github.com/goproxy0/go@v0.0.0-20171111080102-49cc0c489d2c/src/encoding/asn1/asn1.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Package asn1 implements parsing of DER-encoded ASN.1 data structures,
     6  // as defined in ITU-T Rec X.690.
     7  //
     8  // See also ``A Layman's Guide to a Subset of ASN.1, BER, and DER,''
     9  // http://luca.ntop.org/Teaching/Appunti/asn1.html.
    10  package asn1
    11  
    12  // ASN.1 is a syntax for specifying abstract objects and BER, DER, PER, XER etc
    13  // are different encoding formats for those objects. Here, we'll be dealing
    14  // with DER, the Distinguished Encoding Rules. DER is used in X.509 because
    15  // it's fast to parse and, unlike BER, has a unique encoding for every object.
    16  // When calculating hashes over objects, it's important that the resulting
    17  // bytes be the same at both ends and DER removes this margin of error.
    18  //
    19  // ASN.1 is very complex and this package doesn't attempt to implement
    20  // everything by any means.
    21  
    22  import (
    23  	"errors"
    24  	"fmt"
    25  	"math"
    26  	"math/big"
    27  	"reflect"
    28  	"strconv"
    29  	"time"
    30  	"unicode/utf8"
    31  )
    32  
    33  // A StructuralError suggests that the ASN.1 data is valid, but the Go type
    34  // which is receiving it doesn't match.
    35  type StructuralError struct {
    36  	Msg string
    37  }
    38  
    39  func (e StructuralError) Error() string { return "asn1: structure error: " + e.Msg }
    40  
    41  // A SyntaxError suggests that the ASN.1 data is invalid.
    42  type SyntaxError struct {
    43  	Msg string
    44  }
    45  
    46  func (e SyntaxError) Error() string { return "asn1: syntax error: " + e.Msg }
    47  
    48  // We start by dealing with each of the primitive types in turn.
    49  
    50  // BOOLEAN
    51  
    52  func parseBool(bytes []byte) (ret bool, err error) {
    53  	if len(bytes) != 1 {
    54  		err = SyntaxError{"invalid boolean"}
    55  		return
    56  	}
    57  
    58  	// DER demands that "If the encoding represents the boolean value TRUE,
    59  	// its single contents octet shall have all eight bits set to one."
    60  	// Thus only 0 and 255 are valid encoded values.
    61  	switch bytes[0] {
    62  	case 0:
    63  		ret = false
    64  	case 0xff:
    65  		ret = true
    66  	default:
    67  		err = SyntaxError{"invalid boolean"}
    68  	}
    69  
    70  	return
    71  }
    72  
    73  // INTEGER
    74  
    75  // checkInteger returns nil if the given bytes are a valid DER-encoded
    76  // INTEGER and an error otherwise.
    77  func checkInteger(bytes []byte) error {
    78  	if len(bytes) == 0 {
    79  		return StructuralError{"empty integer"}
    80  	}
    81  	if len(bytes) == 1 {
    82  		return nil
    83  	}
    84  	if (bytes[0] == 0 && bytes[1]&0x80 == 0) || (bytes[0] == 0xff && bytes[1]&0x80 == 0x80) {
    85  		return StructuralError{"integer not minimally-encoded"}
    86  	}
    87  	return nil
    88  }
    89  
    90  // parseInt64 treats the given bytes as a big-endian, signed integer and
    91  // returns the result.
    92  func parseInt64(bytes []byte) (ret int64, err error) {
    93  	err = checkInteger(bytes)
    94  	if err != nil {
    95  		return
    96  	}
    97  	if len(bytes) > 8 {
    98  		// We'll overflow an int64 in this case.
    99  		err = StructuralError{"integer too large"}
   100  		return
   101  	}
   102  	for bytesRead := 0; bytesRead < len(bytes); bytesRead++ {
   103  		ret <<= 8
   104  		ret |= int64(bytes[bytesRead])
   105  	}
   106  
   107  	// Shift up and down in order to sign extend the result.
   108  	ret <<= 64 - uint8(len(bytes))*8
   109  	ret >>= 64 - uint8(len(bytes))*8
   110  	return
   111  }
   112  
   113  // parseInt treats the given bytes as a big-endian, signed integer and returns
   114  // the result.
   115  func parseInt32(bytes []byte) (int32, error) {
   116  	if err := checkInteger(bytes); err != nil {
   117  		return 0, err
   118  	}
   119  	ret64, err := parseInt64(bytes)
   120  	if err != nil {
   121  		return 0, err
   122  	}
   123  	if ret64 != int64(int32(ret64)) {
   124  		return 0, StructuralError{"integer too large"}
   125  	}
   126  	return int32(ret64), nil
   127  }
   128  
   129  var bigOne = big.NewInt(1)
   130  
   131  // parseBigInt treats the given bytes as a big-endian, signed integer and returns
   132  // the result.
