github.com/goproxy0/go@v0.0.0-20171111080102-49cc0c489d2c/src/runtime/pprof/pprof.go (about) 1 // Copyright 2010 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Package pprof writes runtime profiling data in the format expected 6 // by the pprof visualization tool. 7 // 8 // Profiling a Go program 9 // 10 // The first step to profiling a Go program is to enable profiling. 11 // Support for profiling benchmarks built with the standard testing 12 // package is built into go test. For example, the following command 13 // runs benchmarks in the current directory and writes the CPU and 14 // memory profiles to cpu.prof and mem.prof: 15 // 16 // go test -cpuprofile cpu.prof -memprofile mem.prof -bench . 17 // 18 // To add equivalent profiling support to a standalone program, add 19 // code like the following to your main function: 20 // 21 // var cpuprofile = flag.String("cpuprofile", "", "write cpu profile `file`") 22 // var memprofile = flag.String("memprofile", "", "write memory profile to `file`") 23 // 24 // func main() { 25 // flag.Parse() 26 // if *cpuprofile != "" { 27 // f, err := os.Create(*cpuprofile) 28 // if err != nil { 29 // log.Fatal("could not create CPU profile: ", err) 30 // } 31 // if err := pprof.StartCPUProfile(f); err != nil { 32 // log.Fatal("could not start CPU profile: ", err) 33 // } 34 // defer pprof.StopCPUProfile() 35 // } 36 // 37 // // ... rest of the program ... 38 // 39 // if *memprofile != "" { 40 // f, err := os.Create(*memprofile) 41 // if err != nil { 42 // log.Fatal("could not create memory profile: ", err) 43 // } 44 // runtime.GC() // get up-to-date statistics 45 // if err := pprof.WriteHeapProfile(f); err != nil { 46 // log.Fatal("could not write memory profile: ", err) 47 // } 48 // f.Close() 49 // } 50 // } 51 // 52 // There is also a standard HTTP interface to profiling data. Adding 53 // the following line will install handlers under the /debug/pprof/ 54 // URL to download live profiles: 55 // 56 // import _ "net/http/pprof" 57 // 58 // See the net/http/pprof package for more details. 59 // 60 // Profiles can then be visualized with the pprof tool: 61 // 62 // go tool pprof cpu.prof 63 // 64 // There are many commands available from the pprof command line. 65 // Commonly used commands include "top", which prints a summary of the 66 // top program hot-spots, and "web", which opens an interactive graph 67 // of hot-spots and their call graphs. Use "help" for information on 68 // all pprof commands. 69 // 70 // For more information about pprof, see 71 // https://github.com/google/pprof/blob/master/doc/pprof.md. 72 package pprof 73 74 import ( 75 "bufio" 76 "bytes" 77 "fmt" 78 "io" 79 "runtime" 80 "sort" 81 "strings" 82 "sync" 83 "text/tabwriter" 84 "time" 85 "unsafe" 86 ) 87 88 // BUG(rsc): Profiles are only as good as the kernel support used to generate them. 89 // See https://golang.org/issue/13841 for details about known problems. 90 91 // A Profile is a collection of stack traces showing the call sequences 92 // that led to instances of a particular event, such as allocation. 93 // Packages can create and maintain their own profiles; the most common 94 // use is for tracking resources that must be explicitly closed, such as files 95 // or network connections. 96 // 97 // A Profile's methods can be called from multiple goroutines simultaneously. 