github.com/goproxy0/go@v0.0.0-20171111080102-49cc0c489d2c/src/strings/strings.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Package strings implements simple functions to manipulate UTF-8 encoded strings.
     6  //
     7  // For information about UTF-8 strings in Go, see https://blog.golang.org/strings.
     8  package strings
     9  
    10  import (
    11  	"unicode"
    12  	"unicode/utf8"
    13  )
    14  
    15  // explode splits s into a slice of UTF-8 strings,
    16  // one string per Unicode character up to a maximum of n (n < 0 means no limit).
    17  // Invalid UTF-8 sequences become correct encodings of U+FFFD.
    18  func explode(s string, n int) []string {
    19  	l := utf8.RuneCountInString(s)
    20  	if n < 0 || n > l {
    21  		n = l
    22  	}
    23  	a := make([]string, n)
    24  	for i := 0; i < n-1; i++ {
    25  		ch, size := utf8.DecodeRuneInString(s)
    26  		a[i] = s[:size]
    27  		s = s[size:]
    28  		if ch == utf8.RuneError {
    29  			a[i] = string(utf8.RuneError)
    30  		}
    31  	}
    32  	if n > 0 {
    33  		a[n-1] = s
    34  	}
    35  	return a
    36  }
    37  
    38  // primeRK is the prime base used in Rabin-Karp algorithm.
    39  const primeRK = 16777619
    40  
    41  // hashStr returns the hash and the appropriate multiplicative
    42  // factor for use in Rabin-Karp algorithm.
    43  func hashStr(sep string) (uint32, uint32) {
    44  	hash := uint32(0)
    45  	for i := 0; i < len(sep); i++ {
    46  		hash = hash*primeRK + uint32(sep[i])
    47  	}
    48  	var pow, sq uint32 = 1, primeRK
    49  	for i := len(sep); i > 0; i >>= 1 {
    50  		if i&1 != 0 {
    51  			pow *= sq
    52  		}
    53  		sq *= sq
    54  	}
    55  	return hash, pow
    56  }
    57  
    58  // hashStrRev returns the hash of the reverse of sep and the
    59  // appropriate multiplicative factor for use in Rabin-Karp algorithm.
    60  func hashStrRev(sep string) (uint32, uint32) {
    61  	hash := uint32(0)
    62  	for i := len(sep) - 1; i >= 0; i-- {
    63  		hash = hash*primeRK + uint32(sep[i])
    64  	}
    65  	var pow, sq uint32 = 1, primeRK
    66  	for i := len(sep); i > 0; i >>= 1 {
    67  		if i&1 != 0 {
    68  			pow *= sq
    69  		}
    70  		sq *= sq
    71  	}
    72  	return hash, pow
    73  }
    74  
    75  // countGeneric implements Count.
    76  func countGeneric(s, substr string) int {
    77  	// special case
    78  	if len(substr) == 0 {
    79  		return utf8.RuneCountInString(s) + 1
    80  	}
    81  	n := 0
    82  	for {
    83  		i := Index(s, substr)
    84  		if i == -1 {
    85  			return n
    86  		}
    87  		n++
    88  		s = s[i+len(substr):]
    89  	}
    90  }
    91  
    92  // Contains reports whether substr is within s.
    93  func Contains(s, substr string) bool {
    94  	return Index(s, substr) >= 0
    95  }
    96  
    97  // ContainsAny reports whether any Unicode code points in chars are within s.
    98  func ContainsAny(s, chars string) bool {
    99  	return IndexAny(s, chars) >= 0
   100  }
   101  
   102  // ContainsRune reports whether the Unicode code point r is within s.
   103  func ContainsRune(s string, r rune) bool {
   104  	return IndexRune(s, r) >= 0
   105  }
   106  
   107  // LastIndex returns the index of the last instance of substr in s, or -1 if substr is not present in s.