   133  func parseBigInt(bytes []byte) (*big.Int, error) {
   134  	if err := checkInteger(bytes); err != nil {
   135  		return nil, err
   136  	}
   137  	ret := new(big.Int)
   138  	if len(bytes) > 0 && bytes[0]&0x80 == 0x80 {
   139  		// This is a negative number.
   140  		notBytes := make([]byte, len(bytes))
   141  		for i := range notBytes {
   142  			notBytes[i] = ^bytes[i]
   143  		}
   144  		ret.SetBytes(notBytes)
   145  		ret.Add(ret, bigOne)
   146  		ret.Neg(ret)
   147  		return ret, nil
   148  	}
   149  	ret.SetBytes(bytes)
   150  	return ret, nil
   151  }
   152  
   153  // BIT STRING
   154  
   155  // BitString is the structure to use when you want an ASN.1 BIT STRING type. A
   156  // bit string is padded up to the nearest byte in memory and the number of
   157  // valid bits is recorded. Padding bits will be zero.
   158  type BitString struct {
   159  	Bytes     []byte // bits packed into bytes.
   160  	BitLength int    // length in bits.
   161  }
   162  
   163  // At returns the bit at the given index. If the index is out of range it
   164  // returns false.
   165  func (b BitString) At(i int) int {
   166  	if i < 0 || i >= b.BitLength {
   167  		return 0
   168  	}
   169  	x := i / 8
   170  	y := 7 - uint(i%8)
   171  	return int(b.Bytes[x]>>y) & 1
   172  }
   173  
   174  // RightAlign returns a slice where the padding bits are at the beginning. The
   175  // slice may share memory with the BitString.
   176  func (b BitString) RightAlign() []byte {
   177  	shift := uint(8 - (b.BitLength % 8))
   178  	if shift == 8 || len(b.Bytes) == 0 {
   179  		return b.Bytes
   180  	}
   181  
   182  	a := make([]byte, len(b.Bytes))
   183  	a[0] = b.Bytes[0] >> shift
   184  	for i := 1; i < len(b.Bytes); i++ {
   185  		a[i] = b.Bytes[i-1] << (8 - shift)
   186  		a[i] |= b.Bytes[i] >> shift
   187  	}
   188  
   189  	return a
   190  }
   191  
   192  // parseBitString parses an ASN.1 bit string from the given byte slice and returns it.
   193  func parseBitString(bytes []byte) (ret BitString, err error) {
   194  	if len(bytes) == 0 {
   195  		err = SyntaxError{"zero length BIT STRING"}
   196  		return
   197  	}
   198  	paddingBits := int(bytes[0])
   199  	if paddingBits > 7 ||
   200  		len(bytes) == 1 && paddingBits > 0 ||
   201  		bytes[len(bytes)-1]&((1<<bytes[0])-1) != 0 {
   202  		err = SyntaxError{"invalid padding bits in BIT STRING"}
   203  		return
   204  	}
   205  	ret.BitLength = (len(bytes)-1)*8 - paddingBits
   206  	ret.Bytes = bytes[1:]
   207  	return
   208  }
   209  
   210  // NULL
   211  
   212  // NullRawValue is a RawValue with its Tag set to the ASN.1 NULL type tag (5).
   213  var NullRawValue = RawValue{Tag: TagNull}
   214  
   215  // NullBytes contains bytes representing the DER-encoded ASN.1 NULL type.
   216  var NullBytes = []byte{TagNull, 0}
   217  
   218  // OBJECT IDENTIFIER
   219  
   220  // An ObjectIdentifier represents an ASN.1 OBJECT IDENTIFIER.
   221  type ObjectIdentifier []int
   222  
   223  // Equal reports whether oi and other represent the same identifier.
   224  func (oi ObjectIdentifier) Equal(other ObjectIdentifier) bool {
   225  	if len(oi) != len(other) {
   226  		return false
   227  	}
   228  	for i := 0; i < len(oi); i++ {
   229  		if oi[i] != other[i] {
   230  			return false
   231  		}
   232  	}
   233  
   234  	return true
   235  }
   236  
   237  func (oi ObjectIdentifier) String() string {
   238  	var s string
   239  
   240  	for i, v := range oi {
   241  		if i > 0 {
   242  			s += "."
   243  		}
   244  		s += strconv.Itoa(v)
   245  	}
   246  
   247  	return s
   248  }
   249  
   250  // parseObjectIdentifier parses an OBJECT IDENTIFIER from the given bytes and
   251  // returns it. An object identifier is a sequence of variable length integers
   252  // that are assigned in a hierarchy.
   253  func parseObjectIdentifier(bytes []byte) (s []int, err error) {
   254  	if len(bytes) == 0 {
   255  		err = SyntaxError{"zero length OBJECT IDENTIFIER"}
   256  		return
   257  	}
   258  
   259  	// In the worst case, we get two elements from the first byte (which is
   260  	// encoded differently) and then every varint is a single byte long.
   261  	s = make([]int, len(bytes)+1)
   262  
   263  	// The first varint is 40*value1 + value2:
   264  	// According to this packing, value1 can take the values 0, 1 and 2 only.