98 // 99 // Each Profile has a unique name. A few profiles are predefined: 100 // 101 // goroutine - stack traces of all current goroutines 102 // heap - a sampling of all heap allocations 103 // threadcreate - stack traces that led to the creation of new OS threads 104 // block - stack traces that led to blocking on synchronization primitives 105 // mutex - stack traces of holders of contended mutexes 106 // 107 // These predefined profiles maintain themselves and panic on an explicit 108 // Add or Remove method call. 109 // 110 // The heap profile reports statistics as of the most recently completed 111 // garbage collection; it elides more recent allocation to avoid skewing 112 // the profile away from live data and toward garbage. 113 // If there has been no garbage collection at all, the heap profile reports 114 // all known allocations. This exception helps mainly in programs running 115 // without garbage collection enabled, usually for debugging purposes. 116 // 117 // The CPU profile is not available as a Profile. It has a special API, 118 // the StartCPUProfile and StopCPUProfile functions, because it streams 119 // output to a writer during profiling. 120 // 121 type Profile struct { 122 name string 123 mu sync.Mutex 124 m map[interface{}][]uintptr 125 count func() int 126 write func(io.Writer, int) error 127 } 128 129 // profiles records all registered profiles. 130 var profiles struct { 131 mu sync.Mutex 132 m map[string]*Profile 133 } 134 135 var goroutineProfile = &Profile{ 136 name: "goroutine", 137 count: countGoroutine, 138 write: writeGoroutine, 139 } 140 141 var threadcreateProfile = &Profile{ 142 name: "threadcreate", 143 count: countThreadCreate, 144 write: writeThreadCreate, 145 } 146 147 var heapProfile = &Profile{ 148 name: "heap", 149 count: countHeap, 150 write: writeHeap, 151 } 152 153 var blockProfile = &Profile{ 154 name: "block", 155 count: countBlock, 156 write: writeBlock, 157 } 158 159 var mutexProfile = &Profile{ 160 name: "mutex", 161 count: countMutex, 162 write: writeMutex, 163 } 164 165 func lockProfiles() { 166 profiles.mu.Lock() 167 if profiles.m == nil { 168 // Initial built-in profiles. 169 profiles.m = map[string]*Profile{ 170 "goroutine": goroutineProfile, 171 "threadcreate": threadcreateProfile, 172 "heap": heapProfile, 173 "block": blockProfile, 174 "mutex": mutexProfile, 175 } 176 } 177 } 178 179 func unlockProfiles() { 180 profiles.mu.Unlock() 181 } 182 183 // NewProfile creates a new profile with the given name. 184 // If a profile with that name already exists, NewProfile panics. 185 // The convention is to use a 'import/path.' prefix to create 186 // separate name spaces for each package. 187 // For compatibility with various tools that read pprof data, 188 // profile names should not contain spaces. 189 func NewProfile(name string) *Profile { 190 lockProfiles() 191 defer unlockProfiles() 192 if name == "" { 193 panic("pprof: NewProfile with empty name") 194 } 195 if profiles.m[name] != nil { 196 panic("pprof: NewProfile name already in use: " + name) 197 } 198 p := &Profile{ 199 name: name, 200 m: map[interface{}][]uintptr{}, 201 } 202 profiles.m[name] = p 203 return p 204 } 205 206 // Lookup returns the profile with the given name, or nil if no such profile exists. 207 func Lookup(name string) *Profile { 208 lockProfiles() 209 defer unlockProfiles() 210 return profiles.m[name] 211 } 212 213 // Profiles returns a slice of all the known profiles, sorted by name. 214 func Profiles() []*Profile { 215 lockProfiles() 216 defer unlockProfiles() 217 218 all := make([]*Profile, 0, len(profiles.m)) 219 for _, p := range profiles.m { 220 all = append(all, p) 221 } 222 223 sort.Slice(all, func(i, j int) bool { return all[i].name < all[j].name }) 224 return all 225 } 226 227 // Name returns this profile's name, which can be passed to Lookup to reobtain the profile. 