github.com/goproxy0/go@v0.0.0-20171111080102-49cc0c489d2c/src/crypto/tls/conn.go (about) 1 // Copyright 2010 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // TLS low level connection and record layer 6 7 package tls 8 9 import ( 10 "bytes" 11 "crypto/cipher" 12 "crypto/subtle" 13 "crypto/x509" 14 "errors" 15 "fmt" 16 "io" 17 "net" 18 "sync" 19 "sync/atomic" 20 "time" 21 ) 22 23 // A Conn represents a secured connection. 24 // It implements the net.Conn interface. 25 type Conn struct { 26 // constant 27 conn net.Conn 28 isClient bool 29 30 phase handshakeStatus // protected by in.Mutex 31 // handshakeConfirmed is an atomic bool for phase == handshakeConfirmed 32 handshakeConfirmed int32 33 // confirmMutex is held by any read operation before handshakeConfirmed 34 confirmMutex sync.Mutex 35 36 // constant after handshake; protected by handshakeMutex 37 handshakeMutex sync.Mutex // handshakeMutex < in.Mutex, out.Mutex, errMutex 38 handshakeErr error // error resulting from handshake 39 connID []byte // Random connection id 40 clientHello []byte // ClientHello packet contents 41 vers uint16 // TLS version 42 haveVers bool // version has been negotiated 43 config *Config // configuration passed to constructor 44 // handshakeComplete is true if the connection reached application data 45 // and it's equivalent to phase > handshakeRunning 46 handshakeComplete bool 47 // handshakes counts the number of handshakes performed on the 48 // connection so far. If renegotiation is disabled then this is either 49 // zero or one. 50 handshakes int 51 didResume bool // whether this connection was a session resumption 52 cipherSuite uint16 53 ocspResponse []byte // stapled OCSP response 54 scts [][]byte // signed certificate timestamps from server 55 peerCertificates []*x509.Certificate 56 // verifiedChains contains the certificate chains that we built, as 57 // opposed to the ones presented by the server. 58 verifiedChains [][]*x509.Certificate 59 // serverName contains the server name indicated by the client, if any. 60 serverName string 61 // secureRenegotiation is true if the server echoed the secure 62 // renegotiation extension. (This is meaningless as a server because 63 // renegotiation is not supported in that case.) 64 secureRenegotiation bool 65 66 // clientFinishedIsFirst is true if the client sent the first Finished 67 // message during the most recent handshake. This is recorded because 68 // the first transmitted Finished message is the tls-unique 69 // channel-binding value. 70 clientFinishedIsFirst bool 71 72 // closeNotifyErr is any error from sending the alertCloseNotify record. 73 closeNotifyErr error 74 // closeNotifySent is true if the Conn attempted to send an 75 // alertCloseNotify record. 76 closeNotifySent bool 77 78 // clientFinished and serverFinished contain the Finished message sent 79 // by the client or server in the most recent handshake. This is 80 // retained to support the renegotiation extension and tls-unique 81 // channel-binding. 82 clientFinished [12]byte 83 serverFinished [12]byte 84 85 clientProtocol string 86 clientProtocolFallback bool 87 88 // ticketMaxEarlyData is the maximum bytes of 0-RTT application data 89 // that the client is allowed to send on the ticket it used. 90 ticketMaxEarlyData int64 91 92 // input/output 93 in, out halfConn // in.Mutex < out.Mutex 94 rawInput *block // raw input, right off the wire 95 input *block // application data waiting to be read 96 hand bytes.Buffer // handshake data waiting to be read 97 buffering bool // whether records are buffered in sendBuf 98 sendBuf []byte // a buffer of records waiting to be sent 99 100 // bytesSent counts the bytes of application data sent. 101 // packetsSent counts packets. 102 bytesSent int64 103 packetsSent int64 104 105 // warnCount counts the number of consecutive warning alerts received 106 // by Conn.readRecord. Protected by in.Mutex. 107 warnCount int 108 109 // activeCall is an atomic int32; the low bit is whether Close has 110 // been called. the rest of the bits are the number of goroutines 111 // in Conn.Write. 112 activeCall int32 113 114 // TLS 1.3 needs the server state until it reaches the Client Finished 115 hs *serverHandshakeState 116 117 // earlyDataBytes is the number of bytes of early data received so 118 // far. Tracked to enforce max_early_data_size. 119 // We don't keep track of rejected 0-RTT data since there's no need 120 // to ever buffer it. in.Mutex. 121 earlyDataBytes int64 122 123 // binder is the value of the PSK binder that was validated to 124 // accept the 0-RTT data. Exposed as ConnectionState.Unique0RTTToken. 125 binder []byte 126 127 tmp [16]byte 128 } 129 130 type handshakeStatus int 131 132 const ( 133 handshakeRunning handshakeStatus = iota 134 discardingEarlyData 135 readingEarlyData 136 waitingClientFinished 137 readingClientFinished 138 handshakeConfirmed 139 ) 140 141 // Access to net.Conn methods. 142 // Cannot just embed net.Conn because that would 143 // export the struct field too. 144 145 // LocalAddr returns the local network address. 146 func (c *Conn) LocalAddr() net.Addr { 147 return c.conn.LocalAddr() 148 } 149 150 // RemoteAddr returns the remote network address. 151 func (c *Conn) RemoteAddr() net.Addr { 152 return c.conn.RemoteAddr() 153 } 154 155 // SetDeadline sets the read and write deadlines associated with the connection. 156 // A zero value for t means Read and Write will not time out. 157 // After a Write has timed out, the TLS state is corrupt and all future writes will return the same error. 158 func (c *Conn) SetDeadline(t time.Time) error { 159 return c.conn.SetDeadline(t) 160 } 161 162 // SetReadDeadline sets the read deadline on the underlying connection. 163 // A zero value for t means Read will not time out. 164 func (c *Conn) SetReadDeadline(t time.Time) error { 165 return c.conn.SetReadDeadline(t) 166 } 167 168 // SetWriteDeadline sets the write deadline on the underlying connection. 169 // A zero value for t means Write will not time out. 170 // After a Write has timed out, the TLS state is corrupt and all future writes will return the same error. 171 func (c *Conn) SetWriteDeadline(t time.Time) error { 172 return c.conn.SetWriteDeadline(t) 173 } 174 175 // A halfConn represents one direction of the record layer 176 // connection, either sending or receiving. 