   108  func LastIndex(s, substr string) int {
   109  	n := len(substr)
   110  	switch {
   111  	case n == 0:
   112  		return len(s)
   113  	case n == 1:
   114  		return LastIndexByte(s, substr[0])
   115  	case n == len(s):
   116  		if substr == s {
   117  			return 0
   118  		}
   119  		return -1
   120  	case n > len(s):
   121  		return -1
   122  	}
   123  	// Rabin-Karp search from the end of the string
   124  	hashss, pow := hashStrRev(substr)
   125  	last := len(s) - n
   126  	var h uint32
   127  	for i := len(s) - 1; i >= last; i-- {
   128  		h = h*primeRK + uint32(s[i])
   129  	}
   130  	if h == hashss && s[last:] == substr {
   131  		return last
   132  	}
   133  	for i := last - 1; i >= 0; i-- {
   134  		h *= primeRK
   135  		h += uint32(s[i])
   136  		h -= pow * uint32(s[i+n])
   137  		if h == hashss && s[i:i+n] == substr {
   138  			return i
   139  		}
   140  	}
   141  	return -1
   142  }
   143  
   144  // IndexRune returns the index of the first instance of the Unicode code point
   145  // r, or -1 if rune is not present in s.
   146  // If r is utf8.RuneError, it returns the first instance of any
   147  // invalid UTF-8 byte sequence.
   148  func IndexRune(s string, r rune) int {
   149  	switch {
   150  	case 0 <= r && r < utf8.RuneSelf:
   151  		return IndexByte(s, byte(r))
   152  	case r == utf8.RuneError:
   153  		for i, r := range s {
   154  			if r == utf8.RuneError {
   155  				return i
   156  			}
   157  		}
   158  		return -1
   159  	case !utf8.ValidRune(r):
   160  		return -1
   161  	default:
   162  		return Index(s, string(r))
   163  	}
   164  }
   165  
   166  // IndexAny returns the index of the first instance of any Unicode code point
   167  // from chars in s, or -1 if no Unicode code point from chars is present in s.
   168  func IndexAny(s, chars string) int {
   169  	if len(s) > 8 {
   170  		if as, isASCII := makeASCIISet(chars); isASCII {
   171  			for i := 0; i < len(s); i++ {
   172  				if as.contains(s[i]) {
   173  					return i
   174  				}
   175  			}
   176  			return -1
   177  		}
   178  	}
   179  	for i, c := range s {
   180  		for _, m := range chars {
   181  			if c == m {
   182  				return i
   183  			}
   184  		}
   185  	}
   186  	return -1
   187  }
   188  
   189  // LastIndexAny returns the index of the last instance of any Unicode code
   190  // point from chars in s, or -1 if no Unicode code point from chars is
   191  // present in s.
   192  func LastIndexAny(s, chars string) int {
   193  	if len(s) > 8 {
   194  		if as, isASCII := makeASCIISet(chars); isASCII {
   195  			for i := len(s) - 1; i >= 0; i-- {
   196  				if as.contains(s[i]) {
   197  					return i
   198  				}
   199  			}
   200  			return -1
   201  		}
   202  	}
   203  	for i := len(s); i > 0; {
   204  		r, size := utf8.DecodeLastRuneInString(s[:i])
   205  		i -= size
   206  		for _, c := range chars {
   207  			if r == c {
   208  				return i
   209  			}
   210  		}
   211  	}
   212  	return -1
   213  }
   214  
   215  // LastIndexByte returns the index of the last instance of c in s, or -1 if c is not present in s.
   216  func LastIndexByte(s string, c byte) int {
   217  	for i := len(s) - 1; i >= 0; i-- {
   218  		if s[i] == c {
   219  			return i
   220  		}
   221  	}
   222  	return -1
   223  }
   224  
   225  // Generic split: splits after each instance of sep,
   226  // including sepSave bytes of sep in the subarrays.
   227  func genSplit(s, sep string, sepSave, n int) []string {
   228  	if n == 0 {
   229  		return nil
   230  	}
   231  	if sep == "" {
   232  		return explode(s, n)
   233  	}
   234  	if n < 0 {
   235  		n = Count(s, sep) + 1
   236  	}
   237  
   238  	a := make([]string, n)
   239  	n--
   240  	i := 0
   241  	for i < n {
   242  		m := Index(s, sep)
   243  		if m < 0 {
   244  			break
   245  		}
   246  		a[i] = s[:m+sepSave]
   247  		s = s[m+len(sep):]
   248  		i++
   249  	}
   250  	a[i] = s
   251  	return a[:i+1]
   252  }
   253  
   254  // SplitN slices s into substrings separated by sep and returns a slice of
   255  // the substrings between those separators.
