github.com/graybobo/golang.org-package-offline-cache@v0.0.0-20200626051047-6608995c132f/x/text/unicode/norm/composition.go (about)

     1  // Copyright 2011 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package norm
     6  
     7  import "unicode/utf8"
     8  
     9  const (
    10  	maxNonStarters = 30
    11  	// The maximum number of characters needed for a buffer is
    12  	// maxNonStarters + 1 for the starter + 1 for the GCJ
    13  	maxBufferSize    = maxNonStarters + 2
    14  	maxNFCExpansion  = 3  // NFC(0x1D160)
    15  	maxNFKCExpansion = 18 // NFKC(0xFDFA)
    16  
    17  	maxByteBufferSize = utf8.UTFMax * maxBufferSize // 128
    18  )
    19  
    20  // ssState is used for reporting the segment state after inserting a rune.
    21  // It is returned by streamSafe.next.
    22  type ssState int
    23  
    24  const (
    25  	// Indicates a rune was successfully added to the segment.
    26  	ssSuccess ssState = iota
    27  	// Indicates a rune starts a new segment and should not be added.
    28  	ssStarter
    29  	// Indicates a rune caused a segment overflow and a CGJ should be inserted.
    30  	ssOverflow
    31  )
    32  
    33  // streamSafe implements the policy of when a CGJ should be inserted.
    34  type streamSafe uint8
    35  
    36  // mkStreamSafe is a shorthand for declaring a streamSafe var and calling
    37  // first on it.
    38  func mkStreamSafe(p Properties) streamSafe {
    39  	return streamSafe(p.nTrailingNonStarters())
    40  }
    41  
    42  // first inserts the first rune of a segment.
    43  func (ss *streamSafe) first(p Properties) {
    44  	if *ss != 0 {
    45  		panic("!= 0")
    46  	}
    47  	*ss = streamSafe(p.nTrailingNonStarters())
    48  }
    49  
    50  // insert returns a ssState value to indicate whether a rune represented by p
    51  // can be inserted.
    52  func (ss *streamSafe) next(p Properties) ssState {
    53  	if *ss > maxNonStarters {
    54  		panic("streamSafe was not reset")
    55  	}
    56  	n := p.nLeadingNonStarters()
    57  	if *ss += streamSafe(n); *ss > maxNonStarters {
    58  		*ss = 0
    59  		return ssOverflow
    60  	}
    61  	// The Stream-Safe Text Processing prescribes that the counting can stop
    62  	// as soon as a starter is encountered. However, there are some starters,
    63  	// like Jamo V and T, that can combine with other runes, leaving their
    64  	// successive non-starters appended to the previous, possibly causing an
    65  	// overflow. We will therefore consider any rune with a non-zero nLead to
    66  	// be a non-starter. Note that it always hold that if nLead > 0 then
    67  	// nLead == nTrail.
    68  	if n == 0 {
    69  		*ss = 0
    70  		return ssStarter
    71  	}
    72  	return ssSuccess
    73  }
    74  
    75  // backwards is used for checking for overflow and segment starts
    76  // when traversing a string backwards. Users do not need to call first
    77  // for the first rune. The state of the streamSafe retains the count of
    78  // the non-starters loaded.
    79  func (ss *streamSafe) backwards(p Properties) ssState {
    80  	if *ss > maxNonStarters {
    81  		panic("streamSafe was not reset")
    82  	}
    83  	c := *ss + streamSafe(p.nTrailingNonStarters())
    84  	if c > maxNonStarters {
    85  		return ssOverflow
    86  	}
    87  	*ss = c
    88  	if p.nLeadingNonStarters() == 0 {
    89  		return ssStarter
    90  	}
    91  	return ssSuccess
    92  }
    93  
    94  func (ss streamSafe) isMax() bool {
    95  	return ss == maxNonStarters
    96  }
    97  
    98  // GraphemeJoiner is inserted after maxNonStarters non-starter runes.
    99  const GraphemeJoiner = "\u034F"
   100  
   101  // reorderBuffer is used to normalize a single segment.  Characters inserted with
   102  // insert are decomposed and reordered based on CCC. The compose method can
   103  // be used to recombine characters.  Note that the byte buffer does not hold
   104  // the UTF-8 characters in order.  Only the rune array is maintained in sorted
   105  // order. flush writes the resulting segment to a byte array.