   265  	// When value1 = 0 or value1 = 1, then value2 is <= 39. When value1 = 2,
   266  	// then there are no restrictions on value2.
   267  	v, offset, err := parseBase128Int(bytes, 0)
   268  	if err != nil {
   269  		return
   270  	}
   271  	if v < 80 {
   272  		s[0] = v / 40
   273  		s[1] = v % 40
   274  	} else {
   275  		s[0] = 2
   276  		s[1] = v - 80
   277  	}
   278  
   279  	i := 2
   280  	for ; offset < len(bytes); i++ {
   281  		v, offset, err = parseBase128Int(bytes, offset)
   282  		if err != nil {
   283  			return
   284  		}
   285  		s[i] = v
   286  	}
   287  	s = s[0:i]
   288  	return
   289  }
   290  
   291  // ENUMERATED
   292  
   293  // An Enumerated is represented as a plain int.
   294  type Enumerated int
   295  
   296  // FLAG
   297  
   298  // A Flag accepts any data and is set to true if present.
   299  type Flag bool
   300  
   301  // parseBase128Int parses a base-128 encoded int from the given offset in the
   302  // given byte slice. It returns the value and the new offset.
   303  func parseBase128Int(bytes []byte, initOffset int) (ret, offset int, err error) {
   304  	offset = initOffset
   305  	var ret64 int64
   306  	for shifted := 0; offset < len(bytes); shifted++ {
   307  		// 5 * 7 bits per byte == 35 bits of data
   308  		// Thus the representation is either non-minimal or too large for an int32
   309  		if shifted == 5 {
   310  			err = StructuralError{"base 128 integer too large"}
   311  			return
   312  		}
   313  		ret64 <<= 7
   314  		b := bytes[offset]
   315  		ret64 |= int64(b & 0x7f)
   316  		offset++
   317  		if b&0x80 == 0 {
   318  			ret = int(ret64)
   319  			// Ensure that the returned value fits in an int on all platforms
   320  			if ret64 > math.MaxInt32 {
   321  				err = StructuralError{"base 128 integer too large"}
   322  			}
   323  			return
   324  		}
   325  	}
   326  	err = SyntaxError{"truncated base 128 integer"}
   327  	return
   328  }
   329  
   330  // UTCTime
   331  
   332  func parseUTCTime(bytes []byte) (ret time.Time, err error) {
   333  	s := string(bytes)
   334  
   335  	formatStr := "0601021504Z0700"
   336  	ret, err = time.Parse(formatStr, s)
   337  	if err != nil {
   338  		formatStr = "060102150405Z0700"
   339  		ret, err = time.Parse(formatStr, s)
   340  	}
   341  	if err != nil {
   342  		return
   343  	}
   344  
   345  	if serialized := ret.Format(formatStr); serialized != s {
   346  		err = fmt.Errorf("asn1: time did not serialize back to the original value and may be invalid: given %q, but serialized as %q", s, serialized)
   347  		return
   348  	}
   349  
   350  	if ret.Year() >= 2050 {
   351  		// UTCTime only encodes times prior to 2050. See https://tools.ietf.org/html/rfc5280#section-4.1.2.5.1
   352  		ret = ret.AddDate(-100, 0, 0)
   353  	}
   354  
   355  	return
   356  }
   357  
   358  // parseGeneralizedTime parses the GeneralizedTime from the given byte slice
   359  // and returns the resulting time.
   360  func parseGeneralizedTime(bytes []byte) (ret time.Time, err error) {
   361  	const formatStr = "20060102150405Z0700"
   362  	s := string(bytes)
   363  
   364  	if ret, err = time.Parse(formatStr, s); err != nil {
   365  		return
   366  	}
   367  
   368  	if serialized := ret.Format(formatStr); serialized != s {
   369  		err = fmt.Errorf("asn1: time did not serialize back to the original value and may be invalid: given %q, but serialized as %q", s, serialized)
   370  	}
   371  
   372  	return
   373  }
   374  
   375  // PrintableString
   376  
   377  // parsePrintableString parses an ASN.1 PrintableString from the given byte
   378  // array and returns it.
   379  func parsePrintableString(bytes []byte) (ret string, err error) {
   380  	for _, b := range bytes {
   381  		if !isPrintable(b, allowAsterisk) {
   382  			err = SyntaxError{"PrintableString contains invalid character"}
   383  			return
   384  		}
   385  	}
   386  	ret = string(bytes)
   387  	return
   388  }
   389  
   390  type asteriskFlag bool
   391  
   392  const (
   393  	allowAsterisk  asteriskFlag = true
   394  	rejectAsterisk asteriskFlag = false
   395  )
   396  
   397  // isPrintable reports whether the given b is in the ASN.1 PrintableString set.
   398  // If asterisk is allowAsterisk then '*' is also allowed, reflecting existing
   399  // practice.