228 func (p *Profile) Name() string { 229 return p.name 230 } 231 232 // Count returns the number of execution stacks currently in the profile. 233 func (p *Profile) Count() int { 234 p.mu.Lock() 235 defer p.mu.Unlock() 236 if p.count != nil { 237 return p.count() 238 } 239 return len(p.m) 240 } 241 242 // Add adds the current execution stack to the profile, associated with value. 243 // Add stores value in an internal map, so value must be suitable for use as 244 // a map key and will not be garbage collected until the corresponding 245 // call to Remove. Add panics if the profile already contains a stack for value. 246 // 247 // The skip parameter has the same meaning as runtime.Caller's skip 248 // and controls where the stack trace begins. Passing skip=0 begins the 249 // trace in the function calling Add. For example, given this 250 // execution stack: 251 // 252 // Add 253 // called from rpc.NewClient 254 // called from mypkg.Run 255 // called from main.main 256 // 257 // Passing skip=0 begins the stack trace at the call to Add inside rpc.NewClient. 258 // Passing skip=1 begins the stack trace at the call to NewClient inside mypkg.Run. 259 // 260 func (p *Profile) Add(value interface{}, skip int) { 261 if p.name == "" { 262 panic("pprof: use of uninitialized Profile") 263 } 264 if p.write != nil { 265 panic("pprof: Add called on built-in Profile " + p.name) 266 } 267 268 stk := make([]uintptr, 32) 269 n := runtime.Callers(skip+1, stk[:]) 270 stk = stk[:n] 271 if len(stk) == 0 { 272 // The value for skip is too large, and there's no stack trace to record. 273 stk = []uintptr{funcPC(lostProfileEvent)} 274 } 275 276 p.mu.Lock() 277 defer p.mu.Unlock() 278 if p.m[value] != nil { 279 panic("pprof: Profile.Add of duplicate value") 280 } 281 p.m[value] = stk 282 } 283 284 // Remove removes the execution stack associated with value from the profile. 285 // It is a no-op if the value is not in the profile. 286 func (p *Profile) Remove(value interface{}) { 287 p.mu.Lock() 288 defer p.mu.Unlock() 289 delete(p.m, value) 290 } 291 292 // WriteTo writes a pprof-formatted snapshot of the profile to w. 293 // If a write to w returns an error, WriteTo returns that error. 294 // Otherwise, WriteTo returns nil. 295 // 296 // The debug parameter enables additional output. 297 // Passing debug=0 prints only the hexadecimal addresses that pprof needs. 298 // Passing debug=1 adds comments translating addresses to function names 299 // and line numbers, so that a programmer can read the profile without tools. 300 // 301 // The predefined profiles may assign meaning to other debug values; 302 // for example, when printing the "goroutine" profile, debug=2 means to 303 // print the goroutine stacks in the same form that a Go program uses 304 // when dying due to an unrecovered panic. 305 func (p *Profile) WriteTo(w io.Writer, debug int) error { 306 if p.name == "" { 307 panic("pprof: use of zero Profile") 308 } 309 if p.write != nil { 310 return p.write(w, debug) 311 } 312 313 // Obtain consistent snapshot under lock; then process without lock. 314 p.mu.Lock() 315 all := make([][]uintptr, 0, len(p.m)) 316 for _, stk := range p.m { 317 all = append(all, stk) 318 } 319 p.mu.Unlock() 320 321 // Map order is non-deterministic; make output deterministic. 