8(v1)<<4)|(uint8(r2)&0xf),
  4696  		uint8(r3)<<4,
  4697  		0,
  4698  		rxb(v1, 0, 0, 0),
  4699  		uint8(op))
  4700  }
  4701  
  4702  func zVRIa(op, v1, i2, m3 uint32, asm *[]byte) {
  4703  	*asm = append(*asm,
  4704  		uint8(op>>8),
  4705  		uint8(v1)<<4,
  4706  		uint8(i2>>8),
  4707  		uint8(i2),
  4708  		(uint8(m3)<<4)|rxb(v1, 0, 0, 0),
  4709  		uint8(op))
  4710  }
  4711  
  4712  func zVRIb(op, v1, i2, i3, m4 uint32, asm *[]byte) {
  4713  	*asm = append(*asm,
  4714  		uint8(op>>8),
  4715  		uint8(v1)<<4,
  4716  		uint8(i2),
  4717  		uint8(i3),
  4718  		(uint8(m4)<<4)|rxb(v1, 0, 0, 0),
  4719  		uint8(op))
  4720  }
  4721  
  4722  func zVRIc(op, v1, v3, i2, m4 uint32, asm *[]byte) {
  4723  	*asm = append(*asm,
  4724  		uint8(op>>8),
  4725  		(uint8(v1)<<4)|(uint8(v3)&0xf),
  4726  		uint8(i2>>8),
  4727  		uint8(i2),
  4728  		(uint8(m4)<<4)|rxb(v1, v3, 0, 0),
  4729  		uint8(op))
  4730  }
  4731  
  4732  func zVRId(op, v1, v2, v3, i4, m5 uint32, asm *[]byte) {
  4733  	*asm = append(*asm,
  4734  		uint8(op>>8),
  4735  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  4736  		uint8(v3)<<4,
  4737  		uint8(i4),
  4738  		(uint8(m5)<<4)|rxb(v1, v2, v3, 0),
  4739  		uint8(op))
  4740  }
  4741  
  4742  func zVRIe(op, v1, v2, i3, m5, m4 uint32, asm *[]byte) {
  4743  	*asm = append(*asm,
  4744  		uint8(op>>8),
  4745  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  4746  		uint8(i3>>4),
  4747  		(uint8(i3)<<4)|(uint8(m5)&0xf),
  4748  		(uint8(m4)<<4)|rxb(v1, v2, 0, 0),
  4749  		uint8(op))
  4750  }