   400  func isPrintable(b byte, asterisk asteriskFlag) bool {
   401  	return 'a' <= b && b <= 'z' ||
   402  		'A' <= b && b <= 'Z' ||
   403  		'0' <= b && b <= '9' ||
   404  		'\'' <= b && b <= ')' ||
   405  		'+' <= b && b <= '/' ||
   406  		b == ' ' ||
   407  		b == ':' ||
   408  		b == '=' ||
   409  		b == '?' ||
   410  		// This is technically not allowed in a PrintableString.
   411  		// However, x509 certificates with wildcard strings don't
   412  		// always use the correct string type so we permit it.
   413  		(bool(asterisk) && b == '*')
   414  }
   415  
   416  // IA5String
   417  
   418  // parseIA5String parses an ASN.1 IA5String (ASCII string) from the given
   419  // byte slice and returns it.
   420  func parseIA5String(bytes []byte) (ret string, err error) {
   421  	for _, b := range bytes {
   422  		if b >= utf8.RuneSelf {
   423  			err = SyntaxError{"IA5String contains invalid character"}
   424  			return
   425  		}
   426  	}
   427  	ret = string(bytes)
   428  	return
   429  }
   430  
   431  // T61String
   432  
   433  // parseT61String parses an ASN.1 T61String (8-bit clean string) from the given
   434  // byte slice and returns it.
   435  func parseT61String(bytes []byte) (ret string, err error) {
   436  	return string(bytes), nil
   437  }
   438  
   439  // UTF8String
   440  
   441  // parseUTF8String parses an ASN.1 UTF8String (raw UTF-8) from the given byte
   442  // array and returns it.
   443  func parseUTF8String(bytes []byte) (ret string, err error) {
   444  	if !utf8.Valid(bytes) {
   445  		return "", errors.New("asn1: invalid UTF-8 string")
   446  	}
   447  	return string(bytes), nil
   448  }
   449  
   450  // A RawValue represents an undecoded ASN.1 object.
   451  type RawValue struct {
   452  	Class, Tag int
   453  	IsCompound bool
   454  	Bytes      []byte
   455  	FullBytes  []byte // includes the tag and length
   456  }
   457  
   458  // RawContent is used to signal that the undecoded, DER data needs to be
   459  // preserved for a struct. To use it, the first field of the struct must have
   460  // this type. It's an error for any of the other fields to have this type.
   461  type RawContent []byte
   462  
   463  // Tagging
   464  
   465  // parseTagAndLength parses an ASN.1 tag and length pair from the given offset
   466  // into a byte slice. It returns the parsed data and the new offset. SET and
   467  // SET OF (tag 17) are mapped to SEQUENCE and SEQUENCE OF (tag 16) since we
   468  // don't distinguish between ordered and unordered objects in this code.
   469  func parseTagAndLength(bytes []byte, initOffset int) (ret tagAndLength, offset int, err error) {
   470  	offset = initOffset
   471  	// parseTagAndLength should not be called without at least a single
   472  	// byte to read. Thus this check is for robustness:
   473  	if offset >= len(bytes) {
   474  		err = errors.New("asn1: internal error in parseTagAndLength")
   475  		return
   476  	}
   477  	b := bytes[offset]
   478  	offset++
   479  	ret.class = int(b >> 6)
   480  	ret.isCompound = b&0x20 == 0x20
   481  	ret.tag = int(b & 0x1f)
   482  
   483  	// If the bottom five bits are set, then the tag number is actually base 128
   484  	// encoded afterwards
   485  	if ret.tag == 0x1f {
   486  		ret.tag, offset, err = parseBase128Int(bytes, offset)
   487  		if err != nil {
   488  			return
   489  		}
   490  		// Tags should be encoded in minimal form.
   491  		if ret.tag < 0x1f {
   492  			err = SyntaxError{"non-minimal tag"}
   493  			return
   494  		}
   495  	}
   496  	if offset >= len(bytes) {
   497  		err = SyntaxError{"truncated tag or length"}
   498  		return
   499  	}
   500  	b = bytes[offset]
   501  	offset++
   502  	if b&0x80 == 0 {
   503  		// The length is encoded in the bottom 7 bits.
   504  		ret.length = int(b & 0x7f)
   505  	} else {
   506  		// Bottom 7 bits give the number of length bytes to follow.
   507  		numBytes := int(b & 0x7f)
   508  		if numBytes == 0 {
   509  			err = SyntaxError{"indefinite length found (not DER)"}
   510  			return
   511  		}
   512  		ret.length = 0
   513  		for i := 0; i < numBytes; i++ {
   514  			if offset >= len(bytes) {
   515  				err = SyntaxError{"truncated tag or length"}
   516  				return
   517  			}
   518  			b = bytes[offset]
   519  			offset++
   520  			if ret.length >= 1<<23 {
   521  				// We can't shift ret.length up without
   522  				// overflowing.
   523  				err = StructuralError{"length too large"}
   524  				return
   525  			}
   526  			ret.length <<= 8
   527  			ret.length |= int(b)
   528  			if ret.length == 0 {
   529  				// DER requires that lengths be minimal.