322 sort.Slice(all, func(i, j int) bool { 323 t, u := all[i], all[j] 324 for k := 0; k < len(t) && k < len(u); k++ { 325 if t[k] != u[k] { 326 return t[k] < u[k] 327 } 328 } 329 return len(t) < len(u) 330 }) 331 332 return printCountProfile(w, debug, p.name, stackProfile(all)) 333 } 334 335 type stackProfile [][]uintptr 336 337 func (x stackProfile) Len() int { return len(x) } 338 func (x stackProfile) Stack(i int) []uintptr { return x[i] } 339 340 // A countProfile is a set of stack traces to be printed as counts 341 // grouped by stack trace. There are multiple implementations: 342 // all that matters is that we can find out how many traces there are 343 // and obtain each trace in turn. 344 type countProfile interface { 345 Len() int 346 Stack(i int) []uintptr 347 } 348 349 // printCountCycleProfile outputs block profile records (for block or mutex profiles) 350 // as the pprof-proto format output. Translations from cycle count to time duration 351 // are done because The proto expects count and time (nanoseconds) instead of count 352 // and the number of cycles for block, contention profiles. 353 func printCountCycleProfile(w io.Writer, countName, cycleName string, records []runtime.BlockProfileRecord) error { 354 // Output profile in protobuf form. 355 b := newProfileBuilder(w) 356 b.pbValueType(tagProfile_PeriodType, countName, "count") 357 b.pb.int64Opt(tagProfile_Period, 1) 358 b.pbValueType(tagProfile_SampleType, countName, "count") 359 b.pbValueType(tagProfile_SampleType, cycleName, "nanoseconds") 360 361 cpuGHz := float64(runtime_cyclesPerSecond()) / 1e9 362 363 values := []int64{0, 0} 364 var locs []uint64 365 for _, r := range records { 366 values[0] = int64(r.Count) 367 values[1] = int64(float64(r.Cycles) / cpuGHz) // to nanoseconds 368 locs = locs[:0] 369 for _, addr := range r.Stack() { 370 // For count profiles, all stack addresses are 371 // return PCs, which is what locForPC expects. 372 l := b.locForPC(addr) 373 if l == 0 { // runtime.goexit 374 continue 375 } 376 locs = append(locs, l) 377 } 378 b.pbSample(values, locs, nil) 379 } 380 b.build() 381 return nil 382 } 383 384 // printCountProfile prints a countProfile at the specified debug level. 385 // The profile will be in compressed proto format unless debug is nonzero. 386 func printCountProfile(w io.Writer, debug int, name string, p countProfile) error { 387 // Build count of each stack. 388 var buf bytes.Buffer 389 key := func(stk []uintptr) string { 390 buf.Reset() 391 fmt.Fprintf(&buf, "@") 392 for _, pc := range stk { 393 fmt.Fprintf(&buf, " %#x", pc) 394 } 395 return buf.String() 396 } 397 count := map[string]int{} 398 index := map[string]int{} 399 var keys []string 400 n := p.Len() 401 for i := 0; i < n; i++ { 402 k := key(p.Stack(i)) 403 if count[k] == 0 { 404 index[k] = i 405 keys = append(keys, k) 406 } 407 count[k]++ 408 } 409 410 sort.Sort(&keysByCount{keys, count}) 411 412 if debug > 0 { 413 // Print debug profile in legacy format 414 tw := tabwriter.NewWriter(w, 1, 8, 1, '\t', 0) 415 fmt.Fprintf(tw, "%s profile: total %d\n", name, p.Len()) 416 for _, k := range keys { 417 fmt.Fprintf(tw, "%d %s\n", count[k], k) 418 printStackRecord(tw, p.Stack(index[k]), false) 419 } 420 return tw.Flush() 421 } 422 423 // Output profile in protobuf form. 424 b := newProfileBuilder(w) 425 b.pbValueType(tagProfile_PeriodType, name, "count") 426 b.pb.int64Opt(tagProfile_Period, 1) 427 b.pbValueType(tagProfile_SampleType, name, "count") 428 429 values := []int64{0} 430 var locs []uint64 431 for _, k := range keys { 432 values[0] = int64(count[k]) 433 locs = locs[:0] 434 for _, addr := range p.Stack(index[k]) { 435 // For count profiles, all stack addresses are 436 // return PCs, which is what locForPC expects. 