github.com/graybobo/golang.org-package-offline-cache@v0.0.0-20200626051047-6608995c132f/x/tools/go/pointer/gen14.go (about)

     1  // Copyright 2013 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // +build !go1.5
     6  
     7  package pointer
     8  
     9  // This file defines the constraint generation phase.
    10  
    11  // TODO(adonovan): move the constraint definitions and the store() etc
    12  // functions which add them (and are also used by the solver) into a
    13  // new file, constraints.go.
    14  
    15  import (
    16  	"fmt"
    17  	"go/token"
    18  
    19  	"golang.org/x/tools/go/callgraph"
    20  	"golang.org/x/tools/go/ssa"
    21  	"golang.org/x/tools/go/types"
    22  )
    23  
    24  var (
    25  	tEface     = types.NewInterface(nil, nil).Complete()
    26  	tInvalid   = types.Typ[types.Invalid]
    27  	tUnsafePtr = types.Typ[types.UnsafePointer]
    28  )
    29  
    30  // ---------- Node creation ----------
    31  
    32  // nextNode returns the index of the next unused node.
    33  func (a *analysis) nextNode() nodeid {
    34  	return nodeid(len(a.nodes))
    35  }
    36  
    37  // addNodes creates nodes for all scalar elements in type typ, and
    38  // returns the id of the first one, or zero if the type was
    39  // analytically uninteresting.
    40  //
    41  // comment explains the origin of the nodes, as a debugging aid.
    42  //
    43  func (a *analysis) addNodes(typ types.Type, comment string) nodeid {
    44  	id := a.nextNode()
    45  	for _, fi := range a.flatten(typ) {
    46  		a.addOneNode(fi.typ, comment, fi)
    47  	}
    48  	if id == a.nextNode() {
    49  		return 0 // type contained no pointers
    50  	}
    51  	return id
    52  }
    53  
    54  // addOneNode creates a single node with type typ, and returns its id.
    55  //
    56  // typ should generally be scalar (except for tagged.T nodes
    57  // and struct/array identity nodes).  Use addNodes for non-scalar types.
    58  //
    59  // comment explains the origin of the nodes, as a debugging aid.
    60  // subelement indicates the subelement, e.g. ".a.b[*].c".
    61  //
    62  func (a *analysis) addOneNode(typ types.Type, comment string, subelement *fieldInfo) nodeid {
    63  	id := a.nextNode()
    64  	a.nodes = append(a.nodes, &node{typ: typ, subelement: subelement, solve: new(solverState)})
    65  	if a.log != nil {
    66  		fmt.Fprintf(a.log, "\tcreate n%d %s for %s%s\n",
    67  			id, typ, comment, subelement.path())
    68  	}
    69  	return id
    70  }
    71  
    72  // setValueNode associates node id with the value v.
    73  // cgn identifies the context iff v is a local variable.
    74  //
    75  func (a *analysis) setValueNode(v ssa.Value, id nodeid, cgn *cgnode) {
    76  	if cgn != nil {
    77  		a.localval[v] = id
    78  	} else {
    79  		a.globalval[v] = id
    80  	}
    81  	if a.log != nil {
    82  		fmt.Fprintf(a.log, "\tval[%s] = n%d  (%T)\n", v.Name(), id, v)
    83  	}
    84  
    85  	// Due to context-sensitivity, we may encounter the same Value
    86  	// in many contexts. We merge them to a canonical node, since
    87  	// that's what all clients want.
    88  
    89  	// Record the (v, id) relation if the client has queried pts(v).
    90  	if _, ok := a.config.Queries[v]; ok {
    91  		t := v.Type()
    92  		ptr, ok := a.result.Queries[v]
    93  		if !ok {
    94  			// First time?  Create the canonical query node.
    95  			ptr = Pointer{a, a.addNodes(t, "query")}
    96  			a.result.Queries[v] = ptr
    97  		}
    98  		a.result.Queries[v] = ptr
    99  		a.copy(ptr.n, id, a.sizeof(t))
   100  	}
   101  
   102  	// Record the (*v, id) relation if the client has queried pts(*v).
   103  	if _, ok := a.config.IndirectQueries[v]; ok {
   104  		t := v.Type()
   105  		ptr, ok := a.result.IndirectQueries[v]
   106  		if !ok {
   107  			// First time? Create the canonical indirect query node.
   108  			ptr = Pointer{a, a.addNodes(v.Type(), "query.indirect")}
   109  			a.result.IndirectQueries[v] = ptr
   110  		}
   111  		a.genLoad(cgn, ptr.n, v, 0, a.sizeof(t))
   112  	}
   113  }
   114  
   115  // endObject marks the end of a sequence of calls to addNodes denoting
   116  // a single object allocation.
   117  //
   118  // obj is the start node of the object, from a prior call to nextNode.
   119  // Its size, flags and optional data will be updated.
   120  //
   121  func (a *analysis) endObject(obj nodeid, cgn *cgnode, data interface{}) *object {
   122  	// Ensure object is non-empty by padding;
   123  	// the pad will be the object node.
   124  	size := uint32(a.nextNode() - obj)
   125  	if size == 0 {
   126  		a.addOneNode(tInvalid, "padding", nil)
   127  	}
   128  	objNode := a.nodes[obj]
   129  	o := &object{
   130  		size: size, // excludes padding
   131  		cgn:  cgn,
   132  		data: data,
   133  	}
   134  	objNode.obj = o
   135  
   136  	return o
   137  }
   138  
   139  // makeFunctionObject creates and returns a new function object
   140  // (contour) for fn, and returns the id of its first node.  It also
   141  // enqueues fn for subsequent constraint generation.
   142  //
   143  // For a context-sensitive contour, callersite identifies the sole
   144  // callsite; for shared contours, caller is nil.
   145  //
   146  func (a *analysis) makeFunctionObject(fn *ssa.Function, callersite *callsite) nodeid {
   147  	if a.log != nil {
   148  		fmt.Fprintf(a.log, "\t---- makeFunctionObject %s\n", fn)
   149  	}
   150  
   151  	// obj is the function object (identity, params, results).