   530  				err = StructuralError{"superfluous leading zeros in length"}
   531  				return
   532  			}
   533  		}
   534  		// Short lengths must be encoded in short form.
   535  		if ret.length < 0x80 {
   536  			err = StructuralError{"non-minimal length"}
   537  			return
   538  		}
   539  	}
   540  
   541  	return
   542  }
   543  
   544  // parseSequenceOf is used for SEQUENCE OF and SET OF values. It tries to parse
   545  // a number of ASN.1 values from the given byte slice and returns them as a
   546  // slice of Go values of the given type.
   547  func parseSequenceOf(bytes []byte, sliceType reflect.Type, elemType reflect.Type) (ret reflect.Value, err error) {
   548  	matchAny, expectedTag, compoundType, ok := getUniversalType(elemType)
   549  	if !ok {
   550  		err = StructuralError{"unknown Go type for slice"}
   551  		return
   552  	}
   553  
   554  	// First we iterate over the input and count the number of elements,
   555  	// checking that the types are correct in each case.
   556  	numElements := 0
   557  	for offset := 0; offset < len(bytes); {
   558  		var t tagAndLength
   559  		t, offset, err = parseTagAndLength(bytes, offset)
   560  		if err != nil {
   561  			return
   562  		}
   563  		switch t.tag {
   564  		case TagIA5String, TagGeneralString, TagT61String, TagUTF8String:
   565  			// We pretend that various other string types are
   566  			// PRINTABLE STRINGs so that a sequence of them can be
   567  			// parsed into a []string.
   568  			t.tag = TagPrintableString
   569  		case TagGeneralizedTime, TagUTCTime:
   570  			// Likewise, both time types are treated the same.
   571  			t.tag = TagUTCTime
   572  		}
   573  
   574  		if !matchAny && (t.class != ClassUniversal || t.isCompound != compoundType || t.tag != expectedTag) {
   575  			err = StructuralError{"sequence tag mismatch"}
   576  			return
   577  		}
   578  		if invalidLength(offset, t.length, len(bytes)) {
   579  			err = SyntaxError{"truncated sequence"}
   580  			return
   581  		}
   582  		offset += t.length
   583  		numElements++
   584  	}
   585  	ret = reflect.MakeSlice(sliceType, numElements, numElements)
   586  	params := fieldParameters{}
   587  	offset := 0
   588  	for i := 0; i < numElements; i++ {
   589  		offset, err = parseField(ret.Index(i), bytes, offset, params)
   590  		if err != nil {
   591  			return
   592  		}
   593  	}
   594  	return
   595  }
   596  
   597  var (
   598  	bitStringType        = reflect.TypeOf(BitString{})
   599  	objectIdentifierType = reflect.TypeOf(ObjectIdentifier{})
   600  	enumeratedType       = reflect.TypeOf(Enumerated(0))
   601  	flagType             = reflect.TypeOf(Flag(false))
   602  	timeType             = reflect.TypeOf(time.Time{})
   603  	rawValueType         = reflect.TypeOf(RawValue{})
   604  	rawContentsType      = reflect.TypeOf(RawContent(nil))
   605  	bigIntType           = reflect.TypeOf(new(big.Int))
   606  )
   607  
   608  // invalidLength returns true iff offset + length > sliceLength, or if the
   609  // addition would overflow.
   610  func invalidLength(offset, length, sliceLength int) bool {
   611  	return offset+length < offset || offset+length > sliceLength
   612  }
   613  
   614  // parseField is the main parsing function. Given a byte slice and an offset
   615  // into the array, it will try to parse a suitable ASN.1 value out and store it
   616  // in the given Value.
   617  func parseField(v reflect.Value, bytes []byte, initOffset int, params fieldParameters) (offset int, err error) {
   618  	offset = initOffset
   619  	fieldType := v.Type()
   620  
   621  	// If we have run out of data, it may be that there are optional elements at the end.
   622  	if offset == len(bytes) {
   623  		if !setDefaultValue(v, params) {
   624  			err = SyntaxError{"sequence truncated"}
   625  		}
   626  		return
   627  	}
   628  
   629  	// Deal with the ANY type.
   630  	if ifaceType := fieldType; ifaceType.Kind() == reflect.Interface && ifaceType.NumMethod() == 0 {
   631  		var t tagAndLength
   632  		t, offset, err = parseTagAndLength(bytes, offset)
   633  		if err != nil {
   634  			return
   635  		}
   636  		if invalidLength(offset, t.length, len(bytes)) {
   637  			err = SyntaxError{"data truncated"}
   638  			return
   639  		}
   640  		var result interface{}
   641  		if !t.isCompound && t.class == ClassUniversal {
   642  			innerBytes := bytes[offset : offset+t.length]
   643  			switch t.tag {
   644  			case TagPrintableString:
   645  				result, err = parsePrintableString(innerBytes)
   646  			case TagIA5String:
   647  				result, err = parseIA5String(innerBytes)
   648  			case TagT61String:
   649  				result, err = parseT61String(innerBytes)
   650  			case TagUTF8String:
   651  				result, err = parseUTF8String(innerBytes)
   652  			case TagInteger:
   653  				result, err = parseInt64(innerBytes)
   654  			case TagBitString:
   655  				result, err = parseBitString(innerBytes)
   656  			case TagOID:
   657  				result, err = parseObjectIdentifier(innerBytes)
   658  			case TagUTCTime:
   659  				result, err = parseUTCTime(innerBytes)
   660  			case TagGeneralizedTime:
   661  				result, err = parseGeneralizedTime(innerBytes)
   662  			case TagOctetString:
   663  				result = innerBytes
   664  			default:
   665  				// If we don't know how to handle the type, we just leave Value as nil.