437 l := b.locForPC(addr) 438 if l == 0 { // runtime.goexit 439 continue 440 } 441 locs = append(locs, l) 442 } 443 b.pbSample(values, locs, nil) 444 } 445 b.build() 446 return nil 447 } 448 449 // keysByCount sorts keys with higher counts first, breaking ties by key string order. 450 type keysByCount struct { 451 keys []string 452 count map[string]int 453 } 454 455 func (x *keysByCount) Len() int { return len(x.keys) } 456 func (x *keysByCount) Swap(i, j int) { x.keys[i], x.keys[j] = x.keys[j], x.keys[i] } 457 func (x *keysByCount) Less(i, j int) bool { 458 ki, kj := x.keys[i], x.keys[j] 459 ci, cj := x.count[ki], x.count[kj] 460 if ci != cj { 461 return ci > cj 462 } 463 return ki < kj 464 } 465 466 // printStackRecord prints the function + source line information 467 // for a single stack trace. 468 func printStackRecord(w io.Writer, stk []uintptr, allFrames bool) { 469 show := allFrames 470 frames := runtime.CallersFrames(stk) 471 for { 472 frame, more := frames.Next() 473 name := frame.Function 474 if name == "" { 475 show = true 476 fmt.Fprintf(w, "#\t%#x\n", frame.PC) 477 } else if name != "runtime.goexit" && (show || !strings.HasPrefix(name, "runtime.")) { 478 // Hide runtime.goexit and any runtime functions at the beginning. 479 // This is useful mainly for allocation traces. 480 show = true 481 fmt.Fprintf(w, "#\t%#x\t%s+%#x\t%s:%d\n", frame.PC, name, frame.PC-frame.Entry, frame.File, frame.Line) 482 } 483 if !more { 484 break 485 } 486 } 487 if !show { 488 // We didn't print anything; do it again, 489 // and this time include runtime functions. 490 printStackRecord(w, stk, true) 491 return 492 } 493 fmt.Fprintf(w, "\n") 494 } 495 496 // Interface to system profiles. 497 498 // WriteHeapProfile is shorthand for Lookup("heap").WriteTo(w, 0). 499 // It is preserved for backwards compatibility. 500 func WriteHeapProfile(w io.Writer) error { 501 return writeHeap(w, 0) 502 } 503 504 // countHeap returns the number of records in the heap profile. 505 func countHeap() int { 506 n, _ := runtime.MemProfile(nil, true) 507 return n 508 } 509 510 // writeHeap writes the current runtime heap profile to w. 511 func writeHeap(w io.Writer, debug int) error { 512 // Find out how many records there are (MemProfile(nil, true)), 513 // allocate that many records, and get the data. 514 // There's a race—more records might be added between 515 // the two calls—so allocate a few extra records for safety 516 // and also try again if we're very unlucky. 517 // The loop should only execute one iteration in the common case. 518 var p []runtime.MemProfileRecord 519 n, ok := runtime.MemProfile(nil, true) 520 for { 521 // Allocate room for a slightly bigger profile, 522 // in case a few more entries have been added 523 // since the call to MemProfile. 524 p = make([]runtime.MemProfileRecord, n+50) 525 n, ok = runtime.MemProfile(p, true) 526 if ok { 527 p = p[0:n] 528 break 529 } 530 // Profile grew; try again. 531 } 532 533 if debug == 0 { 534 return writeHeapProto(w, p, int64(runtime.MemProfileRate)) 535 } 536 537 sort.Slice(p, func(i, j int) bool { return p[i].InUseBytes() > p[j].InUseBytes() }) 538 539 b := bufio.NewWriter(w) 540 tw := tabwriter.NewWriter(b, 1, 8, 1, '\t', 0) 541 w = tw 542 543 var total runtime.MemProfileRecord 544 for i := range p { 545 r := &p[i] 546 total.AllocBytes += r.AllocBytes 547 total.AllocObjects += r.AllocObjects 548 total.FreeBytes += r.FreeBytes 549 total.FreeObjects += r.FreeObjects 550 } 551 552 // Technically the rate is MemProfileRate not 2*MemProfileRate, 553 // but early versions of the C++ heap profiler reported 2*MemProfileRate, 554 // so that's what pprof has come to expect. 