177 type halfConn struct { 178 sync.Mutex 179 180 err error // first permanent error 181 version uint16 // protocol version 182 cipher interface{} // cipher algorithm 183 mac macFunction 184 seq [8]byte // 64-bit sequence number 185 bfree *block // list of free blocks 186 additionalData [13]byte // to avoid allocs; interface method args escape 187 188 nextCipher interface{} // next encryption state 189 nextMac macFunction // next MAC algorithm 190 191 // used to save allocating a new buffer for each MAC. 192 inDigestBuf, outDigestBuf []byte 193 194 traceErr func(error) 195 } 196 197 func (hc *halfConn) setErrorLocked(err error) error { 198 hc.err = err 199 if hc.traceErr != nil { 200 hc.traceErr(err) 201 } 202 return err 203 } 204 205 // prepareCipherSpec sets the encryption and MAC states 206 // that a subsequent changeCipherSpec will use. 207 func (hc *halfConn) prepareCipherSpec(version uint16, cipher interface{}, mac macFunction) { 208 hc.version = version 209 hc.nextCipher = cipher 210 hc.nextMac = mac 211 } 212 213 // changeCipherSpec changes the encryption and MAC states 214 // to the ones previously passed to prepareCipherSpec. 215 func (hc *halfConn) changeCipherSpec() error { 216 if hc.nextCipher == nil { 217 return alertInternalError 218 } 219 hc.cipher = hc.nextCipher 220 hc.mac = hc.nextMac 221 hc.nextCipher = nil 222 hc.nextMac = nil 223 for i := range hc.seq { 224 hc.seq[i] = 0 225 } 226 return nil 227 } 228 229 func (hc *halfConn) setCipher(version uint16, cipher interface{}) { 230 hc.version = version 231 hc.cipher = cipher 232 for i := range hc.seq { 233 hc.seq[i] = 0 234 } 235 } 236 237 // incSeq increments the sequence number. 238 func (hc *halfConn) incSeq() { 239 for i := 7; i >= 0; i-- { 240 hc.seq[i]++ 241 if hc.seq[i] != 0 { 242 return 243 } 244 } 245 246 // Not allowed to let sequence number wrap. 247 // Instead, must renegotiate before it does. 248 // Not likely enough to bother. 249 panic("TLS: sequence number wraparound") 250 } 251 252 // extractPadding returns, in constant time, the length of the padding to remove 253 // from the end of payload. It also returns a byte which is equal to 255 if the 254 // padding was valid and 0 otherwise. See RFC 2246, section 6.2.3.2 255 func extractPadding(payload []byte) (toRemove int, good byte) { 256 if len(payload) < 1 { 257 return 0, 0 258 } 259 260 paddingLen := payload[len(payload)-1] 261 t := uint(len(payload)-1) - uint(paddingLen) 262 // if len(payload) >= (paddingLen - 1) then the MSB of t is zero 263 good = byte(int32(^t) >> 31) 264 265 // The maximum possible padding length plus the actual length field 266 toCheck := 256 267 // The length of the padded data is public, so we can use an if here 268 if toCheck > len(payload) { 269 toCheck = len(payload) 270 } 271 272 for i := 0; i < toCheck; i++ { 273 t := uint(paddingLen) - uint(i) 274 // if i <= paddingLen then the MSB of t is zero 275 mask := byte(int32(^t) >> 31) 276 b := payload[len(payload)-1-i] 277 good &^= mask&paddingLen ^ mask&b 278 } 279 280 // We AND together the bits of good and replicate the result across 281 // all the bits. 282 good &= good << 4 283 good &= good << 2 284 good &= good << 1 285 good = uint8(int8(good) >> 7) 286 287 toRemove = int(paddingLen) + 1 288 return 289 } 290 291 // extractPaddingSSL30 is a replacement for extractPadding in the case that the 292 // protocol version is SSLv3. In this version, the contents of the padding 293 // are random and cannot be checked. 294 func extractPaddingSSL30(payload []byte) (toRemove int, good byte) { 295 if len(payload) < 1 { 296 return 0, 0 297 } 298 299 paddingLen := int(payload[len(payload)-1]) + 1 300 if paddingLen > len(payload) { 301 return 0, 0 302 } 303 304 return paddingLen, 255 305 } 306 307 func roundUp(a, b int) int { 308 return a + (b-a%b)%b 309 } 310 311 // cbcMode is an interface for block ciphers using cipher block chaining. 312 type cbcMode interface { 313 cipher.BlockMode 314 SetIV([]byte) 315 } 316 317 // decrypt checks and strips the mac and decrypts the data in b. Returns a 318 // success boolean, the number of bytes to skip from the start of the record in 319 // order to get the application payload, and an optional alert value. 320 func (hc *halfConn) decrypt(b *block) (ok bool, prefixLen int, alertValue alert) { 321 // pull out payload 322 payload := b.data[recordHeaderLen:] 323 324 macSize := 0 325 if hc.mac != nil { 326 macSize = hc.mac.Size() 327 } 328 329 paddingGood := byte(255) 330 paddingLen := 0 331 explicitIVLen := 0 332 333 // decrypt 334 if hc.cipher != nil { 335 switch c := hc.cipher.(type) { 336 case cipher.Stream: 337 c.XORKeyStream(payload, payload) 338 case aead: 339 explicitIVLen = c.explicitNonceLen() 340 if len(payload) < explicitIVLen { 341 return false, 0, alertBadRecordMAC 342 } 343 nonce := payload[:explicitIVLen] 344 payload = payload[explicitIVLen:] 345 346 if len(nonce) == 0 { 347 nonce = hc.seq[:] 348 } 349 350 var additionalData []byte 351 if hc.version < VersionTLS13 { 352 copy(hc.additionalData[:], hc.seq[:]) 353 copy(hc.additionalData[8:], b.data[:3]) 354 n := len(payload) - c.Overhead() 355 hc.additionalData[11] = byte(n >> 8) 356 hc.additionalData[12] = byte(n) 357 additionalData = hc.additionalData[:] 358 } 359 var err error 360 payload, err = c.Open(payload[:0], nonce, payload, additionalData) 361 if err != nil { 362 return false, 0, alertBadRecordMAC 363 } 364 b.resize(recordHeaderLen + explicitIVLen + len(payload)) 365 case cbcMode: 366 blockSize := c.BlockSize() 367 if hc.version >= VersionTLS11 { 368 explicitIVLen = blockSize 369 } 370 371 if len(payload)%blockSize != 0 || len(payload) < roundUp(explicitIVLen+macSize+1, blockSize) { 372 return false, 0, alertBadRecordMAC 373 } 374 375 if explicitIVLen > 0 { 376 c.SetIV(payload[:explicitIVLen]) 377 payload = payload[explicitIVLen:] 378 } 379 c.CryptBlocks(payload, payload) 380 if hc.version == VersionSSL30 { 381 paddingLen, paddingGood = extractPaddingSSL30(payload) 382 } else { 383 paddingLen, paddingGood = extractPadding(payload) 384 385 // To protect against CBC padding oracles like Lucky13, the data 386 // past paddingLen (which is secret) is passed to the MAC 387 // function as extra data, to be fed into the HMAC after 388 // computing the digest. This makes the MAC constant time as 389 // long as the digest computation is constant time and does not 390 // affect the subsequent write. 