   666  			}
   667  		}
   668  		offset += t.length
   669  		if err != nil {
   670  			return
   671  		}
   672  		if result != nil {
   673  			v.Set(reflect.ValueOf(result))
   674  		}
   675  		return
   676  	}
   677  
   678  	t, offset, err := parseTagAndLength(bytes, offset)
   679  	if err != nil {
   680  		return
   681  	}
   682  	if params.explicit {
   683  		expectedClass := ClassContextSpecific
   684  		if params.application {
   685  			expectedClass = ClassApplication
   686  		}
   687  		if offset == len(bytes) {
   688  			err = StructuralError{"explicit tag has no child"}
   689  			return
   690  		}
   691  		if t.class == expectedClass && t.tag == *params.tag && (t.length == 0 || t.isCompound) {
   692  			if fieldType == rawValueType {
   693  				// The inner element should not be parsed for RawValues.
   694  			} else if t.length > 0 {
   695  				t, offset, err = parseTagAndLength(bytes, offset)
   696  				if err != nil {
   697  					return
   698  				}
   699  			} else {
   700  				if fieldType != flagType {
   701  					err = StructuralError{"zero length explicit tag was not an asn1.Flag"}
   702  					return
   703  				}
   704  				v.SetBool(true)
   705  				return
   706  			}
   707  		} else {
   708  			// The tags didn't match, it might be an optional element.
   709  			ok := setDefaultValue(v, params)
   710  			if ok {
   711  				offset = initOffset
   712  			} else {
   713  				err = StructuralError{"explicitly tagged member didn't match"}
   714  			}
   715  			return
   716  		}
   717  	}
   718  
   719  	matchAny, universalTag, compoundType, ok1 := getUniversalType(fieldType)
   720  	if !ok1 {
   721  		err = StructuralError{fmt.Sprintf("unknown Go type: %v", fieldType)}
   722  		return
   723  	}
   724  
   725  	// Special case for strings: all the ASN.1 string types map to the Go
   726  	// type string. getUniversalType returns the tag for PrintableString
   727  	// when it sees a string, so if we see a different string type on the
   728  	// wire, we change the universal type to match.
   729  	if universalTag == TagPrintableString {
   730  		if t.class == ClassUniversal {
   731  			switch t.tag {
   732  			case TagIA5String, TagGeneralString, TagT61String, TagUTF8String:
   733  				universalTag = t.tag
   734  			}
   735  		} else if params.stringType != 0 {
   736  			universalTag = params.stringType
   737  		}
   738  	}
   739  
   740  	// Special case for time: UTCTime and GeneralizedTime both map to the
   741  	// Go type time.Time.
   742  	if universalTag == TagUTCTime && t.tag == TagGeneralizedTime && t.class == ClassUniversal {
   743  		universalTag = TagGeneralizedTime
   744  	}
   745  
   746  	if params.set {
   747  		universalTag = TagSet
   748  	}
   749  
   750  	matchAnyClassAndTag := matchAny
   751  	expectedClass := ClassUniversal
   752  	expectedTag := universalTag
   753  
   754  	if !params.explicit && params.tag != nil {
   755  		expectedClass = ClassContextSpecific
   756  		expectedTag = *params.tag
   757  		matchAnyClassAndTag = false
   758  	}
   759  
   760  	if !params.explicit && params.application && params.tag != nil {
   761  		expectedClass = ClassApplication
   762  		expectedTag = *params.tag
   763  		matchAnyClassAndTag = false
   764  	}
   765  
   766  	// We have unwrapped any explicit tagging at this point.
   767  	if !matchAnyClassAndTag && (t.class != expectedClass || t.tag != expectedTag) ||
   768  		(!matchAny && t.isCompound != compoundType) {
   769  		// Tags don't match. Again, it could be an optional element.
   770  		ok := setDefaultValue(v, params)
   771  		if ok {
   772  			offset = initOffset
   773  		} else {
   774  			err = StructuralError{fmt.Sprintf("tags don't match (%d vs %+v) %+v %s @%d", expectedTag, t, params, fieldType.Name(), offset)}
   775  		}
   776  		return
   777  	}
   778  	if invalidLength(offset, t.length, len(bytes)) {
   779  		err = SyntaxError{"data truncated"}
   780  		return
   781  	}
   782  	innerBytes := bytes[offset : offset+t.length]
   783  	offset += t.length
   784  
   785  	// We deal with the structures defined in this package first.