   256  //
   257  // The count determines the number of substrings to return:
   258  //   n > 0: at most n substrings; the last substring will be the unsplit remainder.
   259  //   n == 0: the result is nil (zero substrings)
   260  //   n < 0: all substrings
   261  //
   262  // Edge cases for s and sep (for example, empty strings) are handled
   263  // as described in the documentation for Split.
   264  func SplitN(s, sep string, n int) []string { return genSplit(s, sep, 0, n) }
   265  
   266  // SplitAfterN slices s into substrings after each instance of sep and
   267  // returns a slice of those substrings.
   268  //
   269  // The count determines the number of substrings to return:
   270  //   n > 0: at most n substrings; the last substring will be the unsplit remainder.
   271  //   n == 0: the result is nil (zero substrings)
   272  //   n < 0: all substrings
   273  //
   274  // Edge cases for s and sep (for example, empty strings) are handled
   275  // as described in the documentation for SplitAfter.
   276  func SplitAfterN(s, sep string, n int) []string {
   277  	return genSplit(s, sep, len(sep), n)
   278  }
   279  
   280  // Split slices s into all substrings separated by sep and returns a slice of
   281  // the substrings between those separators.
   282  //
   283  // If s does not contain sep and sep is not empty, Split returns a
   284  // slice of length 1 whose only element is s.
   285  //
   286  // If sep is empty, Split splits after each UTF-8 sequence. If both s
   287  // and sep are empty, Split returns an empty slice.
   288  //
   289  // It is equivalent to SplitN with a count of -1.
   290  func Split(s, sep string) []string { return genSplit(s, sep, 0, -1) }
   291  
   292  // SplitAfter slices s into all substrings after each instance of sep and
   293  // returns a slice of those substrings.
   294  //
   295  // If s does not contain sep and sep is not empty, SplitAfter returns
   296  // a slice of length 1 whose only element is s.
   297  //
   298  // If sep is empty, SplitAfter splits after each UTF-8 sequence. If
   299  // both s and sep are empty, SplitAfter returns an empty slice.
   300  //
   301  // It is equivalent to SplitAfterN with a count of -1.
   302  func SplitAfter(s, sep string) []string {
   303  	return genSplit(s, sep, len(sep), -1)
   304  }
   305  
   306  var asciiSpace = [256]uint8{'\t': 1, '\n': 1, '\v': 1, '\f': 1, '\r': 1, ' ': 1}
   307  
   308  // Fields splits the string s around each instance of one or more consecutive white space
   309  // characters, as defined by unicode.IsSpace, returning a slice of substrings of s or an
   310  // empty slice if s contains only white space.
   311  func Fields(s string) []string {
   312  	// First count the fields.
   313  	// This is an exact count if s is ASCII, otherwise it is an approximation.
   314  	n := 0
   315  	wasSpace := 1
   316  	// setBits is used to track which bits are set in the bytes of s.
   317  	setBits := uint8(0)
   318  	for i := 0; i < len(s); i++ {
   319  		r := s[i]
   320  		setBits |= r
   321  		isSpace := int(asciiSpace[r])
   322  		n += wasSpace & ^isSpace
   323  		wasSpace = isSpace
   324  	}
   325  
   326  	if setBits < utf8.RuneSelf { // ASCII fast path
   327  		a := make([]string, n)
   328  		na := 0
   329  		fieldStart := 0
   330  		i := 0
   331  		// Skip spaces in the front of the input.
   332  		for i < len(s) && asciiSpace[s[i]] != 0 {
   333  			i++
   334  		}
   335  		fieldStart = i
   336  		for i < len(s) {
   337  			if asciiSpace[s[i]] == 0 {
   338  				i++
   339  				continue
   340  			}
   341  			a[na] = s[fieldStart:i]
   342  			na++
   343  			i++
   344  			// Skip spaces in between fields.
   345  			for i < len(s) && asciiSpace[s[i]] != 0 {
   346  				i++
   347  			}
   348  			fieldStart = i
   349  		}
   350  		if fieldStart < len(s) { // Last field might end at EOF.