391 } 392 default: 393 panic("unknown cipher type") 394 } 395 } 396 397 // check, strip mac 398 if hc.mac != nil { 399 if len(payload) < macSize { 400 return false, 0, alertBadRecordMAC 401 } 402 403 // strip mac off payload, b.data 404 n := len(payload) - macSize - paddingLen 405 n = subtle.ConstantTimeSelect(int(uint32(n)>>31), 0, n) // if n < 0 { n = 0 } 406 b.data[3] = byte(n >> 8) 407 b.data[4] = byte(n) 408 remoteMAC := payload[n : n+macSize] 409 localMAC := hc.mac.MAC(hc.inDigestBuf, hc.seq[0:], b.data[:recordHeaderLen], payload[:n], payload[n+macSize:]) 410 411 if subtle.ConstantTimeCompare(localMAC, remoteMAC) != 1 || paddingGood != 255 { 412 return false, 0, alertBadRecordMAC 413 } 414 hc.inDigestBuf = localMAC 415 416 b.resize(recordHeaderLen + explicitIVLen + n) 417 } 418 hc.incSeq() 419 420 return true, recordHeaderLen + explicitIVLen, 0 421 } 422 423 // padToBlockSize calculates the needed padding block, if any, for a payload. 424 // On exit, prefix aliases payload and extends to the end of the last full 425 // block of payload. finalBlock is a fresh slice which contains the contents of 426 // any suffix of payload as well as the needed padding to make finalBlock a 427 // full block. 428 func padToBlockSize(payload []byte, blockSize int) (prefix, finalBlock []byte) { 429 overrun := len(payload) % blockSize 430 paddingLen := blockSize - overrun 431 prefix = payload[:len(payload)-overrun] 432 finalBlock = make([]byte, blockSize) 433 copy(finalBlock, payload[len(payload)-overrun:]) 434 for i := overrun; i < blockSize; i++ { 435 finalBlock[i] = byte(paddingLen - 1) 436 } 437 return 438 } 439 440 // encrypt encrypts and macs the data in b. 441 func (hc *halfConn) encrypt(b *block, explicitIVLen int) (bool, alert) { 442 // mac 443 if hc.mac != nil { 444 mac := hc.mac.MAC(hc.outDigestBuf, hc.seq[0:], b.data[:recordHeaderLen], b.data[recordHeaderLen+explicitIVLen:], nil) 445 446 n := len(b.data) 447 b.resize(n + len(mac)) 448 copy(b.data[n:], mac) 449 hc.outDigestBuf = mac 450 } 451 452 payload := b.data[recordHeaderLen:] 453 454 // encrypt 455 if hc.cipher != nil { 456 switch c := hc.cipher.(type) { 457 case cipher.Stream: 458 c.XORKeyStream(payload, payload) 459 case aead: 460 payloadLen := len(b.data) - recordHeaderLen - explicitIVLen 461 overhead := c.Overhead() 462 if hc.version >= VersionTLS13 { 463 overhead++ 464 } 465 b.resize(len(b.data) + overhead) 466 467 nonce := b.data[recordHeaderLen : recordHeaderLen+explicitIVLen] 468 if len(nonce) == 0 { 469 nonce = hc.seq[:] 470 } 471 payload = b.data[recordHeaderLen+explicitIVLen:] 472 payload = payload[:payloadLen] 473 474 var additionalData []byte 475 if hc.version < VersionTLS13 { 476 copy(hc.additionalData[:], hc.seq[:]) 477 copy(hc.additionalData[8:], b.data[:3]) 478 hc.additionalData[11] = byte(payloadLen >> 8) 479 hc.additionalData[12] = byte(payloadLen) 480 additionalData = hc.additionalData[:] 481 } 482 483 if hc.version >= VersionTLS13 { 484 // opaque type 485 payload = payload[:len(payload)+1] 486 payload[len(payload)-1] = b.data[0] 487 b.data[0] = byte(recordTypeApplicationData) 488 } 489 490 c.Seal(payload[:0], nonce, payload, additionalData) 491 case cbcMode: 492 blockSize := c.BlockSize() 493 if explicitIVLen > 0 { 494 c.SetIV(payload[:explicitIVLen]) 495 payload = payload[explicitIVLen:] 496 } 497 prefix, finalBlock := padToBlockSize(payload, blockSize) 498 b.resize(recordHeaderLen + explicitIVLen + len(prefix) + len(finalBlock)) 499 c.CryptBlocks(b.data[recordHeaderLen+explicitIVLen:], prefix) 500 c.CryptBlocks(b.data[recordHeaderLen+explicitIVLen+len(prefix):], finalBlock) 501 default: 502 panic("unknown cipher type") 503 } 504 } 505 506 // update length to include MAC and any block padding needed. 507 n := len(b.data) - recordHeaderLen 508 b.data[3] = byte(n >> 8) 509 b.data[4] = byte(n) 510 hc.incSeq() 511 512 return true, 0 513 } 514 515 // A block is a simple data buffer. 516 type block struct { 517 data []byte 518 off int // index for Read 519 link *block 520 } 521 522 // resize resizes block to be n bytes, growing if necessary. 523 func (b *block) resize(n int) { 524 if n > cap(b.data) { 525 b.reserve(n) 526 } 527 b.data = b.data[0:n] 528 } 529 530 // reserve makes sure that block contains a capacity of at least n bytes. 531 func (b *block) reserve(n int) { 532 if cap(b.data) >= n { 533 return 534 } 535 m := cap(b.data) 536 if m == 0 { 537 m = 1024 538 } 539 for m < n { 540 m *= 2 541 } 542 data := make([]byte, len(b.data), m) 543 copy(data, b.data) 544 b.data = data 545 } 546 547 // readFromUntil reads from r into b until b contains at least n bytes 548 // or else returns an error. 549 func (b *block) readFromUntil(r io.Reader, n int) error { 550 // quick case 551 if len(b.data) >= n { 552 return nil 553 } 554 555 // read until have enough. 556 b.reserve(n) 557 for { 558 m, err := r.Read(b.data[len(b.data):cap(b.data)]) 559 b.data = b.data[0 : len(b.data)+m] 560 if len(b.data) >= n { 561 // TODO(bradfitz,agl): slightly suspicious 562 // that we're throwing away r.Read's err here. 563 break 564 } 565 if err != nil { 566 return err 567 } 568 } 569 return nil 570 } 571 572 func (b *block) Read(p []byte) (n int, err error) { 573 n = copy(p, b.data[b.off:]) 574 b.off += n 575 if b.off >= len(b.data) { 576 err = io.EOF 577 } 578 return 579 } 580 581 // newBlock allocates a new block, from hc's free list if possible. 582 func (hc *halfConn) newBlock() *block { 583 b := hc.bfree 584 if b == nil { 585 return new(block) 586 } 587 hc.bfree = b.link 588 b.link = nil 589 b.resize(0) 590 return b 591 } 592 593 // freeBlock returns a block to hc's free list. 594 // The protocol is such that each side only has a block or two on 595 // its free list at a time, so there's no need to worry about 596 // trimming the list, etc. 597 func (hc *halfConn) freeBlock(b *block) { 598 b.link = hc.bfree 599 hc.bfree = b 600 } 601 602 // splitBlock splits a block after the first n bytes, 603 // returning a block with those n bytes and a 604 // block with the remainder. the latter may be nil. 605 func (hc *halfConn) splitBlock(b *block, n int) (*block, *block) { 606 if len(b.data) <= n { 607 return b, nil 608 } 609 bb := hc.newBlock() 610 bb.resize(len(b.data) - n) 611 copy(bb.data, b.data[n:]) 612 b.data = b.data[0:n] 613 return b, bb 614 } 615 616 // RecordHeaderError results when a TLS record header is invalid. 