   152  	obj := a.nextNode()
   153  	cgn := a.makeCGNode(fn, obj, callersite)
   154  	sig := fn.Signature
   155  	a.addOneNode(sig, "func.cgnode", nil) // (scalar with Signature type)
   156  	if recv := sig.Recv(); recv != nil {
   157  		a.addNodes(recv.Type(), "func.recv")
   158  	}
   159  	a.addNodes(sig.Params(), "func.params")
   160  	a.addNodes(sig.Results(), "func.results")
   161  	a.endObject(obj, cgn, fn).flags |= otFunction
   162  
   163  	if a.log != nil {
   164  		fmt.Fprintf(a.log, "\t----\n")
   165  	}
   166  
   167  	// Queue it up for constraint processing.
   168  	a.genq = append(a.genq, cgn)
   169  
   170  	return obj
   171  }
   172  
   173  // makeTagged creates a tagged object of type typ.
   174  func (a *analysis) makeTagged(typ types.Type, cgn *cgnode, data interface{}) nodeid {
   175  	obj := a.addOneNode(typ, "tagged.T", nil) // NB: type may be non-scalar!
   176  	a.addNodes(typ, "tagged.v")
   177  	a.endObject(obj, cgn, data).flags |= otTagged
   178  	return obj
   179  }
   180  
   181  // makeRtype returns the canonical tagged object of type *rtype whose
   182  // payload points to the sole rtype object for T.
   183  //
   184  // TODO(adonovan): move to reflect.go; it's part of the solver really.
   185  //
   186  func (a *analysis) makeRtype(T types.Type) nodeid {
   187  	if v := a.rtypes.At(T); v != nil {
   188  		return v.(nodeid)
   189  	}
   190  
   191  	// Create the object for the reflect.rtype itself, which is
   192  	// ordinarily a large struct but here a single node will do.
   193  	obj := a.nextNode()
   194  	a.addOneNode(T, "reflect.rtype", nil)
   195  	a.endObject(obj, nil, T)
   196  
   197  	id := a.makeTagged(a.reflectRtypePtr, nil, T)
   198  	a.nodes[id+1].typ = T // trick (each *rtype tagged object is a singleton)
   199  	a.addressOf(a.reflectRtypePtr, id+1, obj)
   200  
   201  	a.rtypes.Set(T, id)
   202  	return id
   203  }
   204  
   205  // rtypeValue returns the type of the *reflect.rtype-tagged object obj.
   206  func (a *analysis) rtypeTaggedValue(obj nodeid) types.Type {
   207  	tDyn, t, _ := a.taggedValue(obj)
   208  	if tDyn != a.reflectRtypePtr {
   209  		panic(fmt.Sprintf("not a *reflect.rtype-tagged object: obj=n%d tag=%v payload=n%d", obj, tDyn, t))
   210  	}
   211  	return a.nodes[t].typ
   212  }
   213  
   214  // valueNode returns the id of the value node for v, creating it (and
   215  // the association) as needed.  It may return zero for uninteresting
   216  // values containing no pointers.
   217  //
   218  func (a *analysis) valueNode(v ssa.Value) nodeid {
   219  	// Value nodes for locals are created en masse by genFunc.
   220  	if id, ok := a.localval[v]; ok {
   221  		return id
   222  	}
   223  
   224  	// Value nodes for globals are created on demand.
   225  	id, ok := a.globalval[v]
   226  	if !ok {
   227  		var comment string
   228  		if a.log != nil {
   229  			comment = v.String()
   230  		}
   231  		id = a.addNodes(v.Type(), comment)
   232  		if obj := a.objectNode(nil, v); obj != 0 {
   233  			a.addressOf(v.Type(), id, obj)
   234  		}
   235  		a.setValueNode(v, id, nil)
   236  	}
   237  	return id
   238  }
   239  
   240  // valueOffsetNode ascertains the node for tuple/struct value v,
   241  // then returns the node for its subfield #index.
   242  //
   243  func (a *analysis) valueOffsetNode(v ssa.Value, index int) nodeid {
   244  	id := a.valueNode(v)
   245  	if id == 0 {
   246  		panic(fmt.Sprintf("cannot offset within n0: %s = %s", v.Name(), v))
   247  	}
   248  	return id + nodeid(a.offsetOf(v.Type(), index))
   249  }
   250  
   251  // isTaggedObject reports whether object obj is a tagged object.
   252  func (a *analysis) isTaggedObject(obj nodeid) bool {
   253  	return a.nodes[obj].obj.flags&otTagged != 0
   254  }
   255  
   256  // taggedValue returns the dynamic type tag, the (first node of the)
   257  // payload, and the indirect flag of the tagged object starting at id.
   258  // Panic ensues if !isTaggedObject(id).
   259  //
   260  func (a *analysis) taggedValue(obj nodeid) (tDyn types.Type, v nodeid, indirect bool) {
   261  	n := a.nodes[obj]
   262  	flags := n.obj.flags
   263  	if flags&otTagged == 0 {
   264  		panic(fmt.Sprintf("not a tagged object: n%d", obj))
   265  	}
   266  	return n.typ, obj + 1, flags&otIndirect != 0
   267  }
   268  
   269  // funcParams returns the first node of the params (P) block of the
   270  // function whose object node (obj.flags&otFunction) is id.
   271  //
   272  func (a *analysis) funcParams(id nodeid) nodeid {
   273  	n := a.nodes[id]
   274  	if n.obj == nil || n.obj.flags&otFunction == 0 {
   275  		panic(fmt.Sprintf("funcParams(n%d): not a function object block", id))
   276  	}
   277  	return id + 1
   278  }
   279  
   280  // funcResults returns the first node of the results (R) block of the
   281  // function whose object node (obj.flags&otFunction) is id.
   282  //
   283  func (a *analysis) funcResults(id nodeid) nodeid {
   284  	n := a.nodes[id]
   285  	if n.obj == nil || n.obj.flags&otFunction == 0 {
   286  		panic(fmt.Sprintf("funcResults(n%d): not a function object block", id))
   287  	}
   288  	sig := n.typ.(*types.Signature)
   289  	id += 1 + nodeid(a.sizeof(sig.Params()))
   290  	if sig.Recv() != nil {
   291  		id += nodeid(a.sizeof(sig.Recv().Type()))
   292  	}
   293  	return id
   294  }
   295  
   296  // ---------- Constraint creation ----------
   297  
   298  // copy creates a constraint of the form dst = src.