   786  	switch fieldType {
   787  	case rawValueType:
   788  		result := RawValue{t.class, t.tag, t.isCompound, innerBytes, bytes[initOffset:offset]}
   789  		v.Set(reflect.ValueOf(result))
   790  		return
   791  	case objectIdentifierType:
   792  		newSlice, err1 := parseObjectIdentifier(innerBytes)
   793  		v.Set(reflect.MakeSlice(v.Type(), len(newSlice), len(newSlice)))
   794  		if err1 == nil {
   795  			reflect.Copy(v, reflect.ValueOf(newSlice))
   796  		}
   797  		err = err1
   798  		return
   799  	case bitStringType:
   800  		bs, err1 := parseBitString(innerBytes)
   801  		if err1 == nil {
   802  			v.Set(reflect.ValueOf(bs))
   803  		}
   804  		err = err1
   805  		return
   806  	case timeType:
   807  		var time time.Time
   808  		var err1 error
   809  		if universalTag == TagUTCTime {
   810  			time, err1 = parseUTCTime(innerBytes)
   811  		} else {
   812  			time, err1 = parseGeneralizedTime(innerBytes)
   813  		}
   814  		if err1 == nil {
   815  			v.Set(reflect.ValueOf(time))
   816  		}
   817  		err = err1
   818  		return
   819  	case enumeratedType:
   820  		parsedInt, err1 := parseInt32(innerBytes)
   821  		if err1 == nil {
   822  			v.SetInt(int64(parsedInt))
   823  		}
   824  		err = err1
   825  		return
   826  	case flagType:
   827  		v.SetBool(true)
   828  		return
   829  	case bigIntType:
   830  		parsedInt, err1 := parseBigInt(innerBytes)
   831  		if err1 == nil {
   832  			v.Set(reflect.ValueOf(parsedInt))
   833  		}
   834  		err = err1
   835  		return
   836  	}
   837  	switch val := v; val.Kind() {
   838  	case reflect.Bool:
   839  		parsedBool, err1 := parseBool(innerBytes)
   840  		if err1 == nil {
   841  			val.SetBool(parsedBool)
   842  		}
   843  		err = err1
   844  		return
   845  	case reflect.Int, reflect.Int32, reflect.Int64:
   846  		if val.Type().Size() == 4 {
   847  			parsedInt, err1 := parseInt32(innerBytes)
   848  			if err1 == nil {
   849  				val.SetInt(int64(parsedInt))
   850  			}
   851  			err = err1
   852  		} else {
   853  			parsedInt, err1 := parseInt64(innerBytes)
   854  			if err1 == nil {
   855  				val.SetInt(parsedInt)
   856  			}
   857  			err = err1
   858  		}
   859  		return
   860  	// TODO(dfc) Add support for the remaining integer types
   861  	case reflect.Struct:
   862  		structType := fieldType
   863  
   864  		for i := 0; i < structType.NumField(); i++ {
   865  			if structType.Field(i).PkgPath != "" {
   866  				err = StructuralError{"struct contains unexported fields"}
   867  				return
   868  			}
   869  		}
   870  
   871  		if structType.NumField() > 0 &&
   872  			structType.Field(0).Type == rawContentsType {
   873  			bytes := bytes[initOffset:offset]
   874  			val.Field(0).Set(reflect.ValueOf(RawContent(bytes)))
   875  		}
   876  
   877  		innerOffset := 0
   878  		for i := 0; i < structType.NumField(); i++ {
   879  			field := structType.Field(i)
   880  			if i == 0 && field.Type == rawContentsType {
   881  				continue
   882  			}
   883  			innerOffset, err = parseField(val.Field(i), innerBytes, innerOffset, parseFieldParameters(field.Tag.Get("asn1")))
   884  			if err != nil {
   885  				return
   886  			}
   887  		}
   888  		// We allow extra bytes at the end of the SEQUENCE because
   889  		// adding elements to the end has been used in X.509 as the
   890  		// version numbers have increased.
   891  		return
   892  	case reflect.Slice:
   893  		sliceType := fieldType
   894  		if sliceType.Elem().Kind() == reflect.Uint8 {
   895  			val.Set(reflect.MakeSlice(sliceType, len(innerBytes), len(innerBytes)))
   896  			reflect.Copy(val, reflect.ValueOf(innerBytes))
   897  			return
   898  		}
   899  		newSlice, err1 := parseSequenceOf(innerBytes, sliceType, sliceType.Elem())
   900  		if err1 == nil {
   901  			val.Set(newSlice)
   902  		}
   903  		err = err1
   904  		return
   905  	case reflect.String:
   906  		var v string
   907  		switch universalTag {
   908  		case TagPrintableString:
   909  			v, err = parsePrintableString(innerBytes)
   910  		case TagIA5String:
   911  			v, err = parseIA5String(innerBytes)
   912  		case TagT61String:
   913  			v, err = parseT61String(innerBytes)
   914  		case TagUTF8String:
   915  			v, err = parseUTF8String(innerBytes)
   916  		case TagGeneralString:
   917  			// GeneralString is specified in ISO-2022/ECMA-35,
   918  			// A brief review suggests that it includes structures
   919  			// that allow the encoding to change midstring and
   920  			// such. We give up and pass it as an 8-bit string.