   351  			a[na] = s[fieldStart:]
   352  		}
   353  		return a
   354  	}
   355  
   356  	// Some runes in the input string are not ASCII.
   357  	return FieldsFunc(s, unicode.IsSpace)
   358  }
   359  
   360  // FieldsFunc splits the string s at each run of Unicode code points c satisfying f(c)
   361  // and returns an array of slices of s. If all code points in s satisfy f(c) or the
   362  // string is empty, an empty slice is returned.
   363  // FieldsFunc makes no guarantees about the order in which it calls f(c).
   364  // If f does not return consistent results for a given c, FieldsFunc may crash.
   365  func FieldsFunc(s string, f func(rune) bool) []string {
   366  	// A span is used to record a slice of s of the form s[start:end].
   367  	// The start index is inclusive and the end index is exclusive.
   368  	type span struct {
   369  		start int
   370  		end   int
   371  	}
   372  	spans := make([]span, 0, 32)
   373  
   374  	// Find the field start and end indices.
   375  	wasField := false
   376  	fromIndex := 0
   377  	for i, rune := range s {
   378  		if f(rune) {
   379  			if wasField {
   380  				spans = append(spans, span{start: fromIndex, end: i})
   381  				wasField = false
   382  			}
   383  		} else {
   384  			if !wasField {
   385  				fromIndex = i
   386  				wasField = true
   387  			}
   388  		}
   389  	}
   390  
   391  	// Last field might end at EOF.
   392  	if wasField {
   393  		spans = append(spans, span{fromIndex, len(s)})
   394  	}
   395  
   396  	// Create strings from recorded field indices.
   397  	a := make([]string, len(spans))
   398  	for i, span := range spans {
   399  		a[i] = s[span.start:span.end]
   400  	}
   401  
   402  	return a
   403  }
   404  
   405  // Join concatenates the elements of a to create a single string. The separator string
   406  // sep is placed between elements in the resulting string.
   407  func Join(a []string, sep string) string {
   408  	switch len(a) {
   409  	case 0:
   410  		return ""
   411  	case 1:
   412  		return a[0]
   413  	case 2:
   414  		// Special case for common small values.
   415  		// Remove if golang.org/issue/6714 is fixed
   416  		return a[0] + sep + a[1]
   417  	case 3:
   418  		// Special case for common small values.
   419  		// Remove if golang.org/issue/6714 is fixed
   420  		return a[0] + sep + a[1] + sep + a[2]
   421  	}
   422  	n := len(sep) * (len(a) - 1)
   423  	for i := 0; i < len(a); i++ {
   424  		n += len(a[i])
   425  	}
   426  
   427  	b := make([]byte, n)
   428  	bp := copy(b, a[0])
   429  	for _, s := range a[1:] {
   430  		bp += copy(b[bp:], sep)
   431  		bp += copy(b[bp:], s)
   432  	}
   433  	return string(b)
   434  }
   435  
   436  // HasPrefix tests whether the string s begins with prefix.
   437  func HasPrefix(s, prefix string) bool {
   438  	return len(s) >= len(prefix) && s[0:len(prefix)] == prefix
   439  }
   440  
   441  // HasSuffix tests whether the string s ends with suffix.
   442  func HasSuffix(s, suffix string) bool {
   443  	return len(s) >= len(suffix) && s[len(s)-len(suffix):] == suffix
   444  }
   445  
   446  // Map returns a copy of the string s with all its characters modified
   447  // according to the mapping function. If mapping returns a negative value, the character is
   448  // dropped from the string with no replacement.
   449  func Map(mapping func(rune) rune, s string) string {
   450  	// In the worst case, the string can grow when mapped, making
   451  	// things unpleasant. But it's so rare we barge in assuming it's
   452  	// fine. It could also shrink but that falls out naturally.
   453  
   454  	// The output buffer b is initialized on demand, the first
   455  	// time a character differs.
   456  	var b []byte
   457  	// nbytes is the number of bytes encoded in b.