   299  // sizeof is the width (in logical fields) of the copied type.
   300  //
   301  func (a *analysis) copy(dst, src nodeid, sizeof uint32) {
   302  	if src == dst || sizeof == 0 {
   303  		return // trivial
   304  	}
   305  	if src == 0 || dst == 0 {
   306  		panic(fmt.Sprintf("ill-typed copy dst=n%d src=n%d", dst, src))
   307  	}
   308  	for i := uint32(0); i < sizeof; i++ {
   309  		a.addConstraint(&copyConstraint{dst, src})
   310  		src++
   311  		dst++
   312  	}
   313  }
   314  
   315  // addressOf creates a constraint of the form id = &obj.
   316  // T is the type of the address.
   317  func (a *analysis) addressOf(T types.Type, id, obj nodeid) {
   318  	if id == 0 {
   319  		panic("addressOf: zero id")
   320  	}
   321  	if obj == 0 {
   322  		panic("addressOf: zero obj")
   323  	}
   324  	if a.shouldTrack(T) {
   325  		a.addConstraint(&addrConstraint{id, obj})
   326  	}
   327  }
   328  
   329  // load creates a load constraint of the form dst = src[offset].
   330  // offset is the pointer offset in logical fields.
   331  // sizeof is the width (in logical fields) of the loaded type.
   332  //
   333  func (a *analysis) load(dst, src nodeid, offset, sizeof uint32) {
   334  	if dst == 0 {
   335  		return // load of non-pointerlike value
   336  	}
   337  	if src == 0 && dst == 0 {
   338  		return // non-pointerlike operation
   339  	}
   340  	if src == 0 || dst == 0 {
   341  		panic(fmt.Sprintf("ill-typed load dst=n%d src=n%d", dst, src))
   342  	}
   343  	for i := uint32(0); i < sizeof; i++ {
   344  		a.addConstraint(&loadConstraint{offset, dst, src})
   345  		offset++
   346  		dst++
   347  	}
   348  }
   349  
   350  // store creates a store constraint of the form dst[offset] = src.
   351  // offset is the pointer offset in logical fields.
   352  // sizeof is the width (in logical fields) of the stored type.
   353  //
   354  func (a *analysis) store(dst, src nodeid, offset uint32, sizeof uint32) {
   355  	if src == 0 {
   356  		return // store of non-pointerlike value
   357  	}
   358  	if src == 0 && dst == 0 {
   359  		return // non-pointerlike operation
   360  	}
   361  	if src == 0 || dst == 0 {
   362  		panic(fmt.Sprintf("ill-typed store dst=n%d src=n%d", dst, src))
   363  	}
   364  	for i := uint32(0); i < sizeof; i++ {
   365  		a.addConstraint(&storeConstraint{offset, dst, src})
   366  		offset++
   367  		src++
   368  	}
   369  }
   370  
   371  // offsetAddr creates an offsetAddr constraint of the form dst = &src.#offset.
   372  // offset is the field offset in logical fields.
   373  // T is the type of the address.
   374  //
   375  func (a *analysis) offsetAddr(T types.Type, dst, src nodeid, offset uint32) {
   376  	if !a.shouldTrack(T) {
   377  		return
   378  	}
   379  	if offset == 0 {
   380  		// Simplify  dst = &src->f0
   381  		//       to  dst = src
   382  		// (NB: this optimisation is defeated by the identity
   383  		// field prepended to struct and array objects.)
   384  		a.copy(dst, src, 1)
   385  	} else {
   386  		a.addConstraint(&offsetAddrConstraint{offset, dst, src})
   387  	}
   388  }
   389  
   390  // typeAssert creates a typeFilter or untag constraint of the form dst = src.(T):
   391  // typeFilter for an interface, untag for a concrete type.
   392  // The exact flag is specified as for untagConstraint.
   393  //
   394  func (a *analysis) typeAssert(T types.Type, dst, src nodeid, exact bool) {
   395  	if isInterface(T) {
   396  		a.addConstraint(&typeFilterConstraint{T, dst, src})
   397  	} else {
   398  		a.addConstraint(&untagConstraint{T, dst, src, exact})
   399  	}
   400  }
   401  
   402  // addConstraint adds c to the constraint set.
   403  func (a *analysis) addConstraint(c constraint) {
   404  	a.constraints = append(a.constraints, c)
   405  	if a.log != nil {
   406  		fmt.Fprintf(a.log, "\t%s\n", c)
   407  	}
   408  }
   409  
   410  // copyElems generates load/store constraints for *dst = *src,
   411  // where src and dst are slices or *arrays.
   412  //
   413  func (a *analysis) copyElems(cgn *cgnode, typ types.Type, dst, src ssa.Value) {
   414  	tmp := a.addNodes(typ, "copy")
   415  	sz := a.sizeof(typ)
   416  	a.genLoad(cgn, tmp, src, 1, sz)
   417  	a.genStore(cgn, dst, tmp, 1, sz)
   418  }
   419  
   420  // ---------- Constraint generation ----------
   421  
   422  // genConv generates constraints for the conversion operation conv.
   423  func (a *analysis) genConv(conv *ssa.Convert, cgn *cgnode) {
   424  	res := a.valueNode(conv)
   425  	if res == 0 {
   426  		return // result is non-pointerlike
   427  	}
   428  
   429  	tSrc := conv.X.Type()
   430  	tDst := conv.Type()
   431  
   432  	switch utSrc := tSrc.Underlying().(type) {
   433  	case *types.Slice:
   434  		// []byte/[]rune -> string?
   435  		return
   436  
   437  	case *types.Pointer:
   438  		// *T -> unsafe.Pointer?
   439  		if tDst.Underlying() == tUnsafePtr {
   440  			return // we don't model unsafe aliasing (unsound)
   441  		}
   442  
   443  	case *types.Basic:
   444  		switch tDst.Underlying().(type) {
   445  		case *types.Pointer:
   446  			// Treat unsafe.Pointer->*T conversions like
   447  			// new(T) and create an unaliased object.