617 type RecordHeaderError struct { 618 // Msg contains a human readable string that describes the error. 619 Msg string 620 // RecordHeader contains the five bytes of TLS record header that 621 // triggered the error. 622 RecordHeader [5]byte 623 } 624 625 func (e RecordHeaderError) Error() string { return "tls: " + e.Msg } 626 627 func (c *Conn) newRecordHeaderError(msg string) (err RecordHeaderError) { 628 err.Msg = msg 629 copy(err.RecordHeader[:], c.rawInput.data) 630 return err 631 } 632 633 // readRecord reads the next TLS record from the connection 634 // and updates the record layer state. 635 // c.in.Mutex <= L; c.input == nil. 636 // c.input can still be nil after a call, retry if so. 637 func (c *Conn) readRecord(want recordType) error { 638 // Caller must be in sync with connection: 639 // handshake data if handshake not yet completed, 640 // else application data. 641 switch want { 642 default: 643 c.sendAlert(alertInternalError) 644 return c.in.setErrorLocked(errors.New("tls: unknown record type requested")) 645 case recordTypeHandshake, recordTypeChangeCipherSpec: 646 if c.phase != handshakeRunning && c.phase != readingClientFinished { 647 c.sendAlert(alertInternalError) 648 return c.in.setErrorLocked(errors.New("tls: handshake or ChangeCipherSpec requested while not in handshake")) 649 } 650 case recordTypeApplicationData: 651 if c.phase == handshakeRunning || c.phase == readingClientFinished { 652 c.sendAlert(alertInternalError) 653 return c.in.setErrorLocked(errors.New("tls: application data record requested while in handshake")) 654 } 655 } 656 657 Again: 658 if c.rawInput == nil { 659 c.rawInput = c.in.newBlock() 660 } 661 b := c.rawInput 662 663 // Read header, payload. 664 if err := b.readFromUntil(c.conn, recordHeaderLen); err != nil { 665 // RFC suggests that EOF without an alertCloseNotify is 666 // an error, but popular web sites seem to do this, 667 // so we can't make it an error. 668 // if err == io.EOF { 669 // err = io.ErrUnexpectedEOF 670 // } 671 if e, ok := err.(net.Error); !ok || !e.Temporary() { 672 c.in.setErrorLocked(err) 673 } 674 return err 675 } 676 typ := recordType(b.data[0]) 677 678 // No valid TLS record has a type of 0x80, however SSLv2 handshakes 679 // start with a uint16 length where the MSB is set and the first record 680 // is always < 256 bytes long. Therefore typ == 0x80 strongly suggests 681 // an SSLv2 client. 682 if want == recordTypeHandshake && typ == 0x80 { 683 c.sendAlert(alertProtocolVersion) 684 return c.in.setErrorLocked(c.newRecordHeaderError("unsupported SSLv2 handshake received")) 685 } 686 687 vers := uint16(b.data[1])<<8 | uint16(b.data[2]) 688 n := int(b.data[3])<<8 | int(b.data[4]) 689 if n > maxCiphertext { 690 c.sendAlert(alertRecordOverflow) 691 msg := fmt.Sprintf("oversized record received with length %d", n) 692 return c.in.setErrorLocked(c.newRecordHeaderError(msg)) 693 } 694 if !c.haveVers { 695 // First message, be extra suspicious: this might not be a TLS 696 // client. Bail out before reading a full 'body', if possible. 697 // The current max version is 3.3 so if the version is >= 16.0, 698 // it's probably not real. 699 if (typ != recordTypeAlert && typ != want) || vers >= 0x1000 { 700 c.sendAlert(alertUnexpectedMessage) 701 return c.in.setErrorLocked(c.newRecordHeaderError("first record does not look like a TLS handshake")) 702 } 703 } 704 if err := b.readFromUntil(c.conn, recordHeaderLen+n); err != nil { 705 if err == io.EOF { 706 err = io.ErrUnexpectedEOF 707 } 708 if e, ok := err.(net.Error); !ok || !e.Temporary() { 709 c.in.setErrorLocked(err) 710 } 711 return err 712 } 713 714 // Process message. 715 b, c.rawInput = c.in.splitBlock(b, recordHeaderLen+n) 716 peekedAlert := peekAlert(b) // peek at a possible alert before decryption 717 ok, off, alertValue := c.in.decrypt(b) 718 switch { 719 case !ok && c.phase == discardingEarlyData: 720 // If the client said that it's sending early data and we did not 721 // accept it, we are expected to fail decryption. 722 c.in.freeBlock(b) 723 return nil 724 case ok && c.phase == discardingEarlyData: 725 c.phase = waitingClientFinished 726 case !ok: 727 c.in.traceErr, c.out.traceErr = nil, nil // not that interesting 728 c.in.freeBlock(b) 729 err := c.sendAlert(alertValue) 730 // If decryption failed because the message is an unencrypted 731 // alert, return a more meaningful error message 732 if alertValue == alertBadRecordMAC && peekedAlert != nil { 733 err = peekedAlert 734 } 735 return c.in.setErrorLocked(err) 736 } 737 b.off = off 738 data := b.data[b.off:] 739 if len(data) > maxPlaintext { 740 c.in.freeBlock(b) 741 return c.in.setErrorLocked(c.sendAlert(alertRecordOverflow)) 742 } 743 744 // After checking the plaintext length, remove 1.3 padding and 745 // extract the real content type. 746 // See https://tools.ietf.org/html/draft-ietf-tls-tls13-18#section-5.4. 747 if c.vers >= VersionTLS13 { 748 i := len(data) - 1 749 for i >= 0 { 750 if data[i] != 0 { 751 break 752 } 753 i-- 754 } 755 if i < 0 { 756 c.in.freeBlock(b) 757 return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) 758 } 759 typ = recordType(data[i]) 760 data = data[:i] 761 b.resize(b.off + i) // shrinks, guaranteed not to reallocate 762 } 763 764 if typ != recordTypeAlert && len(data) > 0 { 765 // this is a valid non-alert message: reset the count of alerts 766 c.warnCount = 0 767 } 768 769 switch typ { 770 default: 771 c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) 772 773 case recordTypeAlert: 774 if len(data) != 2 { 775 c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) 776 break 777 } 778 if alert(data[1]) == alertCloseNotify { 779 c.in.setErrorLocked(io.EOF) 780 break 781 } 782 if alert(data[1]) == alertEndOfEarlyData { 783 c.handleEndOfEarlyData() 784 break 785 } 786 switch data[0] { 787 case alertLevelWarning: 788 // drop on the floor 789 c.in.freeBlock(b) 790 791 c.warnCount++ 792 if c.warnCount > maxWarnAlertCount { 793 c.sendAlert(alertUnexpectedMessage) 794 return c.in.setErrorLocked(errors.New("tls: too many warn alerts")) 795 } 796 797 goto Again 798 case alertLevelError: 799 c.in.setErrorLocked(&net.OpError{Op: "remote error", Err: alert(data[1])}) 800 default: 801 c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) 802 } 803 804 case recordTypeChangeCipherSpec: 805 if typ != want || len(data) != 1 || data[0] != 1 || c.vers >= VersionTLS13 { 806 c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) 807 break 808 } 809 // Handshake messages are not allowed to fragment across the CCS 810 if c.hand.Len() > 0 { 811 c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) 812 break 813 } 814 err := c.in.changeCipherSpec() 815 if err != nil { 816 c.in.setErrorLocked(c.sendAlert(err.