   921  			v, err = parseT61String(innerBytes)
   922  		default:
   923  			err = SyntaxError{fmt.Sprintf("internal error: unknown string type %d", universalTag)}
   924  		}
   925  		if err == nil {
   926  			val.SetString(v)
   927  		}
   928  		return
   929  	}
   930  	err = StructuralError{"unsupported: " + v.Type().String()}
   931  	return
   932  }
   933  
   934  // canHaveDefaultValue reports whether k is a Kind that we will set a default
   935  // value for. (A signed integer, essentially.)
   936  func canHaveDefaultValue(k reflect.Kind) bool {
   937  	switch k {
   938  	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
   939  		return true
   940  	}
   941  
   942  	return false
   943  }
   944  
   945  // setDefaultValue is used to install a default value, from a tag string, into
   946  // a Value. It is successful if the field was optional, even if a default value
   947  // wasn't provided or it failed to install it into the Value.
   948  func setDefaultValue(v reflect.Value, params fieldParameters) (ok bool) {
   949  	if !params.optional {
   950  		return
   951  	}
   952  	ok = true
   953  	if params.defaultValue == nil {
   954  		return
   955  	}
   956  	if canHaveDefaultValue(v.Kind()) {
   957  		v.SetInt(*params.defaultValue)
   958  	}
   959  	return
   960  }
   961  
   962  // Unmarshal parses the DER-encoded ASN.1 data structure b
   963  // and uses the reflect package to fill in an arbitrary value pointed at by val.
   964  // Because Unmarshal uses the reflect package, the structs
   965  // being written to must use upper case field names.
   966  //
   967  // An ASN.1 INTEGER can be written to an int, int32, int64,
   968  // or *big.Int (from the math/big package).
   969  // If the encoded value does not fit in the Go type,
   970  // Unmarshal returns a parse error.
   971  //
   972  // An ASN.1 BIT STRING can be written to a BitString.
   973  //
   974  // An ASN.1 OCTET STRING can be written to a []byte.
   975  //
   976  // An ASN.1 OBJECT IDENTIFIER can be written to an
   977  // ObjectIdentifier.
   978  //
   979  // An ASN.1 ENUMERATED can be written to an Enumerated.
   980  //
   981  // An ASN.1 UTCTIME or GENERALIZEDTIME can be written to a time.Time.
   982  //
   983  // An ASN.1 PrintableString or IA5String can be written to a string.
   984  //
   985  // Any of the above ASN.1 values can be written to an interface{}.
   986  // The value stored in the interface has the corresponding Go type.
   987  // For integers, that type is int64.
   988  //
   989  // An ASN.1 SEQUENCE OF x or SET OF x can be written
   990  // to a slice if an x can be written to the slice's element type.
   991  //
   992  // An ASN.1 SEQUENCE or SET can be written to a struct
   993  // if each of the elements in the sequence can be
   994  // written to the corresponding element in the struct.
   995  //
   996  // The following tags on struct fields have special meaning to Unmarshal:
   997  //
   998  //	application specifies that an APPLICATION tag is used
   999  //	default:x   sets the default value for optional integer fields (only used if optional is also present)
  1000  //	explicit    specifies that an additional, explicit tag wraps the implicit one
  1001  //	optional    marks the field as ASN.1 OPTIONAL
  1002  //	set         causes a SET, rather than a SEQUENCE type to be expected
  1003  //	tag:x       specifies the ASN.1 tag number; implies ASN.1 CONTEXT SPECIFIC
  1004  //
  1005  // If the type of the first field of a structure is RawContent then the raw
  1006  // ASN1 contents of the struct will be stored in it.
  1007  //
  1008  // If the type name of a slice element ends with "SET" then it's treated as if
  1009  // the "set" tag was set on it. This can be used with nested slices where a
  1010  // struct tag cannot be given.
  1011  //
  1012  // Other ASN.1 types are not supported; if it encounters them,
  1013  // Unmarshal returns a parse error.
  1014  func Unmarshal(b []byte, val interface{}) (rest []byte, err error) {
  1015  	return UnmarshalWithParams(b, val, "")
  1016  }
  1017  
  1018  // UnmarshalWithParams allows field parameters to be specified for the
  1019  // top-level element. The form of the params is the same as the field tags.
  1020  func UnmarshalWithParams(b []byte, val interface{}, params string) (rest []byte, err error) {
  1021  	v := reflect.ValueOf(val).Elem()
  1022  	offset, err := parseField(v, b, 0, parseFieldParameters(params))
  1023  	if err != nil {
  1024  		return nil, err
  1025  	}
  1026  	return b[offset:], nil
  1027  }