   448  			if utSrc == tUnsafePtr {
   449  				obj := a.addNodes(mustDeref(tDst), "unsafe.Pointer conversion")
   450  				a.endObject(obj, cgn, conv)
   451  				a.addressOf(tDst, res, obj)
   452  				return
   453  			}
   454  
   455  		case *types.Slice:
   456  			// string -> []byte/[]rune (or named aliases)?
   457  			if utSrc.Info()&types.IsString != 0 {
   458  				obj := a.addNodes(sliceToArray(tDst), "convert")
   459  				a.endObject(obj, cgn, conv)
   460  				a.addressOf(tDst, res, obj)
   461  				return
   462  			}
   463  
   464  		case *types.Basic:
   465  			// All basic-to-basic type conversions are no-ops.
   466  			// This includes uintptr<->unsafe.Pointer conversions,
   467  			// which we (unsoundly) ignore.
   468  			return
   469  		}
   470  	}
   471  
   472  	panic(fmt.Sprintf("illegal *ssa.Convert %s -> %s: %s", tSrc, tDst, conv.Parent()))
   473  }
   474  
   475  // genAppend generates constraints for a call to append.
   476  func (a *analysis) genAppend(instr *ssa.Call, cgn *cgnode) {
   477  	// Consider z = append(x, y).   y is optional.
   478  	// This may allocate a new [1]T array; call its object w.
   479  	// We get the following constraints:
   480  	// 	z = x
   481  	// 	z = &w
   482  	//     *z = *y
   483  
   484  	x := instr.Call.Args[0]
   485  
   486  	z := instr
   487  	a.copy(a.valueNode(z), a.valueNode(x), 1) // z = x
   488  
   489  	if len(instr.Call.Args) == 1 {
   490  		return // no allocation for z = append(x) or _ = append(x).
   491  	}
   492  
   493  	// TODO(adonovan): test append([]byte, ...string) []byte.
   494  
   495  	y := instr.Call.Args[1]
   496  	tArray := sliceToArray(instr.Call.Args[0].Type())
   497  
   498  	var w nodeid
   499  	w = a.nextNode()
   500  	a.addNodes(tArray, "append")
   501  	a.endObject(w, cgn, instr)
   502  
   503  	a.copyElems(cgn, tArray.Elem(), z, y)        // *z = *y
   504  	a.addressOf(instr.Type(), a.valueNode(z), w) //  z = &w
   505  }
   506  
   507  // genBuiltinCall generates contraints for a call to a built-in.
   508  func (a *analysis) genBuiltinCall(instr ssa.CallInstruction, cgn *cgnode) {
   509  	call := instr.Common()
   510  	switch call.Value.(*ssa.Builtin).Name() {
   511  	case "append":
   512  		// Safe cast: append cannot appear in a go or defer statement.
   513  		a.genAppend(instr.(*ssa.Call), cgn)
   514  
   515  	case "copy":
   516  		tElem := call.Args[0].Type().Underlying().(*types.Slice).Elem()
   517  		a.copyElems(cgn, tElem, call.Args[0], call.Args[1])
   518  
   519  	case "panic":
   520  		a.copy(a.panicNode, a.valueNode(call.Args[0]), 1)
   521  
   522  	case "recover":
   523  		if v := instr.Value(); v != nil {
   524  			a.copy(a.valueNode(v), a.panicNode, 1)
   525  		}
   526  
   527  	case "print":
   528  		// In the tests, the probe might be the sole reference
   529  		// to its arg, so make sure we create nodes for it.
   530  		if len(call.Args) > 0 {
   531  			a.valueNode(call.Args[0])
   532  		}
   533  
   534  	case "ssa:wrapnilchk":
   535  		a.copy(a.valueNode(instr.Value()), a.valueNode(call.Args[0]), 1)
   536  
   537  	default:
   538  		// No-ops: close len cap real imag complex print println delete.
   539  	}
   540  }
   541  
   542  // shouldUseContext defines the context-sensitivity policy.  It
   543  // returns true if we should analyse all static calls to fn anew.
   544  //
   545  // Obviously this interface rather limits how much freedom we have to
   546  // choose a policy.  The current policy, rather arbitrarily, is true
   547  // for intrinsics and accessor methods (actually: short, single-block,
   548  // call-free functions).  This is just a starting point.
   549  //
   550  func (a *analysis) shouldUseContext(fn *ssa.Function) bool {
   551  	if a.findIntrinsic(fn) != nil {
   552  		return true // treat intrinsics context-sensitively
   553  	}
   554  	if len(fn.Blocks) != 1 {
   555  		return false // too expensive
   556  	}
   557  	blk := fn.Blocks[0]
   558  	if len(blk.Instrs) > 10 {
   559  		return false // too expensive
   560  	}
   561  	if fn.Synthetic != "" && (fn.Pkg == nil || fn != fn.Pkg.Func("init")) {
   562  		return true // treat synthetic wrappers context-sensitively
   563  	}
   564  	for _, instr := range blk.Instrs {
   565  		switch instr := instr.(type) {
   566  		case ssa.CallInstruction:
   567  			// Disallow function calls (except to built-ins)
   568  			// because of the danger of unbounded recursion.
   569  			if _, ok := instr.Common().Value.(*ssa.Builtin); !ok {
   570  				return false
   571  			}
   572  		}
   573  	}
   574  	return true
   575  }
   576  
   577  // genStaticCall generates constraints for a statically dispatched function call.
   578  func (a *analysis) genStaticCall(caller *cgnode, site *callsite, call *ssa.CallCommon, result nodeid) {
   579  	fn := call.StaticCallee()
   580  
   581  	// Special cases for inlined intrinsics.
   582  	switch fn {
   583  	case a.runtimeSetFinalizer:
   584  		// Inline SetFinalizer so the call appears direct.
   585  		site.targets = a.addOneNode(tInvalid, "SetFinalizer.targets", nil)
   586  		a.addConstraint(&runtimeSetFinalizerConstraint{
   587  			targets: site.targets,
   588  			x:       a.valueNode(call.Args[0]),
   589  			f:       a.valueNode(call.Args[1]),
   590  		})
   591  		return
   592  
   593  	case a.reflectValueCall:
   594  		// Inline (reflect.Value).Call so the call appears direct.