(alert))) 817 } 818 819 case recordTypeApplicationData: 820 if typ != want || c.phase == waitingClientFinished { 821 c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) 822 break 823 } 824 if c.phase == readingEarlyData { 825 c.earlyDataBytes += int64(len(b.data) - b.off) 826 if c.earlyDataBytes > c.ticketMaxEarlyData { 827 return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) 828 } 829 } 830 c.input = b 831 b = nil 832 833 case recordTypeHandshake: 834 // TODO(rsc): Should at least pick off connection close. 835 if typ != want && !(c.isClient && c.config.Renegotiation != RenegotiateNever) && 836 c.phase != waitingClientFinished { 837 return c.in.setErrorLocked(c.sendAlert(alertNoRenegotiation)) 838 } 839 c.hand.Write(data) 840 if typ != want && c.phase == waitingClientFinished { 841 if err := c.hs.readClientFinished13(); err != nil { 842 c.in.setErrorLocked(err) 843 break 844 } 845 } 846 } 847 848 if b != nil { 849 c.in.freeBlock(b) 850 } 851 return c.in.err 852 } 853 854 // peekAlert looks at a message to spot an unencrypted alert. It must be 855 // called before decryption to avoid a side channel, and its result must 856 // only be used if decryption fails, to avoid false positives. 857 func peekAlert(b *block) error { 858 if len(b.data) < 7 { 859 return nil 860 } 861 if recordType(b.data[0]) != recordTypeAlert { 862 return nil 863 } 864 return &net.OpError{Op: "remote error", Err: alert(b.data[6])} 865 } 866 867 // sendAlert sends a TLS alert message. 868 // c.out.Mutex <= L. 869 func (c *Conn) sendAlertLocked(err alert) error { 870 switch err { 871 case alertNoRenegotiation, alertCloseNotify: 872 c.tmp[0] = alertLevelWarning 873 default: 874 c.tmp[0] = alertLevelError 875 } 876 c.tmp[1] = byte(err) 877 878 _, writeErr := c.writeRecordLocked(recordTypeAlert, c.tmp[0:2]) 879 if err == alertCloseNotify { 880 // closeNotify is a special case in that it isn't an error. 881 return writeErr 882 } 883 884 return c.out.setErrorLocked(&net.OpError{Op: "local error", Err: err}) 885 } 886 887 // sendAlert sends a TLS alert message. 888 // L < c.out.Mutex. 889 func (c *Conn) sendAlert(err alert) error { 890 c.out.Lock() 891 defer c.out.Unlock() 892 return c.sendAlertLocked(err) 893 } 894 895 const ( 896 // tcpMSSEstimate is a conservative estimate of the TCP maximum segment 897 // size (MSS). A constant is used, rather than querying the kernel for 898 // the actual MSS, to avoid complexity. The value here is the IPv6 899 // minimum MTU (1280 bytes) minus the overhead of an IPv6 header (40 900 // bytes) and a TCP header with timestamps (32 bytes). 901 tcpMSSEstimate = 1208 902 903 // recordSizeBoostThreshold is the number of bytes of application data 904 // sent after which the TLS record size will be increased to the 905 // maximum. 906 recordSizeBoostThreshold = 128 * 1024 907 ) 908 909 // maxPayloadSizeForWrite returns the maximum TLS payload size to use for the 910 // next application data record. There is the following trade-off: 911 // 912 // - For latency-sensitive applications, such as web browsing, each TLS 913 // record should fit in one TCP segment. 914 // - For throughput-sensitive applications, such as large file transfers, 915 // larger TLS records better amortize framing and encryption overheads. 916 // 917 // A simple heuristic that works well in practice is to use small records for 918 // the first 1MB of data, then use larger records for subsequent data, and 919 // reset back to smaller records after the connection becomes idle. See "High 920 // Performance Web Networking", Chapter 4, or: 921 // https://www.igvita.com/2013/10/24/optimizing-tls-record-size-and-buffering-latency/ 922 // 923 // In the interests of simplicity and determinism, this code does not attempt 924 // to reset the record size once the connection is idle, however. 925 // 926 // c.out.Mutex <= L. 927 func (c *Conn) maxPayloadSizeForWrite(typ recordType, explicitIVLen int) int { 928 if c.config.DynamicRecordSizingDisabled || typ != recordTypeApplicationData { 929 return maxPlaintext 930 } 931 932 if c.bytesSent >= recordSizeBoostThreshold { 933 return maxPlaintext 934 } 935 936 // Subtract TLS overheads to get the maximum payload size. 937 macSize := 0 938 if c.out.mac != nil { 939 macSize = c.out.mac.Size() 940 } 941 942 payloadBytes := tcpMSSEstimate - recordHeaderLen - explicitIVLen 943 if c.out.cipher != nil { 944 switch ciph := c.out.cipher.(type) { 945 case cipher.Stream: 946 payloadBytes -= macSize 947 case cipher.AEAD: 948 payloadBytes -= ciph.Overhead() 949 if c.vers >= VersionTLS13 { 950 payloadBytes -= 1 // ContentType 951 } 952 case cbcMode: 953 blockSize := ciph.BlockSize() 954 // The payload must fit in a multiple of blockSize, with 955 // room for at least one padding byte. 956 payloadBytes = (payloadBytes & ^(blockSize - 1)) - 1 957 // The MAC is appended before padding so affects the 958 // payload size directly. 959 payloadBytes -= macSize 960 default: 961 panic("unknown cipher type") 962 } 963 } 964 965 // Allow packet growth in arithmetic progression up to max. 966 pkt := c.packetsSent 967 c.packetsSent++ 968 if pkt > 1000 { 969 return maxPlaintext // avoid overflow in multiply below 970 } 971 972 n := payloadBytes * int(pkt+1) 973 if n > maxPlaintext { 974 n = maxPlaintext 975 } 976 return n 977 } 978 979 // c.out.Mutex <= L. 980 func (c *Conn) write(data []byte) (int, error) { 981 if c.buffering { 982 c.sendBuf = append(c.sendBuf, data...) 983 return len(data), nil 984 } 985 986 n, err := c.conn.Write(data) 987 c.bytesSent += int64(n) 988 return n, err 989 } 990 991 func (c *Conn) flush() (int, error) { 992 if len(c.sendBuf) == 0 { 993 return 0, nil 994 } 995 996 n, err := c.conn.Write(c.sendBuf) 997 c.bytesSent += int64(n) 998 c.sendBuf = nil 999 c.buffering = false 1000 return n, err 1001 } 1002 1003 // writeRecordLocked writes a TLS record with the given type and payload to the 1004 // connection and updates the record layer state. 