   106  type reorderBuffer struct {
   107  	rune  [maxBufferSize]Properties // Per character info.
   108  	byte  [maxByteBufferSize]byte   // UTF-8 buffer. Referenced by runeInfo.pos.
   109  	nbyte uint8                     // Number or bytes.
   110  	ss    streamSafe                // For limiting length of non-starter sequence.
   111  	nrune int                       // Number of runeInfos.
   112  	f     formInfo
   113  
   114  	src      input
   115  	nsrc     int
   116  	tmpBytes input
   117  
   118  	out    []byte
   119  	flushF func(*reorderBuffer) bool
   120  }
   121  
   122  func (rb *reorderBuffer) init(f Form, src []byte) {
   123  	rb.f = *formTable[f]
   124  	rb.src.setBytes(src)
   125  	rb.nsrc = len(src)
   126  	rb.ss = 0
   127  }
   128  
   129  func (rb *reorderBuffer) initString(f Form, src string) {
   130  	rb.f = *formTable[f]
   131  	rb.src.setString(src)
   132  	rb.nsrc = len(src)
   133  	rb.ss = 0
   134  }
   135  
   136  func (rb *reorderBuffer) setFlusher(out []byte, f func(*reorderBuffer) bool) {
   137  	rb.out = out
   138  	rb.flushF = f
   139  }
   140  
   141  // reset discards all characters from the buffer.
   142  func (rb *reorderBuffer) reset() {
   143  	rb.nrune = 0
   144  	rb.nbyte = 0
   145  	rb.ss = 0
   146  }
   147  
   148  func (rb *reorderBuffer) doFlush() bool {
   149  	if rb.f.composing {
   150  		rb.compose()
   151  	}
   152  	res := rb.flushF(rb)
   153  	rb.reset()
   154  	return res
   155  }
   156  
   157  // appendFlush appends the normalized segment to rb.out.
   158  func appendFlush(rb *reorderBuffer) bool {
   159  	for i := 0; i < rb.nrune; i++ {
   160  		start := rb.rune[i].pos
   161  		end := start + rb.rune[i].size
   162  		rb.out = append(rb.out, rb.byte[start:end]...)
   163  	}
   164  	return true
   165  }
   166  
   167  // flush appends the normalized segment to out and resets rb.
   168  func (rb *reorderBuffer) flush(out []byte) []byte {
   169  	for i := 0; i < rb.nrune; i++ {
   170  		start := rb.rune[i].pos
   171  		end := start + rb.rune[i].size
   172  		out = append(out, rb.byte[start:end]...)
   173  	}
   174  	rb.reset()
   175  	return out
   176  }
   177  
   178  // flushCopy copies the normalized segment to buf and resets rb.
   179  // It returns the number of bytes written to buf.
   180  func (rb *reorderBuffer) flushCopy(buf []byte) int {
   181  	p := 0
   182  	for i := 0; i < rb.nrune; i++ {
   183  		runep := rb.rune[i]
   184  		p += copy(buf[p:], rb.byte[runep.pos:runep.pos+runep.size])
   185  	}
   186  	rb.reset()
   187  	return p
   188  }
   189  
   190  // insertOrdered inserts a rune in the buffer, ordered by Canonical Combining Class.
   191  // It returns false if the buffer is not large enough to hold the rune.
   192  // It is used internally by insert and insertString only.
   193  func (rb *reorderBuffer) insertOrdered(info Properties) {
   194  	n := rb.nrune
   195  	b := rb.rune[:]
   196  	cc := info.ccc
   197  	if cc > 0 {
   198  		// Find insertion position + move elements to make room.
   199  		for ; n > 0; n-- {
   200  			if b[n-1].ccc <= cc {
   201  				break
   202  			}
   203  			b[n] = b[n-1]
   204  		}
   205  	}
   206  	rb.nrune += 1
   207  	pos := uint8(rb.nbyte)
   208  	rb.nbyte += utf8.UTFMax
   209  	info.pos = pos
   210  	b[n] = info
   211  }
   212  
   213  // insertErr is an error code returned by insert. Using this type instead
   214  // of error improves performance up to 20% for many of the benchmarks.
   215  type insertErr int
   216  
   217  const (
   218  	iSuccess insertErr = -iota
   219  	iShortDst
   220  	iShortSrc
   221  )
   222  
   223  // insertFlush inserts the given rune in the buffer ordered by CCC.