   595  		dotdotdot := false
   596  		ret := reflectCallImpl(a, caller, site, a.valueNode(call.Args[0]), a.valueNode(call.Args[1]), dotdotdot)
   597  		if result != 0 {
   598  			a.addressOf(fn.Signature.Results().At(0).Type(), result, ret)
   599  		}
   600  		return
   601  	}
   602  
   603  	// Ascertain the context (contour/cgnode) for a particular call.
   604  	var obj nodeid
   605  	if a.shouldUseContext(fn) {
   606  		obj = a.makeFunctionObject(fn, site) // new contour
   607  	} else {
   608  		obj = a.objectNode(nil, fn) // shared contour
   609  	}
   610  	a.callEdge(caller, site, obj)
   611  
   612  	sig := call.Signature()
   613  
   614  	// Copy receiver, if any.
   615  	params := a.funcParams(obj)
   616  	args := call.Args
   617  	if sig.Recv() != nil {
   618  		sz := a.sizeof(sig.Recv().Type())
   619  		a.copy(params, a.valueNode(args[0]), sz)
   620  		params += nodeid(sz)
   621  		args = args[1:]
   622  	}
   623  
   624  	// Copy actual parameters into formal params block.
   625  	// Must loop, since the actuals aren't contiguous.
   626  	for i, arg := range args {
   627  		sz := a.sizeof(sig.Params().At(i).Type())
   628  		a.copy(params, a.valueNode(arg), sz)
   629  		params += nodeid(sz)
   630  	}
   631  
   632  	// Copy formal results block to actual result.
   633  	if result != 0 {
   634  		a.copy(result, a.funcResults(obj), a.sizeof(sig.Results()))
   635  	}
   636  }
   637  
   638  // genDynamicCall generates constraints for a dynamic function call.
   639  func (a *analysis) genDynamicCall(caller *cgnode, site *callsite, call *ssa.CallCommon, result nodeid) {
   640  	// pts(targets) will be the set of possible call targets.
   641  	site.targets = a.valueNode(call.Value)
   642  
   643  	// We add dynamic closure rules that store the arguments into
   644  	// the P-block and load the results from the R-block of each
   645  	// function discovered in pts(targets).
   646  
   647  	sig := call.Signature()
   648  	var offset uint32 = 1 // P/R block starts at offset 1
   649  	for i, arg := range call.Args {
   650  		sz := a.sizeof(sig.Params().At(i).Type())
   651  		a.genStore(caller, call.Value, a.valueNode(arg), offset, sz)
   652  		offset += sz
   653  	}
   654  	if result != 0 {
   655  		a.genLoad(caller, result, call.Value, offset, a.sizeof(sig.Results()))
   656  	}
   657  }
   658  
   659  // genInvoke generates constraints for a dynamic method invocation.
   660  func (a *analysis) genInvoke(caller *cgnode, site *callsite, call *ssa.CallCommon, result nodeid) {
   661  	if call.Value.Type() == a.reflectType {
   662  		a.genInvokeReflectType(caller, site, call, result)
   663  		return
   664  	}
   665  
   666  	sig := call.Signature()
   667  
   668  	// Allocate a contiguous targets/params/results block for this call.
   669  	block := a.nextNode()
   670  	// pts(targets) will be the set of possible call targets
   671  	site.targets = a.addOneNode(sig, "invoke.targets", nil)
   672  	p := a.addNodes(sig.Params(), "invoke.params")
   673  	r := a.addNodes(sig.Results(), "invoke.results")
   674  
   675  	// Copy the actual parameters into the call's params block.
   676  	for i, n := 0, sig.Params().Len(); i < n; i++ {
   677  		sz := a.sizeof(sig.Params().At(i).Type())
   678  		a.copy(p, a.valueNode(call.Args[i]), sz)
   679  		p += nodeid(sz)
   680  	}
   681  	// Copy the call's results block to the actual results.
   682  	if result != 0 {
   683  		a.copy(result, r, a.sizeof(sig.Results()))
   684  	}
   685  
   686  	// We add a dynamic invoke constraint that will connect the
   687  	// caller's and the callee's P/R blocks for each discovered
   688  	// call target.
   689  	a.addConstraint(&invokeConstraint{call.Method, a.valueNode(call.Value), block})
   690  }
   691  
   692  // genInvokeReflectType is a specialization of genInvoke where the
   693  // receiver type is a reflect.Type, under the assumption that there
   694  // can be at most one implementation of this interface, *reflect.rtype.
   695  //
   696  // (Though this may appear to be an instance of a pattern---method
   697  // calls on interfaces known to have exactly one implementation---in
   698  // practice it occurs rarely, so we special case for reflect.Type.)
   699  //
   700  // In effect we treat this:
   701  //    var rt reflect.Type = ...
   702  //    rt.F()
   703  // as this:
   704  //    rt.(*reflect.rtype).F()
   705  //
   706  func (a *analysis) genInvokeReflectType(caller *cgnode, site *callsite, call *ssa.CallCommon, result nodeid) {
   707  	// Unpack receiver into rtype
   708  	rtype := a.addOneNode(a.reflectRtypePtr, "rtype.recv", nil)
   709  	recv := a.valueNode(call.Value)
   710  	a.typeAssert(a.reflectRtypePtr, rtype, recv, true)
   711  
   712  	// Look up the concrete method.
   713  	fn := a.prog.LookupMethod(a.reflectRtypePtr, call.Method.Pkg(), call.Method.Name())
   714  
   715  	obj := a.makeFunctionObject(fn, site) // new contour for this call
   716  	a.callEdge(caller, site, obj)
   717  
   718  	// From now on, it's essentially a static call, but little is
   719  	// gained by factoring together the code for both cases.
   720  
   721  	sig := fn.Signature // concrete method
   722  	targets := a.addOneNode(sig, "call.targets", nil)
   723  	a.addressOf(sig, targets, obj) // (a singleton)
   724  
   725  	// Copy receiver.
   726  	params := a.funcParams(obj)
   727  	a.copy(params, rtype, 1)
   728  	params++
   729  
   730  	// Copy actual parameters into formal P-block.
   731  	// Must loop, since the actuals aren't contiguous.
   732  	for i, arg := range call.Args {
   733  		sz := a.sizeof(sig.Params().At(i).Type())
   734  		a.copy(params, a.valueNode(arg), sz)
   735  		params += nodeid(sz)
   736  	}
   737  
   738  	// Copy formal R-block to actual R-block.
