github.com/graybobo/golang.org-package-offline-cache@v0.0.0-20200626051047-6608995c132f/x/crypto/openpgp/s2k/s2k.go (about)

     1  // Copyright 2011 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Package s2k implements the various OpenPGP string-to-key transforms as
     6  // specified in RFC 4800 section 3.7.1.
     7  package s2k // import "golang.org/x/crypto/openpgp/s2k"
     8  
     9  import (
    10  	"crypto"
    11  	"hash"
    12  	"io"
    13  	"strconv"
    14  
    15  	"golang.org/x/crypto/openpgp/errors"
    16  )
    17  
    18  // Config collects configuration parameters for s2k key-stretching
    19  // transformatioms. A nil *Config is valid and results in all default
    20  // values. Currently, Config is used only by the Serialize function in
    21  // this package.
    22  type Config struct {
    23  	// Hash is the default hash function to be used. If
    24  	// nil, SHA1 is used.
    25  	Hash crypto.Hash
    26  	// S2KCount is only used for symmetric encryption. It
    27  	// determines the strength of the passphrase stretching when
    28  	// the said passphrase is hashed to produce a key. S2KCount
    29  	// should be between 1024 and 65011712, inclusive. If Config
    30  	// is nil or S2KCount is 0, the value 65536 used. Not all
    31  	// values in the above range can be represented. S2KCount will
    32  	// be rounded up to the next representable value if it cannot
    33  	// be encoded exactly. When set, it is strongly encrouraged to
    34  	// use a value that is at least 65536. See RFC 4880 Section
    35  	// 3.7.1.3.
    36  	S2KCount int
    37  }
    38  
    39  func (c *Config) hash() crypto.Hash {
    40  	if c == nil || uint(c.Hash) == 0 {
    41  		// SHA1 is the historical default in this package.
    42  		return crypto.SHA1
    43  	}
    44  
    45  	return c.Hash
    46  }
    47  
    48  func (c *Config) encodedCount() uint8 {
    49  	if c == nil || c.S2KCount == 0 {
    50  		return 96 // The common case. Correspoding to 65536
    51  	}
    52  
    53  	i := c.S2KCount
    54  	switch {
    55  	// Behave like GPG. Should we make 65536 the lowest value used?
    56  	case i < 1024:
    57  		i = 1024
    58  	case i > 65011712:
    59  		i = 65011712
    60  	}
    61  
    62  	return encodeCount(i)
    63  }
    64  
    65  // encodeCount converts an iterative "count" in the range 1024 to
    66  // 65011712, inclusive, to an encoded count. The return value is the
    67  // octet that is actually stored in the GPG file. encodeCount panics
    68  // if i is not in the above range (encodedCount above takes care to
    69  // pass i in the correct range). See RFC 4880 Section 3.7.7.1.
    70  func encodeCount(i int) uint8 {
    71  	if i < 1024 || i > 65011712 {
    72  		panic("count arg i outside the required range")
    73  	}
    74  
    75  	for encoded := 0; encoded < 256; encoded++ {
    76  		count := decodeCount(uint8(encoded))
    77  		if count >= i {
    78  			return uint8(encoded)
    79  		}
    80  	}
    81  
    82  	return 255
    83  }
    84  
    85  // decodeCount returns the s2k mode 3 iterative "count" corresponding to
    86  // the encoded octet c.
    87  func decodeCount(c uint8) int {
    88  	return (16 + int(c&15)) << (uint32(c>>4) + 6)
    89  }
    90  
    91  // Simple writes to out the result of computing the Simple S2K function (RFC
    92  // 4880, section 3.7.1.1) using the given hash and input passphrase.
    93  func Simple(out []byte, h hash.Hash, in []byte) {
    94  	Salted(out, h, in, nil)
    95  }
    96  
    97  var zero [1]byte
    98  
    99  // Salted writes to out the result of computing the Salted S2K function (RFC
   100  // 4880, section 3.7.1.2) using the given hash, input passphrase and salt.
   101  func Salted(out []byte, h hash.Hash, in []byte, salt []byte) {
   102  	done := 0
   103  	var digest []byte
   104  
   105  	for i := 0; done < len(out); i++ {
   106  		h.Reset()
   107  		for j := 0; j < i; j++ {
   108  			h.Write(zero[:])
   109  		}
   110  		h.Write(salt)
   111  		h.Write(in)
   112  		digest = h.Sum(digest[:0])
   113  		n := copy(out[done:], digest)
   114  		done += n
   115  	}
   116  }
   117  
   118  // Iterated writes to out the result of computing the Iterated and Salted S2K
   119  // function (RFC 4880, section 3.7.1.3) using the given hash, input passphrase,
   120  // salt and iteration count.