   224  // If a decomposition with multiple segments are encountered, they leading
   225  // ones are flushed.
   226  // It returns a non-zero error code if the rune was not inserted.
   227  func (rb *reorderBuffer) insertFlush(src input, i int, info Properties) insertErr {
   228  	if rune := src.hangul(i); rune != 0 {
   229  		rb.decomposeHangul(rune)
   230  		return iSuccess
   231  	}
   232  	if info.hasDecomposition() {
   233  		return rb.insertDecomposed(info.Decomposition())
   234  	}
   235  	rb.insertSingle(src, i, info)
   236  	return iSuccess
   237  }
   238  
   239  // insertUnsafe inserts the given rune in the buffer ordered by CCC.
   240  // It is assumed there is sufficient space to hold the runes. It is the
   241  // responsibility of the caller to ensure this. This can be done by checking
   242  // the state returned by the streamSafe type.
   243  func (rb *reorderBuffer) insertUnsafe(src input, i int, info Properties) {
   244  	if rune := src.hangul(i); rune != 0 {
   245  		rb.decomposeHangul(rune)
   246  	}
   247  	if info.hasDecomposition() {
   248  		// TODO: inline.
   249  		rb.insertDecomposed(info.Decomposition())
   250  	} else {
   251  		rb.insertSingle(src, i, info)
   252  	}
   253  }
   254  
   255  // insertDecomposed inserts an entry in to the reorderBuffer for each rune
   256  // in dcomp. dcomp must be a sequence of decomposed UTF-8-encoded runes.
   257  // It flushes the buffer on each new segment start.
   258  func (rb *reorderBuffer) insertDecomposed(dcomp []byte) insertErr {
   259  	rb.tmpBytes.setBytes(dcomp)
   260  	for i := 0; i < len(dcomp); {
   261  		info := rb.f.info(rb.tmpBytes, i)
   262  		if info.BoundaryBefore() && rb.nrune > 0 && !rb.doFlush() {
   263  			return iShortDst
   264  		}
   265  		i += copy(rb.byte[rb.nbyte:], dcomp[i:i+int(info.size)])
   266  		rb.insertOrdered(info)
   267  	}
   268  	return iSuccess
   269  }
   270  
   271  // insertSingle inserts an entry in the reorderBuffer for the rune at
   272  // position i. info is the runeInfo for the rune at position i.
   273  func (rb *reorderBuffer) insertSingle(src input, i int, info Properties) {
   274  	src.copySlice(rb.byte[rb.nbyte:], i, i+int(info.size))
   275  	rb.insertOrdered(info)
   276  }
   277  
   278  // insertCGJ inserts a Combining Grapheme Joiner (0x034f) into rb.
   279  func (rb *reorderBuffer) insertCGJ() {
   280  	rb.insertSingle(input{str: GraphemeJoiner}, 0, Properties{size: uint8(len(GraphemeJoiner))})
   281  }
   282  
   283  // appendRune inserts a rune at the end of the buffer. It is used for Hangul.
   284  func (rb *reorderBuffer) appendRune(r rune) {
   285  	bn := rb.nbyte
   286  	sz := utf8.EncodeRune(rb.byte[bn:], rune(r))
   287  	rb.nbyte += utf8.UTFMax
   288  	rb.rune[rb.nrune] = Properties{pos: bn, size: uint8(sz)}
   289  	rb.nrune++
   290  }
   291  
   292  // assignRune sets a rune at position pos. It is used for Hangul and recomposition.
   293  func (rb *reorderBuffer) assignRune(pos int, r rune) {
   294  	bn := rb.rune[pos].pos
   295  	sz := utf8.EncodeRune(rb.byte[bn:], rune(r))
   296  	rb.rune[pos] = Properties{pos: bn, size: uint8(sz)}
   297  }
   298  
   299  // runeAt returns the rune at position n. It is used for Hangul and recomposition.
   300  func (rb *reorderBuffer) runeAt(n int) rune {
   301  	inf := rb.rune[n]
   302  	r, _ := utf8.DecodeRune(rb.byte[inf.pos : inf.pos+inf.size])
   303  	return r
   304  }
   305  
   306  // bytesAt returns the UTF-8 encoding of the rune at position n.