   739  	if result != 0 {
   740  		a.copy(result, a.funcResults(obj), a.sizeof(sig.Results()))
   741  	}
   742  }
   743  
   744  // genCall generates constraints for call instruction instr.
   745  func (a *analysis) genCall(caller *cgnode, instr ssa.CallInstruction) {
   746  	call := instr.Common()
   747  
   748  	// Intrinsic implementations of built-in functions.
   749  	if _, ok := call.Value.(*ssa.Builtin); ok {
   750  		a.genBuiltinCall(instr, caller)
   751  		return
   752  	}
   753  
   754  	var result nodeid
   755  	if v := instr.Value(); v != nil {
   756  		result = a.valueNode(v)
   757  	}
   758  
   759  	site := &callsite{instr: instr}
   760  	if call.StaticCallee() != nil {
   761  		a.genStaticCall(caller, site, call, result)
   762  	} else if call.IsInvoke() {
   763  		a.genInvoke(caller, site, call, result)
   764  	} else {
   765  		a.genDynamicCall(caller, site, call, result)
   766  	}
   767  
   768  	caller.sites = append(caller.sites, site)
   769  
   770  	if a.log != nil {
   771  		// TODO(adonovan): debug: improve log message.
   772  		fmt.Fprintf(a.log, "\t%s to targets %s from %s\n", site, site.targets, caller)
   773  	}
   774  }
   775  
   776  // objectNode returns the object to which v points, if known.
   777  // In other words, if the points-to set of v is a singleton, it
   778  // returns the sole label, zero otherwise.
   779  //
   780  // We exploit this information to make the generated constraints less
   781  // dynamic.  For example, a complex load constraint can be replaced by
   782  // a simple copy constraint when the sole destination is known a priori.
   783  //
   784  // Some SSA instructions always have singletons points-to sets:
   785  // 	Alloc, Function, Global, MakeChan, MakeClosure,  MakeInterface,  MakeMap,  MakeSlice.
   786  // Others may be singletons depending on their operands:
   787  // 	FreeVar, Const, Convert, FieldAddr, IndexAddr, Slice.
   788  //
   789  // Idempotent.  Objects are created as needed, possibly via recursion
   790  // down the SSA value graph, e.g IndexAddr(FieldAddr(Alloc))).
   791  //
   792  func (a *analysis) objectNode(cgn *cgnode, v ssa.Value) nodeid {
   793  	switch v.(type) {
   794  	case *ssa.Global, *ssa.Function, *ssa.Const, *ssa.FreeVar:
   795  		// Global object.
   796  		obj, ok := a.globalobj[v]
   797  		if !ok {
   798  			switch v := v.(type) {
   799  			case *ssa.Global:
   800  				obj = a.nextNode()
   801  				a.addNodes(mustDeref(v.Type()), "global")
   802  				a.endObject(obj, nil, v)
   803  
   804  			case *ssa.Function:
   805  				obj = a.makeFunctionObject(v, nil)
   806  
   807  			case *ssa.Const:
   808  				// not addressable
   809  
   810  			case *ssa.FreeVar:
   811  				// not addressable
   812  			}
   813  
   814  			if a.log != nil {
   815  				fmt.Fprintf(a.log, "\tglobalobj[%s] = n%d\n", v, obj)
   816  			}
   817  			a.globalobj[v] = obj
   818  		}
   819  		return obj
   820  	}
   821  
   822  	// Local object.
   823  	obj, ok := a.localobj[v]
   824  	if !ok {
   825  		switch v := v.(type) {
   826  		case *ssa.Alloc:
   827  			obj = a.nextNode()
   828  			a.addNodes(mustDeref(v.Type()), "alloc")
   829  			a.endObject(obj, cgn, v)
   830  
   831  		case *ssa.MakeSlice:
   832  			obj = a.nextNode()
   833  			a.addNodes(sliceToArray(v.Type()), "makeslice")
   834  			a.endObject(obj, cgn, v)
   835  
   836  		case *ssa.MakeChan:
   837  			obj = a.nextNode()
   838  			a.addNodes(v.Type().Underlying().(*types.Chan).Elem(), "makechan")
   839  			a.endObject(obj, cgn, v)
   840  
   841  		case *ssa.MakeMap:
   842  			obj = a.nextNode()
   843  			tmap := v.Type().Underlying().(*types.Map)
   844  			a.addNodes(tmap.Key(), "makemap.key")
   845  			elem := a.addNodes(tmap.Elem(), "makemap.value")
   846  
   847  			// To update the value field, MapUpdate
   848  			// generates store-with-offset constraints which
   849  			// the presolver can't model, so we must mark
   850  			// those nodes indirect.
   851  			for id, end := elem, elem+nodeid(a.sizeof(tmap.Elem())); id < end; id++ {
   852  				a.mapValues = append(a.mapValues, id)
   853  			}
   854  			a.endObject(obj, cgn, v)
   855  
   856  		case *ssa.MakeInterface:
   857  			tConc := v.X.Type()
   858  			obj = a.makeTagged(tConc, cgn, v)
   859  
   860  			// Copy the value into it, if nontrivial.
   861  			if x := a.valueNode(v.X); x != 0 {
   862  				a.copy(obj+1, x, a.sizeof(tConc))
   863  			}
   864  
   865  		case *ssa.FieldAddr:
   866  			if xobj := a.objectNode(cgn, v.X); xobj != 0 {
   867  				obj = xobj + nodeid(a.offsetOf(mustDeref(v.X.Type()), v.Field))
   868  			}
   869  
   870  		case *ssa.IndexAddr:
   871  			if xobj := a.objectNode(cgn, v.X); xobj != 0 {
   872  				obj = xobj + 1
   873  			}
   874  
   875  		case *ssa.Slice:
   876  			obj = a.objectNode(cgn, v.X)
   877  
   878  		case *ssa.Convert:
   879  			// TODO(adonovan): opt: handle these cases too:
   880  			// - unsafe.Pointer->*T conversion acts like Alloc
   881  			// - string->[]byte/[]rune conversion acts like MakeSlice
   882  		}
   883  
   884  		if a.log != nil {
   885  			fmt.Fprintf(a.log, "\tlocalobj[%s] = n%d\n", v.Name(), obj)
   886  		}
   887  		a.localobj[v] = obj
   888  	}
   889  	return obj
   890  }
   891  
   892  // genLoad generates constraints for result = *(ptr + val).