   458  	var nbytes int
   459  
   460  	for i, c := range s {
   461  		r := mapping(c)
   462  		if r == c {
   463  			continue
   464  		}
   465  
   466  		b = make([]byte, len(s)+utf8.UTFMax)
   467  		nbytes = copy(b, s[:i])
   468  		if r >= 0 {
   469  			if r <= utf8.RuneSelf {
   470  				b[nbytes] = byte(r)
   471  				nbytes++
   472  			} else {
   473  				nbytes += utf8.EncodeRune(b[nbytes:], r)
   474  			}
   475  		}
   476  
   477  		if c == utf8.RuneError {
   478  			// RuneError is the result of either decoding
   479  			// an invalid sequence or '\uFFFD'. Determine
   480  			// the correct number of bytes we need to advance.
   481  			_, w := utf8.DecodeRuneInString(s[i:])
   482  			i += w
   483  		} else {
   484  			i += utf8.RuneLen(c)
   485  		}
   486  
   487  		s = s[i:]
   488  		break
   489  	}
   490  
   491  	if b == nil {
   492  		return s
   493  	}
   494  
   495  	for _, c := range s {
   496  		r := mapping(c)
   497  
   498  		// common case
   499  		if (0 <= r && r <= utf8.RuneSelf) && nbytes < len(b) {
   500  			b[nbytes] = byte(r)
   501  			nbytes++
   502  			continue
   503  		}
   504  
   505  		// b is not big enough or r is not a ASCII rune.
   506  		if r >= 0 {
   507  			if nbytes+utf8.UTFMax >= len(b) {
   508  				// Grow the buffer.
   509  				nb := make([]byte, 2*len(b))
   510  				copy(nb, b[:nbytes])
   511  				b = nb
   512  			}
   513  			nbytes += utf8.EncodeRune(b[nbytes:], r)
   514  		}
   515  	}
   516  
   517  	return string(b[:nbytes])
   518  }
   519  
   520  // Repeat returns a new string consisting of count copies of the string s.
   521  //
   522  // It panics if count is negative or if
   523  // the result of (len(s) * count) overflows.
   524  func Repeat(s string, count int) string {
   525  	// Since we cannot return an error on overflow,
   526  	// we should panic if the repeat will generate
   527  	// an overflow.
   528  	// See Issue golang.org/issue/16237
   529  	if count < 0 {
   530  		panic("strings: negative Repeat count")
   531  	} else if count > 0 && len(s)*count/count != len(s) {
   532  		panic("strings: Repeat count causes overflow")
   533  	}
   534  
   535  	b := make([]byte, len(s)*count)
   536  	bp := copy(b, s)
   537  	for bp < len(b) {
   538  		copy(b[bp:], b[:bp])
   539  		bp *= 2
   540  	}
   541  	return string(b)
   542  }
   543  
   544  // ToUpper returns a copy of the string s with all Unicode letters mapped to their upper case.
   545  func ToUpper(s string) string {
   546  	isASCII, hasLower := true, false
   547  	for i := 0; i < len(s); i++ {
   548  		c := s[i]
   549  		if c >= utf8.RuneSelf {
   550  			isASCII = false
   551  			break
   552  		}
   553  		hasLower = hasLower || (c >= 'a' && c <= 'z')
   554  	}
   555  
   556  	if isASCII { // optimize for ASCII-only strings.
   557  		if !hasLower {
   558  			return s
   559  		}
   560  		b := make([]byte, len(s))
   561  		for i := 0; i < len(s); i++ {
   562  			c := s[i]
   563  			if c >= 'a' && c <= 'z' {
   564  				c -= 'a' - 'A'
   565  			}
   566  			b[i] = c
   567  		}
   568  		return string(b)
   569  	}
   570  	return Map(unicode.ToUpper, s)
   571  }
   572  
   573  // ToLower returns a copy of the string s with all Unicode letters mapped to their lower case.
   574  func ToLower(s string) string {
   575  	isASCII, hasUpper := true, false
   576  	for i := 0; i < len(s); i++ {
   577  		c := s[i]
   578  		if c >= utf8.RuneSelf {
   579  			isASCII = false
   580  			break
   581  		}
   582  		hasUpper = hasUpper || (c >= 'A' && c <= 'Z')
   583  	}
   584  
   585  	if isASCII { // optimize for ASCII-only strings.