   121  func Iterated(out []byte, h hash.Hash, in []byte, salt []byte, count int) {
   122  	combined := make([]byte, len(in)+len(salt))
   123  	copy(combined, salt)
   124  	copy(combined[len(salt):], in)
   125  
   126  	if count < len(combined) {
   127  		count = len(combined)
   128  	}
   129  
   130  	done := 0
   131  	var digest []byte
   132  	for i := 0; done < len(out); i++ {
   133  		h.Reset()
   134  		for j := 0; j < i; j++ {
   135  			h.Write(zero[:])
   136  		}
   137  		written := 0
   138  		for written < count {
   139  			if written+len(combined) > count {
   140  				todo := count - written
   141  				h.Write(combined[:todo])
   142  				written = count
   143  			} else {
   144  				h.Write(combined)
   145  				written += len(combined)
   146  			}
   147  		}
   148  		digest = h.Sum(digest[:0])
   149  		n := copy(out[done:], digest)
   150  		done += n
   151  	}
   152  }
   153  
   154  // Parse reads a binary specification for a string-to-key transformation from r
   155  // and returns a function which performs that transform.
   156  func Parse(r io.Reader) (f func(out, in []byte), err error) {
   157  	var buf [9]byte
   158  
   159  	_, err = io.ReadFull(r, buf[:2])
   160  	if err != nil {
   161  		return
   162  	}
   163  
   164  	hash, ok := HashIdToHash(buf[1])
   165  	if !ok {
   166  		return nil, errors.UnsupportedError("hash for S2K function: " + strconv.Itoa(int(buf[1])))
   167  	}
   168  	if !hash.Available() {
   169  		return nil, errors.UnsupportedError("hash not available: " + strconv.Itoa(int(hash)))
   170  	}
   171  	h := hash.New()
   172  
   173  	switch buf[0] {
   174  	case 0:
   175  		f := func(out, in []byte) {
   176  			Simple(out, h, in)
   177  		}
   178  		return f, nil
   179  	case 1:
   180  		_, err = io.ReadFull(r, buf[:8])
   181  		if err != nil {
   182  			return
   183  		}
   184  		f := func(out, in []byte) {
   185  			Salted(out, h, in, buf[:8])
   186  		}
   187  		return f, nil
   188  	case 3:
   189  		_, err = io.ReadFull(r, buf[:9])
   190  		if err != nil {
   191  			return
   192  		}
   193  		count := decodeCount(buf[8])
   194  		f := func(out, in []byte) {
   195  			Iterated(out, h, in, buf[:8], count)
   196  		}
   197  		return f, nil
   198  	}
   199  
   200  	return nil, errors.UnsupportedError("S2K function")
   201  }
   202  
   203  // Serialize salts and stretches the given passphrase and writes the
   204  // resulting key into key. It also serializes an S2K descriptor to
   205  // w. The key stretching can be configured with c, which may be
   206  // nil. In that case, sensible defaults will be used.
   207  func Serialize(w io.Writer, key []byte, rand io.Reader, passphrase []byte, c *Config) error {
   208  	var buf [11]byte
   209  	buf[0] = 3 /* iterated and salted */
   210  	buf[1], _ = HashToHashId(c.hash())
   211  	salt := buf[2:10]
   212  	if _, err := io.ReadFull(rand, salt); err != nil {
   213  		return err
   214  	}
   215  	encodedCount := c.encodedCount()
   216  	count := decodeCount(encodedCount)
   217  	buf[10] = encodedCount
   218  	if _, err := w.Write(buf[:]); err != nil {
   219  		return err
   220  	}
   221  
   222  	Iterated(key, c.hash().New(), passphrase, salt, count)
   223  	return nil
   224  }
   225  
   226  // hashToHashIdMapping contains pairs relating OpenPGP's hash identifier with
   227  // Go's crypto.Hash type. See RFC 4880, section 9.4.
   228  var hashToHashIdMapping = []struct {
   229  	id   byte
   230  	hash crypto.Hash
   231  	name string
   232  }{
   233  	{1, crypto.MD5, "MD5"},
   234  	{2, crypto.SHA1, "SHA1"},
   235  	{3, crypto.RIPEMD160, "RIPEMD160"},
   236  	{8, crypto.SHA256, "SHA256"},
   237  	{9, crypto.SHA384, "SHA384"},
   238  	{10, crypto.SHA512, "SHA512"},
   239  	{11, crypto.SHA224, "SHA224"},
   240  }
   241  
   242  // HashIdToHash returns a crypto.Hash which corresponds to the given OpenPGP
   243  // hash id.
   244  func HashIdToHash(id byte) (h crypto.Hash, ok bool) {
   245  	for _, m := range hashToHashIdMapping {
   246  		if m.id == id {
   247  			return m.hash, true
   248  		}
   249  	}
   250  	return 0, false
   251  }
   252  
   253  // HashIdToString returns the name of the hash function corresponding to the
   254  // given OpenPGP hash id, or panics if id is unknown.
   255  func HashIdToString(id byte) (name string, ok bool) {
   256  	for _, m := range hashToHashIdMapping {
   257  		if m.id == id {
   258  			return m.name, true
   259  		}
   260  	}
   261  
   262  	return "", false
   263  }
   264  
   265  // HashIdToHash returns an OpenPGP hash id which corresponds the given Hash.
   266  func HashToHashId(h crypto.Hash) (id byte, ok bool) {
   267  	for _, m := range hashToHashIdMapping {
   268  		if m.hash == h {
   269  			return m.id, true
   270  		}
   271  	}
   272  	return 0, false
   273  }