   893  func (a *analysis) genLoad(cgn *cgnode, result nodeid, ptr ssa.Value, offset, sizeof uint32) {
   894  	if obj := a.objectNode(cgn, ptr); obj != 0 {
   895  		// Pre-apply loadConstraint.solve().
   896  		a.copy(result, obj+nodeid(offset), sizeof)
   897  	} else {
   898  		a.load(result, a.valueNode(ptr), offset, sizeof)
   899  	}
   900  }
   901  
   902  // genOffsetAddr generates constraints for a 'v=ptr.field' (FieldAddr)
   903  // or 'v=ptr[*]' (IndexAddr) instruction v.
   904  func (a *analysis) genOffsetAddr(cgn *cgnode, v ssa.Value, ptr nodeid, offset uint32) {
   905  	dst := a.valueNode(v)
   906  	if obj := a.objectNode(cgn, v); obj != 0 {
   907  		// Pre-apply offsetAddrConstraint.solve().
   908  		a.addressOf(v.Type(), dst, obj)
   909  	} else {
   910  		a.offsetAddr(v.Type(), dst, ptr, offset)
   911  	}
   912  }
   913  
   914  // genStore generates constraints for *(ptr + offset) = val.
   915  func (a *analysis) genStore(cgn *cgnode, ptr ssa.Value, val nodeid, offset, sizeof uint32) {
   916  	if obj := a.objectNode(cgn, ptr); obj != 0 {
   917  		// Pre-apply storeConstraint.solve().
   918  		a.copy(obj+nodeid(offset), val, sizeof)
   919  	} else {
   920  		a.store(a.valueNode(ptr), val, offset, sizeof)
   921  	}
   922  }
   923  
   924  // genInstr generates constraints for instruction instr in context cgn.
   925  func (a *analysis) genInstr(cgn *cgnode, instr ssa.Instruction) {
   926  	if a.log != nil {
   927  		var prefix string
   928  		if val, ok := instr.(ssa.Value); ok {
   929  			prefix = val.Name() + " = "
   930  		}
   931  		fmt.Fprintf(a.log, "; %s%s\n", prefix, instr)
   932  	}
   933  
   934  	switch instr := instr.(type) {
   935  	case *ssa.DebugRef:
   936  		// no-op.
   937  
   938  	case *ssa.UnOp:
   939  		switch instr.Op {
   940  		case token.ARROW: // <-x
   941  			// We can ignore instr.CommaOk because the node we're
   942  			// altering is always at zero offset relative to instr
   943  			tElem := instr.X.Type().Underlying().(*types.Chan).Elem()
   944  			a.genLoad(cgn, a.valueNode(instr), instr.X, 0, a.sizeof(tElem))
   945  
   946  		case token.MUL: // *x
   947  			a.genLoad(cgn, a.valueNode(instr), instr.X, 0, a.sizeof(instr.Type()))
   948  
   949  		default:
   950  			// NOT, SUB, XOR: no-op.
   951  		}
   952  
   953  	case *ssa.BinOp:
   954  		// All no-ops.
   955  
   956  	case ssa.CallInstruction: // *ssa.Call, *ssa.Go, *ssa.Defer
   957  		a.genCall(cgn, instr)
   958  
   959  	case *ssa.ChangeType:
   960  		a.copy(a.valueNode(instr), a.valueNode(instr.X), 1)
   961  
   962  	case *ssa.Convert:
   963  		a.genConv(instr, cgn)
   964  
   965  	case *ssa.Extract:
   966  		a.copy(a.valueNode(instr),
   967  			a.valueOffsetNode(instr.Tuple, instr.Index),
   968  			a.sizeof(instr.Type()))
   969  
   970  	case *ssa.FieldAddr:
   971  		a.genOffsetAddr(cgn, instr, a.valueNode(instr.X),
   972  			a.offsetOf(mustDeref(instr.X.Type()), instr.Field))
   973  
   974  	case *ssa.IndexAddr:
   975  		a.genOffsetAddr(cgn, instr, a.valueNode(instr.X), 1)
   976  
   977  	case *ssa.Field:
   978  		a.copy(a.valueNode(instr),
   979  			a.valueOffsetNode(instr.X, instr.Field),
   980  			a.sizeof(instr.Type()))
   981  
   982  	case *ssa.Index:
   983  		a.copy(a.valueNode(instr), 1+a.valueNode(instr.X), a.sizeof(instr.Type()))
   984  
   985  	case *ssa.Select:
   986  		recv := a.valueOffsetNode(instr, 2) // instr : (index, recvOk, recv0, ... recv_n-1)
   987  		for _, st := range instr.States {
   988  			elemSize := a.sizeof(st.Chan.Type().Underlying().(*types.Chan).Elem())
   989  			switch st.Dir {
   990  			case types.RecvOnly:
   991  				a.genLoad(cgn, recv, st.Chan, 0, elemSize)
   992  				recv += nodeid(elemSize)
   993  
   994  			case types.SendOnly:
   995  				a.genStore(cgn, st.Chan, a.valueNode(st.Send), 0, elemSize)
   996  			}
   997  		}
   998  
   999  	case *ssa.Return:
  1000  		results := a.funcResults(cgn.obj)
  1001  		for _, r := range instr.Results {
  1002  			sz := a.sizeof(r.Type())
  1003  			a.copy(results, a.valueNode(r), sz)
  1004  			results += nodeid(sz)
  1005  		}
  1006  
  1007  	case *ssa.Send:
  1008  		a.genStore(cgn, instr.Chan, a.valueNode(instr.X), 0, a.sizeof(instr.X.Type()))
  1009  
  1010  	case *ssa.Store:
  1011  		a.genStore(cgn, instr.Addr, a.valueNode(instr.Val), 0, a.sizeof(instr.Val.Type()))
  1012  
  1013  	case *ssa.Alloc, *ssa.MakeSlice, *ssa.MakeChan, *ssa.MakeMap, *ssa.MakeInterface:
  1014  		v := instr.(ssa.Value)
  1015  		a.addressOf(v.Type(), a.valueNode(v), a.objectNode(cgn, v))
  1016  
  1017  	case *ssa.ChangeInterface:
  1018  		a.copy(a.valueNode(instr), a.valueNode(instr.X), 1)
  1019  
  1020  	case *ssa.TypeAssert:
  1021  		a.typeAssert(instr.AssertedType, a.valueNode(instr), a.valueNode(instr.X), true)
  1022  
  1023  	case *ssa.Slice:
  1024  		a.copy(a.valueNode(instr), a.valueNode(instr.X), 1)
  1025  
  1026  	case *ssa.If, *ssa.Jump:
  1027  		// no-op.