   586  		if !hasUpper {
   587  			return s
   588  		}
   589  		b := make([]byte, len(s))
   590  		for i := 0; i < len(s); i++ {
   591  			c := s[i]
   592  			if c >= 'A' && c <= 'Z' {
   593  				c += 'a' - 'A'
   594  			}
   595  			b[i] = c
   596  		}
   597  		return string(b)
   598  	}
   599  	return Map(unicode.ToLower, s)
   600  }
   601  
   602  // ToTitle returns a copy of the string s with all Unicode letters mapped to their title case.
   603  func ToTitle(s string) string { return Map(unicode.ToTitle, s) }
   604  
   605  // ToUpperSpecial returns a copy of the string s with all Unicode letters mapped to their
   606  // upper case, giving priority to the special casing rules.
   607  func ToUpperSpecial(c unicode.SpecialCase, s string) string {
   608  	return Map(func(r rune) rune { return c.ToUpper(r) }, s)
   609  }
   610  
   611  // ToLowerSpecial returns a copy of the string s with all Unicode letters mapped to their
   612  // lower case, giving priority to the special casing rules.
   613  func ToLowerSpecial(c unicode.SpecialCase, s string) string {
   614  	return Map(func(r rune) rune { return c.ToLower(r) }, s)
   615  }
   616  
   617  // ToTitleSpecial returns a copy of the string s with all Unicode letters mapped to their
   618  // title case, giving priority to the special casing rules.
   619  func ToTitleSpecial(c unicode.SpecialCase, s string) string {
   620  	return Map(func(r rune) rune { return c.ToTitle(r) }, s)
   621  }
   622  
   623  // isSeparator reports whether the rune could mark a word boundary.
   624  // TODO: update when package unicode captures more of the properties.
   625  func isSeparator(r rune) bool {
   626  	// ASCII alphanumerics and underscore are not separators
   627  	if r <= 0x7F {
   628  		switch {
   629  		case '0' <= r && r <= '9':
   630  			return false
   631  		case 'a' <= r && r <= 'z':
   632  			return false
   633  		case 'A' <= r && r <= 'Z':
   634  			return false
   635  		case r == '_':
   636  			return false
   637  		}
   638  		return true
   639  	}
   640  	// Letters and digits are not separators
   641  	if unicode.IsLetter(r) || unicode.IsDigit(r) {
   642  		return false
   643  	}
   644  	// Otherwise, all we can do for now is treat spaces as separators.
   645  	return unicode.IsSpace(r)
   646  }
   647  
   648  // Title returns a copy of the string s with all Unicode letters that begin words
   649  // mapped to their title case.
   650  //
   651  // BUG(rsc): The rule Title uses for word boundaries does not handle Unicode punctuation properly.
   652  func Title(s string) string {
   653  	// Use a closure here to remember state.
   654  	// Hackish but effective. Depends on Map scanning in order and calling
   655  	// the closure once per rune.
   656  	prev := ' '
   657  	return Map(
   658  		func(r rune) rune {
   659  			if isSeparator(prev) {
   660  				prev = r
   661  				return unicode.ToTitle(r)
   662  			}
   663  			prev = r
   664  			return r
   665  		},
   666  		s)
   667  }
   668  
   669  // TrimLeftFunc returns a slice of the string s with all leading
   670  // Unicode code points c satisfying f(c) removed.
   671  func TrimLeftFunc(s string, f func(rune) bool) string {
   672  	i := indexFunc(s, f, false)
   673  	if i == -1 {
   674  		return ""
   675  	}
   676  	return s[i:]
   677  }
   678  
   679  // TrimRightFunc returns a slice of the string s with all trailing
   680  // Unicode code points c satisfying f(c) removed.
   681  func TrimRightFunc(s string, f func(rune) bool) string {
   682  	i := lastIndexFunc(s, f, false)
   683  	if i >= 0 && s[i] >= utf8.RuneSelf {
   684  		_, wid := utf8.DecodeRuneInString(s[i:])
   685  		i += wid
   686  	} else {
   687  		i++
   688  	}
   689  	return s[0:i]
   690  }
   691  
   692  // TrimFunc returns a slice of the string s with all leading
   693  // and trailing Unicode code points c satisfying f(c) removed.
   694  func TrimFunc(s string, f func(rune) bool) string {
   695  	return TrimRightFunc(TrimLeftFunc(s, f), f)
   696  }
   697  
   698  // IndexFunc returns the index into s of the first Unicode
   699  // code point satisfying f(c), or -1 if none do.