555 fmt.Fprintf(w, "heap profile: %d: %d [%d: %d] @ heap/%d\n", 556 total.InUseObjects(), total.InUseBytes(), 557 total.AllocObjects, total.AllocBytes, 558 2*runtime.MemProfileRate) 559 560 for i := range p { 561 r := &p[i] 562 fmt.Fprintf(w, "%d: %d [%d: %d] @", 563 r.InUseObjects(), r.InUseBytes(), 564 r.AllocObjects, r.AllocBytes) 565 for _, pc := range r.Stack() { 566 fmt.Fprintf(w, " %#x", pc) 567 } 568 fmt.Fprintf(w, "\n") 569 printStackRecord(w, r.Stack(), false) 570 } 571 572 // Print memstats information too. 573 // Pprof will ignore, but useful for people 574 s := new(runtime.MemStats) 575 runtime.ReadMemStats(s) 576 fmt.Fprintf(w, "\n# runtime.MemStats\n") 577 fmt.Fprintf(w, "# Alloc = %d\n", s.Alloc) 578 fmt.Fprintf(w, "# TotalAlloc = %d\n", s.TotalAlloc) 579 fmt.Fprintf(w, "# Sys = %d\n", s.Sys) 580 fmt.Fprintf(w, "# Lookups = %d\n", s.Lookups) 581 fmt.Fprintf(w, "# Mallocs = %d\n", s.Mallocs) 582 fmt.Fprintf(w, "# Frees = %d\n", s.Frees) 583 584 fmt.Fprintf(w, "# HeapAlloc = %d\n", s.HeapAlloc) 585 fmt.Fprintf(w, "# HeapSys = %d\n", s.HeapSys) 586 fmt.Fprintf(w, "# HeapIdle = %d\n", s.HeapIdle) 587 fmt.Fprintf(w, "# HeapInuse = %d\n", s.HeapInuse) 588 fmt.Fprintf(w, "# HeapReleased = %d\n", s.HeapReleased) 589 fmt.Fprintf(w, "# HeapObjects = %d\n", s.HeapObjects) 590 591 fmt.Fprintf(w, "# Stack = %d / %d\n", s.StackInuse, s.StackSys) 592 fmt.Fprintf(w, "# MSpan = %d / %d\n", s.MSpanInuse, s.MSpanSys) 593 fmt.Fprintf(w, "# MCache = %d / %d\n", s.MCacheInuse, s.MCacheSys) 594 fmt.Fprintf(w, "# BuckHashSys = %d\n", s.BuckHashSys) 595 fmt.Fprintf(w, "# GCSys = %d\n", s.GCSys) 596 fmt.Fprintf(w, "# OtherSys = %d\n", s.OtherSys) 597 598 fmt.Fprintf(w, "# NextGC = %d\n", s.NextGC) 599 fmt.Fprintf(w, "# LastGC = %d\n", s.LastGC) 600 fmt.Fprintf(w, "# PauseNs = %d\n", s.PauseNs) 601 fmt.Fprintf(w, "# PauseEnd = %d\n", s.PauseEnd) 602 fmt.Fprintf(w, "# NumGC = %d\n", s.NumGC) 603 fmt.Fprintf(w, "# NumForcedGC = %d\n", s.NumForcedGC) 604 fmt.Fprintf(w, "# GCCPUFraction = %v\n", s.GCCPUFraction) 605 fmt.Fprintf(w, "# DebugGC = %v\n", s.DebugGC) 606 607 tw.Flush() 608 return b.Flush() 609 } 610 611 // countThreadCreate returns the size of the current ThreadCreateProfile. 612 func countThreadCreate() int { 613 n, _ := runtime.ThreadCreateProfile(nil) 614 return n 615 } 616 617 // writeThreadCreate writes the current runtime ThreadCreateProfile to w. 618 func writeThreadCreate(w io.Writer, debug int) error { 619 return writeRuntimeProfile(w, debug, "threadcreate", runtime.ThreadCreateProfile) 620 } 621 622 // countGoroutine returns the number of goroutines. 623 func countGoroutine() int { 624 return runtime.NumGoroutine() 625 } 626 627 // writeGoroutine writes the current runtime GoroutineProfile to w. 628 func writeGoroutine(w io.Writer, debug int) error { 629 if debug >= 2 { 630 return writeGoroutineStacks(w) 631 } 632 return writeRuntimeProfile(w, debug, "goroutine", runtime.GoroutineProfile) 633 } 634 635 func writeGoroutineStacks(w io.Writer) error { 636 // We don't know how big the buffer needs to be to collect 637 // all the goroutines. Start with 1 MB and try a few times, doubling each time. 638 // Give up and use a truncated trace if 64 MB is not enough. 