   307  // It is used for Hangul and recomposition.
   308  func (rb *reorderBuffer) bytesAt(n int) []byte {
   309  	inf := rb.rune[n]
   310  	return rb.byte[inf.pos : int(inf.pos)+int(inf.size)]
   311  }
   312  
   313  // For Hangul we combine algorithmically, instead of using tables.
   314  const (
   315  	hangulBase  = 0xAC00 // UTF-8(hangulBase) -> EA B0 80
   316  	hangulBase0 = 0xEA
   317  	hangulBase1 = 0xB0
   318  	hangulBase2 = 0x80
   319  
   320  	hangulEnd  = hangulBase + jamoLVTCount // UTF-8(0xD7A4) -> ED 9E A4
   321  	hangulEnd0 = 0xED
   322  	hangulEnd1 = 0x9E
   323  	hangulEnd2 = 0xA4
   324  
   325  	jamoLBase  = 0x1100 // UTF-8(jamoLBase) -> E1 84 00
   326  	jamoLBase0 = 0xE1
   327  	jamoLBase1 = 0x84
   328  	jamoLEnd   = 0x1113
   329  	jamoVBase  = 0x1161
   330  	jamoVEnd   = 0x1176
   331  	jamoTBase  = 0x11A7
   332  	jamoTEnd   = 0x11C3
   333  
   334  	jamoTCount   = 28
   335  	jamoVCount   = 21
   336  	jamoVTCount  = 21 * 28
   337  	jamoLVTCount = 19 * 21 * 28
   338  )
   339  
   340  const hangulUTF8Size = 3
   341  
   342  func isHangul(b []byte) bool {
   343  	if len(b) < hangulUTF8Size {
   344  		return false
   345  	}
   346  	b0 := b[0]
   347  	if b0 < hangulBase0 {
   348  		return false
   349  	}
   350  	b1 := b[1]
   351  	switch {
   352  	case b0 == hangulBase0:
   353  		return b1 >= hangulBase1
   354  	case b0 < hangulEnd0:
   355  		return true
   356  	case b0 > hangulEnd0:
   357  		return false
   358  	case b1 < hangulEnd1:
   359  		return true
   360  	}
   361  	return b1 == hangulEnd1 && b[2] < hangulEnd2
   362  }
   363  
   364  func isHangulString(b string) bool {
   365  	if len(b) < hangulUTF8Size {
   366  		return false
   367  	}
   368  	b0 := b[0]
   369  	if b0 < hangulBase0 {
   370  		return false
   371  	}
   372  	b1 := b[1]
   373  	switch {
   374  	case b0 == hangulBase0:
   375  		return b1 >= hangulBase1
   376  	case b0 < hangulEnd0:
   377  		return true
   378  	case b0 > hangulEnd0:
   379  		return false
   380  	case b1 < hangulEnd1:
   381  		return true
   382  	}
   383  	return b1 == hangulEnd1 && b[2] < hangulEnd2
   384  }
   385  
   386  // Caller must ensure len(b) >= 2.
   387  func isJamoVT(b []byte) bool {
   388  	// True if (rune & 0xff00) == jamoLBase
   389  	return b[0] == jamoLBase0 && (b[1]&0xFC) == jamoLBase1
   390  }
   391  
   392  func isHangulWithoutJamoT(b []byte) bool {
   393  	c, _ := utf8.DecodeRune(b)
   394  	c -= hangulBase
   395  	return c < jamoLVTCount && c%jamoTCount == 0
   396  }
   397  
   398  // decomposeHangul writes the decomposed Hangul to buf and returns the number
   399  // of bytes written.  len(buf) should be at least 9.
   400  func decomposeHangul(buf []byte, r rune) int {
   401  	const JamoUTF8Len = 3
   402  	r -= hangulBase
   403  	x := r % jamoTCount
   404  	r /= jamoTCount
   405  	utf8.EncodeRune(buf, jamoLBase+r/jamoVCount)
   406  	utf8.EncodeRune(buf[JamoUTF8Len:], jamoVBase+r%jamoVCount)
   407  	if x != 0 {
   408  		utf8.EncodeRune(buf[2*JamoUTF8Len:], jamoTBase+x)
   409  		return 3 * JamoUTF8Len
   410  	}
   411  	return 2 * JamoUTF8Len
   412  }
   413  
   414  // decomposeHangul algorithmically decomposes a Hangul rune into
   415  // its Jamo components.