1005 // c.out.Mutex <= L. 1006 func (c *Conn) writeRecordLocked(typ recordType, data []byte) (int, error) { 1007 b := c.out.newBlock() 1008 defer c.out.freeBlock(b) 1009 1010 var n int 1011 for len(data) > 0 { 1012 explicitIVLen := 0 1013 explicitIVIsSeq := false 1014 1015 var cbc cbcMode 1016 if c.out.version >= VersionTLS11 { 1017 var ok bool 1018 if cbc, ok = c.out.cipher.(cbcMode); ok { 1019 explicitIVLen = cbc.BlockSize() 1020 } 1021 } 1022 if explicitIVLen == 0 { 1023 if c, ok := c.out.cipher.(aead); ok { 1024 explicitIVLen = c.explicitNonceLen() 1025 1026 // The AES-GCM construction in TLS has an 1027 // explicit nonce so that the nonce can be 1028 // random. However, the nonce is only 8 bytes 1029 // which is too small for a secure, random 1030 // nonce. Therefore we use the sequence number 1031 // as the nonce. 1032 explicitIVIsSeq = explicitIVLen > 0 1033 } 1034 } 1035 m := len(data) 1036 if maxPayload := c.maxPayloadSizeForWrite(typ, explicitIVLen); m > maxPayload { 1037 m = maxPayload 1038 } 1039 b.resize(recordHeaderLen + explicitIVLen + m) 1040 b.data[0] = byte(typ) 1041 vers := c.vers 1042 if vers == 0 { 1043 // Some TLS servers fail if the record version is 1044 // greater than TLS 1.0 for the initial ClientHello. 1045 vers = VersionTLS10 1046 } 1047 if c.vers >= VersionTLS13 { 1048 // TLS 1.3 froze the record layer version at { 3, 1 }. 1049 // See https://tools.ietf.org/html/draft-ietf-tls-tls13-18#section-5.1. 1050 vers = VersionTLS10 1051 } 1052 b.data[1] = byte(vers >> 8) 1053 b.data[2] = byte(vers) 1054 b.data[3] = byte(m >> 8) 1055 b.data[4] = byte(m) 1056 if explicitIVLen > 0 { 1057 explicitIV := b.data[recordHeaderLen : recordHeaderLen+explicitIVLen] 1058 if explicitIVIsSeq { 1059 copy(explicitIV, c.out.seq[:]) 1060 } else { 1061 if _, err := io.ReadFull(c.config.rand(), explicitIV); err != nil { 1062 return n, err 1063 } 1064 } 1065 } 1066 copy(b.data[recordHeaderLen+explicitIVLen:], data) 1067 c.out.encrypt(b, explicitIVLen) 1068 if _, err := c.write(b.data); err != nil { 1069 return n, err 1070 } 1071 n += m 1072 data = data[m:] 1073 } 1074 1075 if typ == recordTypeChangeCipherSpec { 1076 if err := c.out.changeCipherSpec(); err != nil { 1077 return n, c.sendAlertLocked(err.(alert)) 1078 } 1079 } 1080 1081 return n, nil 1082 } 1083 1084 // writeRecord writes a TLS record with the given type and payload to the 1085 // connection and updates the record layer state. 1086 // L < c.out.Mutex. 1087 func (c *Conn) writeRecord(typ recordType, data []byte) (int, error) { 1088 c.out.Lock() 1089 defer c.out.Unlock() 1090 1091 return c.writeRecordLocked(typ, data) 1092 } 1093 1094 // readHandshake reads the next handshake message from 1095 // the record layer. 1096 // c.in.Mutex < L; c.out.Mutex < L. 1097 func (c *Conn) readHandshake() (interface{}, error) { 1098 for c.hand.Len() < 4 { 1099 if err := c.in.err; err != nil { 1100 return nil, err 1101 } 1102 if err := c.readRecord(recordTypeHandshake); err != nil { 1103 return nil, err 1104 } 1105 } 1106 1107 data := c.hand.Bytes() 1108 n := int(data[1])<<16 | int(data[2])<<8 | int(data[3]) 1109 if n > maxHandshake { 1110 c.sendAlertLocked(alertInternalError) 1111 return nil, c.in.setErrorLocked(fmt.Errorf("tls: handshake message of length %d bytes exceeds maximum of %d bytes", n, maxHandshake)) 1112 } 1113 for c.hand.Len() < 4+n { 1114 if err := c.in.err; err != nil { 1115 return nil, err 1116 } 1117 if err := c.readRecord(recordTypeHandshake); err != nil { 1118 return nil, err 1119 } 1120 } 1121 data = c.hand.Next(4 + n) 1122 var m handshakeMessage 1123 switch data[0] { 1124 case typeHelloRequest: 1125 m = new(helloRequestMsg) 1126 case typeClientHello: 1127 m = new(clientHelloMsg) 1128 case typeServerHello: 1129 if c.vers >= VersionTLS13 { 1130 m = new(serverHelloMsg13) 1131 } else { 1132 m = new(serverHelloMsg) 1133 } 1134 case typeEncryptedExtensions: 1135 m = new(encryptedExtensionsMsg) 1136 case typeNewSessionTicket: 1137 if c.vers >= VersionTLS13 { 1138 m = new(newSessionTicketMsg13) 1139 } else { 1140 m = new(newSessionTicketMsg) 1141 } 1142 case typeCertificate: 1143 if c.vers >= VersionTLS13 { 1144 m = new(certificateMsg13) 1145 } else { 1146 m = new(certificateMsg) 1147 } 1148 case typeCertificateRequest: 1149 m = &certificateRequestMsg{ 1150 hasSignatureAndHash: c.vers >= VersionTLS12, 1151 } 1152 case typeCertificateStatus: 1153 m = new(certificateStatusMsg) 1154 case typeServerKeyExchange: 1155 m = new(serverKeyExchangeMsg) 1156 case typeServerHelloDone: 1157 m = new(serverHelloDoneMsg) 1158 case typeClientKeyExchange: 1159 m = new(clientKeyExchangeMsg) 1160 case typeCertificateVerify: 1161 m = &certificateVerifyMsg{ 1162 hasSignatureAndHash: c.vers >= VersionTLS12, 1163 } 1164 case typeNextProtocol: 1165 m = new(nextProtoMsg) 1166 case typeFinished: 1167 m = new(finishedMsg) 1168 default: 1169 return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) 1170 } 1171 1172 // The handshake message unmarshalers 1173 // expect to be able to keep references to data, 1174 // so pass in a fresh copy that won't be overwritten. 1175 data = append([]byte(nil), data...) 1176 1177 if unmarshalAlert := m.unmarshal(data); unmarshalAlert != alertSuccess { 1178 return nil, c.in.setErrorLocked(c.sendAlert(unmarshalAlert)) 1179 } 1180 return m, nil 1181 } 1182 1183 var ( 1184 errClosed = errors.New("tls: use of closed connection") 1185 errShutdown = errors.New("tls: protocol is shutdown") 1186 ) 1187 1188 // Write writes data to the connection. 1189 func (c *Conn) Write(b []byte) (int, error) { 1190 // interlock with Close below 1191 for { 1192 x := atomic.LoadInt32(&c.activeCall) 1193 if x&1 != 0 { 1194 return 0, errClosed 1195 } 1196 if atomic.CompareAndSwapInt32(&c.activeCall, x, x+2) { 1197 defer atomic.AddInt32(&c.activeCall, -2) 1198 break 1199 } 1200 } 1201 1202 if err := c.Handshake(); err != nil { 1203 return 0, err 1204 } 1205 1206 c.out.Lock() 1207 defer c.out.Unlock() 1208 1209 if err := c.out.err; err != nil { 1210 return 0, err 1211 } 1212 1213 if !c.handshakeComplete { 1214 return 0, alertInternalError 1215 } 1216 1217 if c.closeNotifySent { 1218 return 0, errShutdown 1219 } 1220 1221 // SSL 3.0 and TLS 1.0 are susceptible to a chosen-plaintext 1222 // attack when using block mode ciphers due to predictable IVs. 1223 // This can be prevented by splitting each Application Data 1224 // record into two records, effectively randomizing the IV. 1225 // 1226 // http://www.openssl.org/~bodo/tls-cbc.txt 1227 // https://bugzilla.mozilla.org/show_bug.cgi?id=665814 1228 // http://www.imperialviolet.org/2012/01/15/beastfollowup.html 1229 1230 var m int 1231 if len(b) > 1 && c.vers <= VersionTLS10 { 1232 if _, ok := c.out.cipher.