   700  func IndexFunc(s string, f func(rune) bool) int {
   701  	return indexFunc(s, f, true)
   702  }
   703  
   704  // LastIndexFunc returns the index into s of the last
   705  // Unicode code point satisfying f(c), or -1 if none do.
   706  func LastIndexFunc(s string, f func(rune) bool) int {
   707  	return lastIndexFunc(s, f, true)
   708  }
   709  
   710  // indexFunc is the same as IndexFunc except that if
   711  // truth==false, the sense of the predicate function is
   712  // inverted.
   713  func indexFunc(s string, f func(rune) bool, truth bool) int {
   714  	for i, r := range s {
   715  		if f(r) == truth {
   716  			return i
   717  		}
   718  	}
   719  	return -1
   720  }
   721  
   722  // lastIndexFunc is the same as LastIndexFunc except that if
   723  // truth==false, the sense of the predicate function is
   724  // inverted.
   725  func lastIndexFunc(s string, f func(rune) bool, truth bool) int {
   726  	for i := len(s); i > 0; {
   727  		r, size := utf8.DecodeLastRuneInString(s[0:i])
   728  		i -= size
   729  		if f(r) == truth {
   730  			return i
   731  		}
   732  	}
   733  	return -1
   734  }
   735  
   736  // asciiSet is a 32-byte value, where each bit represents the presence of a
   737  // given ASCII character in the set. The 128-bits of the lower 16 bytes,
   738  // starting with the least-significant bit of the lowest word to the
   739  // most-significant bit of the highest word, map to the full range of all
   740  // 128 ASCII characters. The 128-bits of the upper 16 bytes will be zeroed,
   741  // ensuring that any non-ASCII character will be reported as not in the set.
   742  type asciiSet [8]uint32
   743  
   744  // makeASCIISet creates a set of ASCII characters and reports whether all
   745  // characters in chars are ASCII.
   746  func makeASCIISet(chars string) (as asciiSet, ok bool) {
   747  	for i := 0; i < len(chars); i++ {
   748  		c := chars[i]
   749  		if c >= utf8.RuneSelf {
   750  			return as, false
   751  		}
   752  		as[c>>5] |= 1 << uint(c&31)
   753  	}
   754  	return as, true
   755  }
   756  
   757  // contains reports whether c is inside the set.
   758  func (as *asciiSet) contains(c byte) bool {
   759  	return (as[c>>5] & (1 << uint(c&31))) != 0
   760  }
   761  
   762  func makeCutsetFunc(cutset string) func(rune) bool {
   763  	if len(cutset) == 1 && cutset[0] < utf8.RuneSelf {
   764  		return func(r rune) bool {
   765  			return r == rune(cutset[0])
   766  		}
   767  	}
   768  	if as, isASCII := makeASCIISet(cutset); isASCII {
   769  		return func(r rune) bool {
   770  			return r < utf8.RuneSelf && as.contains(byte(r))
   771  		}
   772  	}
   773  	return func(r rune) bool { return IndexRune(cutset, r) >= 0 }
   774  }
   775  
   776  // Trim returns a slice of the string s with all leading and
   777  // trailing Unicode code points contained in cutset removed.
   778  func Trim(s string, cutset string) string {
   779  	if s == "" || cutset == "" {
   780  		return s
   781  	}
   782  	return TrimFunc(s, makeCutsetFunc(cutset))
   783  }
   784  
   785  // TrimLeft returns a slice of the string s with all leading
   786  // Unicode code points contained in cutset removed.
   787  func TrimLeft(s string, cutset string) string {
   788  	if s == "" || cutset == "" {
   789  		return s
   790  	}
   791  	return TrimLeftFunc(s, makeCutsetFunc(cutset))
   792  }
   793  
   794  // TrimRight returns a slice of the string s, with all trailing
   795  // Unicode code points contained in cutset removed.
   796  func TrimRight(s string, cutset string) string {
   797  	if s == "" || cutset == "" {
   798  		return s
   799  	}
   800  	return TrimRightFunc(s, makeCutsetFunc(cutset))
   801  }
   802  
   803  // TrimSpace returns a slice of the string s, with all leading
   804  // and trailing white space removed, as defined by Unicode.