   416  // See http://unicode.org/reports/tr15/#Hangul for details on decomposing Hangul.
   417  func (rb *reorderBuffer) decomposeHangul(r rune) {
   418  	r -= hangulBase
   419  	x := r % jamoTCount
   420  	r /= jamoTCount
   421  	rb.appendRune(jamoLBase + r/jamoVCount)
   422  	rb.appendRune(jamoVBase + r%jamoVCount)
   423  	if x != 0 {
   424  		rb.appendRune(jamoTBase + x)
   425  	}
   426  }
   427  
   428  // combineHangul algorithmically combines Jamo character components into Hangul.
   429  // See http://unicode.org/reports/tr15/#Hangul for details on combining Hangul.
   430  func (rb *reorderBuffer) combineHangul(s, i, k int) {
   431  	b := rb.rune[:]
   432  	bn := rb.nrune
   433  	for ; i < bn; i++ {
   434  		cccB := b[k-1].ccc
   435  		cccC := b[i].ccc
   436  		if cccB == 0 {
   437  			s = k - 1
   438  		}
   439  		if s != k-1 && cccB >= cccC {
   440  			// b[i] is blocked by greater-equal cccX below it
   441  			b[k] = b[i]
   442  			k++
   443  		} else {
   444  			l := rb.runeAt(s) // also used to compare to hangulBase
   445  			v := rb.runeAt(i) // also used to compare to jamoT
   446  			switch {
   447  			case jamoLBase <= l && l < jamoLEnd &&
   448  				jamoVBase <= v && v < jamoVEnd:
   449  				// 11xx plus 116x to LV
   450  				rb.assignRune(s, hangulBase+
   451  					(l-jamoLBase)*jamoVTCount+(v-jamoVBase)*jamoTCount)
   452  			case hangulBase <= l && l < hangulEnd &&
   453  				jamoTBase < v && v < jamoTEnd &&
   454  				((l-hangulBase)%jamoTCount) == 0:
   455  				// ACxx plus 11Ax to LVT
   456  				rb.assignRune(s, l+v-jamoTBase)
   457  			default:
   458  				b[k] = b[i]
   459  				k++
   460  			}
   461  		}
   462  	}
   463  	rb.nrune = k
   464  }
   465  
   466  // compose recombines the runes in the buffer.
   467  // It should only be used to recompose a single segment, as it will not
   468  // handle alternations between Hangul and non-Hangul characters correctly.
   469  func (rb *reorderBuffer) compose() {
   470  	// UAX #15, section X5 , including Corrigendum #5
   471  	// "In any character sequence beginning with starter S, a character C is
   472  	//  blocked from S if and only if there is some character B between S
   473  	//  and C, and either B is a starter or it has the same or higher
   474  	//  combining class as C."
   475  	bn := rb.nrune
   476  	if bn == 0 {
   477  		return
   478  	}
   479  	k := 1
   480  	b := rb.rune[:]
   481  	for s, i := 0, 1; i < bn; i++ {
   482  		if isJamoVT(rb.bytesAt(i)) {
   483  			// Redo from start in Hangul mode. Necessary to support
   484  			// U+320E..U+321E in NFKC mode.
   485  			rb.combineHangul(s, i, k)
   486  			return
   487  		}
   488  		ii := b[i]
   489  		// We can only use combineForward as a filter if we later
   490  		// get the info for the combined character. This is more
   491  		// expensive than using the filter. Using combinesBackward()
   492  		// is safe.
   493  		if ii.combinesBackward() {
   494  			cccB := b[k-1].ccc
   495  			cccC := ii.ccc
   496  			blocked := false // b[i] blocked by starter or greater or equal CCC?
   497  			if cccB == 0 {
   498  				s = k - 1
   499  			} else {
   500  				blocked = s != k-1 && cccB >= cccC
   501  			}
   502  			if !blocked {
   503  				combined := combine(rb.runeAt(s), rb.runeAt(i))
   504  				if combined != 0 {
   505  					rb.assignRune(s, combined)
   506  					continue
   507  				}
   508  			}
   509  		}
   510  		b[k] = b[i]
   511  		k++
   512  	}
   513  	rb.nrune = k
   514  }