(cipher.BlockMode); ok { 1233 n, err := c.writeRecordLocked(recordTypeApplicationData, b[:1]) 1234 if err != nil { 1235 return n, c.out.setErrorLocked(err) 1236 } 1237 m, b = 1, b[1:] 1238 } 1239 } 1240 1241 n, err := c.writeRecordLocked(recordTypeApplicationData, b) 1242 return n + m, c.out.setErrorLocked(err) 1243 } 1244 1245 // handleRenegotiation processes a HelloRequest handshake message. 1246 // c.in.Mutex <= L 1247 func (c *Conn) handleRenegotiation() error { 1248 msg, err := c.readHandshake() 1249 if err != nil { 1250 return err 1251 } 1252 1253 _, ok := msg.(*helloRequestMsg) 1254 if !ok { 1255 c.sendAlert(alertUnexpectedMessage) 1256 return alertUnexpectedMessage 1257 } 1258 1259 if !c.isClient { 1260 return c.sendAlert(alertNoRenegotiation) 1261 } 1262 1263 if c.vers >= VersionTLS13 { 1264 return c.sendAlert(alertNoRenegotiation) 1265 } 1266 1267 switch c.config.Renegotiation { 1268 case RenegotiateNever: 1269 return c.sendAlert(alertNoRenegotiation) 1270 case RenegotiateOnceAsClient: 1271 if c.handshakes > 1 { 1272 return c.sendAlert(alertNoRenegotiation) 1273 } 1274 case RenegotiateFreelyAsClient: 1275 // Ok. 1276 default: 1277 c.sendAlert(alertInternalError) 1278 return errors.New("tls: unknown Renegotiation value") 1279 } 1280 1281 c.handshakeMutex.Lock() 1282 defer c.handshakeMutex.Unlock() 1283 1284 c.phase = handshakeRunning 1285 c.handshakeComplete = false 1286 if c.handshakeErr = c.clientHandshake(); c.handshakeErr == nil { 1287 c.handshakes++ 1288 } 1289 return c.handshakeErr 1290 } 1291 1292 // ConfirmHandshake waits for the handshake to reach a point at which 1293 // the connection is certainly not replayed. That is, after receiving 1294 // the Client Finished. 1295 // 1296 // If ConfirmHandshake returns an error and until ConfirmHandshake 1297 // returns, the 0-RTT data should not be trusted not to be replayed. 1298 // 1299 // This is only meaningful in TLS 1.3 when Accept0RTTData is true and the 1300 // client sent valid 0-RTT data. In any other case it's equivalent to 1301 // calling Handshake. 1302 func (c *Conn) ConfirmHandshake() error { 1303 if err := c.Handshake(); err != nil { 1304 return err 1305 } 1306 1307 if c.vers < VersionTLS13 { 1308 return nil 1309 } 1310 1311 c.confirmMutex.Lock() 1312 if atomic.LoadInt32(&c.handshakeConfirmed) == 1 { // c.phase == handshakeConfirmed 1313 c.confirmMutex.Unlock() 1314 return nil 1315 } else { 1316 defer func() { 1317 // If we transitioned to handshakeConfirmed we already released the lock, 1318 // otherwise do it here. 1319 if c.phase != handshakeConfirmed { 1320 c.confirmMutex.Unlock() 1321 } 1322 }() 1323 } 1324 1325 c.in.Lock() 1326 defer c.in.Unlock() 1327 1328 var input *block 1329 if c.phase == readingEarlyData || c.input != nil { 1330 buf := &bytes.Buffer{} 1331 if _, err := buf.ReadFrom(earlyDataReader{c}); err != nil { 1332 c.in.setErrorLocked(err) 1333 return err 1334 } 1335 input = &block{data: buf.Bytes()} 1336 } 1337 1338 for c.phase != handshakeConfirmed { 1339 if err := c.readRecord(recordTypeApplicationData); err != nil { 1340 c.in.setErrorLocked(err) 1341 return err 1342 } 1343 } 1344 1345 if c.phase != handshakeConfirmed { 1346 panic("should have reached handshakeConfirmed state") 1347 } 1348 if c.input != nil { 1349 panic("should not have read past the Client Finished") 1350 } 1351 1352 c.input = input 1353 1354 return nil 1355 } 1356 1357 // earlyDataReader wraps a Conn and reads only early data, both buffered 1358 // and still on the wire. 1359 type earlyDataReader struct { 1360 c *Conn 1361 } 1362 1363 // c.in.Mutex <= L 1364 func (r earlyDataReader) Read(b []byte) (n int, err error) { 1365 c := r.c 1366 1367 if c.phase == handshakeConfirmed { 1368 // c.input might not be early data 1369 panic("earlyDataReader called at handshakeConfirmed") 1370 } 1371 1372 for c.input == nil && c.in.err == nil && c.phase == readingEarlyData { 1373 if err := c.readRecord(recordTypeApplicationData); err != nil { 1374 return 0, err 1375 } 1376 } 1377 if err := c.in.err; err != nil { 1378 return 0, err 1379 } 1380 1381 if c.input != nil { 1382 n, err = c.input.Read(b) 1383 if err == io.EOF { 1384 err = nil 1385 c.in.freeBlock(c.input) 1386 c.input = nil 1387 } 1388 } 1389 1390 if err == nil && c.phase != readingEarlyData && c.input == nil { 1391 err = io.EOF 1392 } 1393 return 1394 } 1395 1396 // Read can be made to time out and return a net.Error with Timeout() == true 1397 // after a fixed time limit; see SetDeadline and SetReadDeadline. 1398 func (c *Conn) Read(b []byte) (n int, err error) { 1399 if err = c.Handshake(); err != nil { 1400 return 1401 } 1402 if len(b) == 0 { 1403 // Put this after Handshake, in case people were calling 1404 // Read(nil) for the side effect of the Handshake. 1405 return 1406 } 1407 1408 c.confirmMutex.Lock() 1409 if atomic.LoadInt32(&c.handshakeConfirmed) == 1 { // c.phase == handshakeConfirmed 1410 c.confirmMutex.Unlock() 1411 } else { 1412 defer func() { 1413 // If we transitioned to handshakeConfirmed we already released the lock, 1414 // otherwise do it here. 1415 if c.phase != handshakeConfirmed { 1416 c.confirmMutex.Unlock() 1417 } 1418 }() 1419 } 1420 1421 c.in.Lock() 1422 defer c.in.Unlock() 1423 1424 // Some OpenSSL servers send empty records in order to randomize the 1425 // CBC IV. So this loop ignores a limited number of empty records. 1426 const maxConsecutiveEmptyRecords = 100 1427 for emptyRecordCount := 0; emptyRecordCount <= maxConsecutiveEmptyRecords; emptyRecordCount++ { 1428 for c.input == nil && c.in.err == nil { 1429 if err := c.readRecord(recordTypeApplicationData); err != nil { 1430 // Soft error, like EAGAIN 1431 return 0, err 1432 } 1433 if c.hand.Len() > 0 { 1434 // We received handshake bytes, indicating the 1435 // start of a renegotiation. 1436 if err := c.handleRenegotiation(); err != nil { 1437 return 0, err 1438 } 1439 } 1440 } 1441 if err := c.in.err; err != nil { 1442 return 0, err 1443 } 1444 1445 n, err = c.input.Read(b) 1446 if err == io.EOF { 1447 err = nil 1448 c.in.freeBlock(c.input) 1449 c.input = nil 1450 } 1451 1452 // If a close-notify alert is waiting, read it so that 1453 // we can return (n, EOF) instead of (n, nil), to signal 1454 // to the HTTP response reading goroutine that the 1455 // connection is now closed. This eliminates a race 1456 // where the HTTP response reading goroutine would 1457 // otherwise not observe the EOF until its next read, 1458 // by which time a client goroutine might have already 1459 // tried to reuse the HTTP connection for a new 1460 // request. 