   805  func TrimSpace(s string) string {
   806  	return TrimFunc(s, unicode.IsSpace)
   807  }
   808  
   809  // TrimPrefix returns s without the provided leading prefix string.
   810  // If s doesn't start with prefix, s is returned unchanged.
   811  func TrimPrefix(s, prefix string) string {
   812  	if HasPrefix(s, prefix) {
   813  		return s[len(prefix):]
   814  	}
   815  	return s
   816  }
   817  
   818  // TrimSuffix returns s without the provided trailing suffix string.
   819  // If s doesn't end with suffix, s is returned unchanged.
   820  func TrimSuffix(s, suffix string) string {
   821  	if HasSuffix(s, suffix) {
   822  		return s[:len(s)-len(suffix)]
   823  	}
   824  	return s
   825  }
   826  
   827  // Replace returns a copy of the string s with the first n
   828  // non-overlapping instances of old replaced by new.
   829  // If old is empty, it matches at the beginning of the string
   830  // and after each UTF-8 sequence, yielding up to k+1 replacements
   831  // for a k-rune string.
   832  // If n < 0, there is no limit on the number of replacements.
   833  func Replace(s, old, new string, n int) string {
   834  	if old == new || n == 0 {
   835  		return s // avoid allocation
   836  	}
   837  
   838  	// Compute number of replacements.
   839  	if m := Count(s, old); m == 0 {
   840  		return s // avoid allocation
   841  	} else if n < 0 || m < n {
   842  		n = m
   843  	}
   844  
   845  	// Apply replacements to buffer.
   846  	t := make([]byte, len(s)+n*(len(new)-len(old)))
   847  	w := 0
   848  	start := 0
   849  	for i := 0; i < n; i++ {
   850  		j := start
   851  		if len(old) == 0 {
   852  			if i > 0 {
   853  				_, wid := utf8.DecodeRuneInString(s[start:])
   854  				j += wid
   855  			}
   856  		} else {
   857  			j += Index(s[start:], old)
   858  		}
   859  		w += copy(t[w:], s[start:j])
   860  		w += copy(t[w:], new)
   861  		start = j + len(old)
   862  	}
   863  	w += copy(t[w:], s[start:])
   864  	return string(t[0:w])
   865  }
   866  
   867  // EqualFold reports whether s and t, interpreted as UTF-8 strings,
   868  // are equal under Unicode case-folding.
   869  func EqualFold(s, t string) bool {
   870  	for s != "" && t != "" {
   871  		// Extract first rune from each string.
   872  		var sr, tr rune
   873  		if s[0] < utf8.RuneSelf {
   874  			sr, s = rune(s[0]), s[1:]
   875  		} else {
   876  			r, size := utf8.DecodeRuneInString(s)
   877  			sr, s = r, s[size:]
   878  		}
   879  		if t[0] < utf8.RuneSelf {
   880  			tr, t = rune(t[0]), t[1:]
   881  		} else {
   882  			r, size := utf8.DecodeRuneInString(t)
   883  			tr, t = r, t[size:]
   884  		}
   885  
   886  		// If they match, keep going; if not, return false.
   887  
   888  		// Easy case.
   889  		if tr == sr {
   890  			continue
   891  		}
   892  
   893  		// Make sr < tr to simplify what follows.
   894  		if tr < sr {
   895  			tr, sr = sr, tr
   896  		}
   897  		// Fast check for ASCII.
   898  		if tr < utf8.RuneSelf && 'A' <= sr && sr <= 'Z' {
   899  			// ASCII, and sr is upper case.  tr must be lower case.
   900  			if tr == sr+'a'-'A' {
   901  				continue
   902  			}
   903  			return false
   904  		}
   905  
   906  		// General case. SimpleFold(x) returns the next equivalent rune > x
   907  		// or wraps around to smaller values.
   908  		r := unicode.SimpleFold(sr)
   909  		for r != sr && r < tr {
   910  			r = unicode.SimpleFold(r)
   911  		}
   912  		if r == tr {
   913  			continue
   914  		}
   915  		return false
   916  	}
   917  
   918  	// One string is empty. Are both?
   919  	return s == t
   920  }