639 buf := make([]byte, 1<<20) 640 for i := 0; ; i++ { 641 n := runtime.Stack(buf, true) 642 if n < len(buf) { 643 buf = buf[:n] 644 break 645 } 646 if len(buf) >= 64<<20 { 647 // Filled 64 MB - stop there. 648 break 649 } 650 buf = make([]byte, 2*len(buf)) 651 } 652 _, err := w.Write(buf) 653 return err 654 } 655 656 func writeRuntimeProfile(w io.Writer, debug int, name string, fetch func([]runtime.StackRecord) (int, bool)) error { 657 // Find out how many records there are (fetch(nil)), 658 // allocate that many records, and get the data. 659 // There's a race—more records might be added between 660 // the two calls—so allocate a few extra records for safety 661 // and also try again if we're very unlucky. 662 // The loop should only execute one iteration in the common case. 663 var p []runtime.StackRecord 664 n, ok := fetch(nil) 665 for { 666 // Allocate room for a slightly bigger profile, 667 // in case a few more entries have been added 668 // since the call to ThreadProfile. 669 p = make([]runtime.StackRecord, n+10) 670 n, ok = fetch(p) 671 if ok { 672 p = p[0:n] 673 break 674 } 675 // Profile grew; try again. 676 } 677 678 return printCountProfile(w, debug, name, runtimeProfile(p)) 679 } 680 681 type runtimeProfile []runtime.StackRecord 682 683 func (p runtimeProfile) Len() int { return len(p) } 684 func (p runtimeProfile) Stack(i int) []uintptr { return p[i].Stack() } 685 686 var cpu struct { 687 sync.Mutex 688 profiling bool 689 done chan bool 690 } 691 692 // StartCPUProfile enables CPU profiling for the current process. 693 // While profiling, the profile will be buffered and written to w. 694 // StartCPUProfile returns an error if profiling is already enabled. 695 // 696 // On Unix-like systems, StartCPUProfile does not work by default for 697 // Go code built with -buildmode=c-archive or -buildmode=c-shared. 698 // StartCPUProfile relies on the SIGPROF signal, but that signal will 699 // be delivered to the main program's SIGPROF signal handler (if any) 700 // not to the one used by Go. To make it work, call os/signal.Notify 701 // for syscall.SIGPROF, but note that doing so may break any profiling 702 // being done by the main program. 703 func StartCPUProfile(w io.Writer) error { 704 // The runtime routines allow a variable profiling rate, 705 // but in practice operating systems cannot trigger signals 706 // at more than about 500 Hz, and our processing of the 707 // signal is not cheap (mostly getting the stack trace). 708 // 100 Hz is a reasonable choice: it is frequent enough to 709 // produce useful data, rare enough not to bog down the 710 // system, and a nice round number to make it easy to 711 // convert sample counts to seconds. Instead of requiring 712 // each client to specify the frequency, we hard code it. 713 const hz = 100 714 715 cpu.Lock() 716 defer cpu.Unlock() 717 if cpu.done == nil { 718 cpu.done = make(chan bool) 719 } 720 // Double-check. 721 if cpu.profiling { 722 return fmt.Errorf("cpu profiling already in use") 723 } 724 cpu.profiling = true 725 runtime.SetCPUProfileRate(hz) 726 go profileWriter(w) 727 return nil 728 } 729 730 // readProfile, provided by the runtime, returns the next chunk of 731 // binary CPU profiling stack trace data, blocking until data is available. 732 // If profiling is turned off and all the profile data accumulated while it was 733 // on has been returned, readProfile returns eof=true. 734 // The caller must save the returned data and tags before calling readProfile again. 