1461 // See https://codereview.appspot.com/76400046 1462 // and https://golang.org/issue/3514 1463 if ri := c.rawInput; ri != nil && 1464 n != 0 && err == nil && 1465 c.input == nil && len(ri.data) > 0 && recordType(ri.data[0]) == recordTypeAlert { 1466 if recErr := c.readRecord(recordTypeApplicationData); recErr != nil { 1467 err = recErr // will be io.EOF on closeNotify 1468 } 1469 } 1470 1471 if n != 0 || err != nil { 1472 return n, err 1473 } 1474 } 1475 1476 return 0, io.ErrNoProgress 1477 } 1478 1479 // Close closes the connection. 1480 func (c *Conn) Close() error { 1481 // Interlock with Conn.Write above. 1482 var x int32 1483 for { 1484 x = atomic.LoadInt32(&c.activeCall) 1485 if x&1 != 0 { 1486 return errClosed 1487 } 1488 if atomic.CompareAndSwapInt32(&c.activeCall, x, x|1) { 1489 break 1490 } 1491 } 1492 if x != 0 { 1493 // io.Writer and io.Closer should not be used concurrently. 1494 // If Close is called while a Write is currently in-flight, 1495 // interpret that as a sign that this Close is really just 1496 // being used to break the Write and/or clean up resources and 1497 // avoid sending the alertCloseNotify, which may block 1498 // waiting on handshakeMutex or the c.out mutex. 1499 return c.conn.Close() 1500 } 1501 1502 var alertErr error 1503 1504 c.handshakeMutex.Lock() 1505 if c.handshakeComplete { 1506 alertErr = c.closeNotify() 1507 } 1508 c.handshakeMutex.Unlock() 1509 1510 if err := c.conn.Close(); err != nil { 1511 return err 1512 } 1513 return alertErr 1514 } 1515 1516 var errEarlyCloseWrite = errors.New("tls: CloseWrite called before handshake complete") 1517 1518 // CloseWrite shuts down the writing side of the connection. It should only be 1519 // called once the handshake has completed and does not call CloseWrite on the 1520 // underlying connection. Most callers should just use Close. 1521 func (c *Conn) CloseWrite() error { 1522 c.handshakeMutex.Lock() 1523 defer c.handshakeMutex.Unlock() 1524 if !c.handshakeComplete { 1525 return errEarlyCloseWrite 1526 } 1527 1528 return c.closeNotify() 1529 } 1530 1531 func (c *Conn) closeNotify() error { 1532 c.out.Lock() 1533 defer c.out.Unlock() 1534 1535 if !c.closeNotifySent { 1536 c.closeNotifyErr = c.sendAlertLocked(alertCloseNotify) 1537 c.closeNotifySent = true 1538 } 1539 return c.closeNotifyErr 1540 } 1541 1542 // Handshake runs the client or server handshake 1543 // protocol if it has not yet been run. 1544 // Most uses of this package need not call Handshake 1545 // explicitly: the first Read or Write will call it automatically. 1546 // 1547 // In TLS 1.3 Handshake returns after the client and server first flights, 1548 // without waiting for the Client Finished. 1549 func (c *Conn) Handshake() error { 1550 c.handshakeMutex.Lock() 1551 defer c.handshakeMutex.Unlock() 1552 1553 if err := c.handshakeErr; err != nil { 1554 return err 1555 } 1556 if c.handshakeComplete { 1557 return nil 1558 } 1559 1560 c.in.Lock() 1561 defer c.in.Unlock() 1562 1563 // The handshake cannot have completed when handshakeMutex was unlocked 1564 // because this goroutine set handshakeCond. 1565 if c.handshakeErr != nil || c.handshakeComplete { 1566 panic("handshake should not have been able to complete after handshakeCond was set") 1567 } 1568 1569 c.connID = make([]byte, 8) 1570 if _, err := io.ReadFull(c.config.rand(), c.connID); err != nil { 1571 return err 1572 } 1573 1574 if c.isClient { 1575 c.handshakeErr = c.clientHandshake() 1576 } else { 1577 c.handshakeErr = c.serverHandshake() 1578 } 1579 if c.handshakeErr == nil { 1580 c.handshakes++ 1581 } else { 1582 // If an error occurred during the hadshake try to flush the 1583 // alert that might be left in the buffer. 1584 c.flush() 1585 } 1586 1587 if c.handshakeErr == nil && !c.handshakeComplete { 1588 panic("handshake should have had a result.") 1589 } 1590 1591 return c.handshakeErr 1592 } 1593 1594 // ConnectionState returns basic TLS details about the connection. 1595 func (c *Conn) ConnectionState() ConnectionState { 1596 c.handshakeMutex.Lock() 1597 defer c.handshakeMutex.Unlock() 1598 1599 var state ConnectionState 1600 state.HandshakeComplete = c.handshakeComplete 1601 state.ServerName = c.serverName 1602 1603 if c.handshakeComplete { 1604 state.ConnectionID = c.connID 1605 state.ClientHello = c.clientHello 1606 state.Version = c.vers 1607 state.NegotiatedProtocol = c.clientProtocol 1608 state.DidResume = c.didResume 1609 state.NegotiatedProtocolIsMutual = !c.clientProtocolFallback 1610 state.CipherSuite = c.cipherSuite 1611 state.PeerCertificates = c.peerCertificates 1612 state.VerifiedChains = c.verifiedChains 1613 state.SignedCertificateTimestamps = c.scts 1614 state.OCSPResponse = c.ocspResponse 1615 state.HandshakeConfirmed = atomic.LoadInt32(&c.handshakeConfirmed) == 1 1616 if !state.HandshakeConfirmed { 1617 state.Unique0RTTToken = c.binder 1618 } 1619 if !c.didResume { 1620 if c.clientFinishedIsFirst { 1621 state.TLSUnique = c.clientFinished[:] 1622 } else { 1623 state.TLSUnique = c.serverFinished[:] 1624 } 1625 } 1626 } 1627 1628 return state 1629 } 1630 1631 // OCSPResponse returns the stapled OCSP response from the TLS server, if 1632 // any. (Only valid for client connections.) 1633 func (c *Conn) OCSPResponse() []byte { 1634 c.handshakeMutex.Lock() 1635 defer c.handshakeMutex.Unlock() 1636 1637 return c.ocspResponse 1638 } 1639 1640 // VerifyHostname checks that the peer certificate chain is valid for 1641 // connecting to host. If so, it returns nil; if not, it returns an error 1642 // describing the problem. 1643 func (c *Conn) VerifyHostname(host string) error { 1644 c.handshakeMutex.Lock() 1645 defer c.handshakeMutex.Unlock() 1646 if !c.isClient { 1647 return errors.New("tls: VerifyHostname called on TLS server connection") 1648 } 1649 if !c.handshakeComplete { 1650 return errors.New("tls: handshake has not yet been performed") 1651 } 1652 if len(c.verifiedChains) == 0 { 1653 return errors.New("tls: handshake did not verify certificate chain") 1654 } 1655 return c.peerCertificates[0].VerifyHostname(host) 1656 }