735 func readProfile() (data []uint64, tags []unsafe.Pointer, eof bool) 736 737 func profileWriter(w io.Writer) { 738 b := newProfileBuilder(w) 739 var err error 740 for { 741 time.Sleep(100 * time.Millisecond) 742 data, tags, eof := readProfile() 743 if e := b.addCPUData(data, tags); e != nil && err == nil { 744 err = e 745 } 746 if eof { 747 break 748 } 749 } 750 if err != nil { 751 // The runtime should never produce an invalid or truncated profile. 752 // It drops records that can't fit into its log buffers. 753 panic("runtime/pprof: converting profile: " + err.Error()) 754 } 755 b.build() 756 cpu.done <- true 757 } 758 759 // StopCPUProfile stops the current CPU profile, if any. 760 // StopCPUProfile only returns after all the writes for the 761 // profile have completed. 762 func StopCPUProfile() { 763 cpu.Lock() 764 defer cpu.Unlock() 765 766 if !cpu.profiling { 767 return 768 } 769 cpu.profiling = false 770 runtime.SetCPUProfileRate(0) 771 <-cpu.done 772 } 773 774 // countBlock returns the number of records in the blocking profile. 775 func countBlock() int { 776 n, _ := runtime.BlockProfile(nil) 777 return n 778 } 779 780 // countMutex returns the number of records in the mutex profile. 781 func countMutex() int { 782 n, _ := runtime.MutexProfile(nil) 783 return n 784 } 785 786 // writeBlock writes the current blocking profile to w. 787 func writeBlock(w io.Writer, debug int) error { 788 var p []runtime.BlockProfileRecord 789 n, ok := runtime.BlockProfile(nil) 790 for { 791 p = make([]runtime.BlockProfileRecord, n+50) 792 n, ok = runtime.BlockProfile(p) 793 if ok { 794 p = p[:n] 795 break 796 } 797 } 798 799 sort.Slice(p, func(i, j int) bool { return p[i].Cycles > p[j].Cycles }) 800 801 if debug <= 0 { 802 return printCountCycleProfile(w, "contentions", "delay", p) 803 } 804 805 b := bufio.NewWriter(w) 806 tw := tabwriter.NewWriter(w, 1, 8, 1, '\t', 0) 807 w = tw 808 809 fmt.Fprintf(w, "--- contention:\n") 810 fmt.Fprintf(w, "cycles/second=%v\n", runtime_cyclesPerSecond()) 811 for i := range p { 812 r := &p[i] 813 fmt.Fprintf(w, "%v %v @", r.Cycles, r.Count) 814 for _, pc := range r.Stack() { 815 fmt.Fprintf(w, " %#x", pc) 816 } 817 fmt.Fprint(w, "\n") 818 if debug > 0 { 819 printStackRecord(w, r.Stack(), true) 820 } 821 } 822 823 if tw != nil { 824 tw.Flush() 825 } 826 return b.Flush() 827 } 828 829 // writeMutex writes the current mutex profile to w. 830 func writeMutex(w io.Writer, debug int) error { 831 // TODO(pjw): too much common code with writeBlock. FIX! 832 var p []runtime.BlockProfileRecord 833 n, ok := runtime.MutexProfile(nil) 834 for { 835 p = make([]runtime.BlockProfileRecord, n+50) 836 n, ok = runtime.MutexProfile(p) 837 if ok { 838 p = p[:n] 839 break 840 } 841 } 842 843 sort.Slice(p, func(i, j int) bool { return p[i].Cycles > p[j].Cycles }) 844 845 if debug <= 0 { 846 return printCountCycleProfile(w, "contentions", "delay", p) 847 } 848 849 b := bufio.NewWriter(w) 850 tw := tabwriter.NewWriter(w, 1, 8, 1, '\t', 0) 851 w = tw 852 853 fmt.Fprintf(w, "--- mutex:\n") 854 fmt.Fprintf(w, "cycles/second=%v\n", runtime_cyclesPerSecond()) 855 fmt.Fprintf(w, "sampling period=%d\n", runtime.SetMutexProfileFraction(-1)) 856 for i := range p { 857 r := &p[i] 858 fmt.Fprintf(w, "%v %v @", r.Cycles, r.Count) 859 for _, pc := range r.Stack() { 860 fmt.Fprintf(w, " %#x", pc) 861 } 862 fmt.Fprint(w, "\n") 863 if debug > 0 { 864 printStackRecord(w, r.Stack(), true) 865 } 866 } 867 868 if tw != nil { 869 tw.Flush() 870 } 871 return b.Flush() 872 } 873 874 func runtime_cyclesPerSecond() int64