  1028  
  1029  	case *ssa.Phi:
  1030  		sz := a.sizeof(instr.Type())
  1031  		for _, e := range instr.Edges {
  1032  			a.copy(a.valueNode(instr), a.valueNode(e), sz)
  1033  		}
  1034  
  1035  	case *ssa.MakeClosure:
  1036  		fn := instr.Fn.(*ssa.Function)
  1037  		a.copy(a.valueNode(instr), a.valueNode(fn), 1)
  1038  		// Free variables are treated like global variables.
  1039  		for i, b := range instr.Bindings {
  1040  			a.copy(a.valueNode(fn.FreeVars[i]), a.valueNode(b), a.sizeof(b.Type()))
  1041  		}
  1042  
  1043  	case *ssa.RunDefers:
  1044  		// The analysis is flow insensitive, so we just "call"
  1045  		// defers as we encounter them.
  1046  
  1047  	case *ssa.Range:
  1048  		// Do nothing.  Next{Iter: *ssa.Range} handles this case.
  1049  
  1050  	case *ssa.Next:
  1051  		if !instr.IsString { // map
  1052  			// Assumes that Next is always directly applied to a Range result.
  1053  			theMap := instr.Iter.(*ssa.Range).X
  1054  			tMap := theMap.Type().Underlying().(*types.Map)
  1055  
  1056  			ksize := a.sizeof(tMap.Key())
  1057  			vsize := a.sizeof(tMap.Elem())
  1058  
  1059  			// The k/v components of the Next tuple may each be invalid.
  1060  			tTuple := instr.Type().(*types.Tuple)
  1061  
  1062  			// Load from the map's (k,v) into the tuple's (ok, k, v).
  1063  			osrc := uint32(0) // offset within map object
  1064  			odst := uint32(1) // offset within tuple (initially just after 'ok bool')
  1065  			sz := uint32(0)   // amount to copy
  1066  
  1067  			// Is key valid?
  1068  			if tTuple.At(1).Type() != tInvalid {
  1069  				sz += ksize
  1070  			} else {
  1071  				odst += ksize
  1072  				osrc += ksize
  1073  			}
  1074  
  1075  			// Is value valid?
  1076  			if tTuple.At(2).Type() != tInvalid {
  1077  				sz += vsize
  1078  			}
  1079  
  1080  			a.genLoad(cgn, a.valueNode(instr)+nodeid(odst), theMap, osrc, sz)
  1081  		}
  1082  
  1083  	case *ssa.Lookup:
  1084  		if tMap, ok := instr.X.Type().Underlying().(*types.Map); ok {
  1085  			// CommaOk can be ignored: field 0 is a no-op.
  1086  			ksize := a.sizeof(tMap.Key())
  1087  			vsize := a.sizeof(tMap.Elem())
  1088  			a.genLoad(cgn, a.valueNode(instr), instr.X, ksize, vsize)
  1089  		}
  1090  
  1091  	case *ssa.MapUpdate:
  1092  		tmap := instr.Map.Type().Underlying().(*types.Map)
  1093  		ksize := a.sizeof(tmap.Key())
  1094  		vsize := a.sizeof(tmap.Elem())
  1095  		a.genStore(cgn, instr.Map, a.valueNode(instr.Key), 0, ksize)
  1096  		a.genStore(cgn, instr.Map, a.valueNode(instr.Value), ksize, vsize)
  1097  
  1098  	case *ssa.Panic:
  1099  		a.copy(a.panicNode, a.valueNode(instr.X), 1)
  1100  
  1101  	default:
  1102  		panic(fmt.Sprintf("unimplemented: %T", instr))
  1103  	}
  1104  }
  1105  
  1106  func (a *analysis) makeCGNode(fn *ssa.Function, obj nodeid, callersite *callsite) *cgnode {
  1107  	cgn := &cgnode{fn: fn, obj: obj, callersite: callersite}
  1108  	a.cgnodes = append(a.cgnodes, cgn)
  1109  	return cgn
  1110  }
  1111  
  1112  // genRootCalls generates the synthetic root of the callgraph and the
  1113  // initial calls from it to the analysis scope, such as main, a test
  1114  // or a library.
  1115  //
  1116  func (a *analysis) genRootCalls() *cgnode {
  1117  	r := a.prog.NewFunction("<root>", new(types.Signature), "root of callgraph")
  1118  	root := a.makeCGNode(r, 0, nil)
  1119  
  1120  	// TODO(adonovan): make an ssa utility to construct an actual
  1121  	// root function so we don't need to special-case site-less
  1122  	// call edges.
  1123  
  1124  	// For each main package, call main.init(), main.main().
  1125  	for _, mainPkg := range a.config.Mains {
  1126  		main := mainPkg.Func("main")
  1127  		if main == nil {
  1128  			panic(fmt.Sprintf("%s has no main function", mainPkg))
  1129  		}
  1130  
  1131  		targets := a.addOneNode(main.Signature, "root.targets", nil)
  1132  		site := &callsite{targets: targets}
  1133  		root.sites = append(root.sites, site)
  1134  		for _, fn := range [2]*ssa.Function{mainPkg.Func("init"), main} {
  1135  			if a.log != nil {
  1136  				fmt.Fprintf(a.log, "\troot call to %s:\n", fn)
  1137  			}
  1138  			a.copy(targets, a.valueNode(fn), 1)
  1139  		}
  1140  	}
  1141  
  1142  	return root
  1143  }
  1144  
  1145  // genFunc generates constraints for function fn.
  1146  func (a *analysis) genFunc(cgn *cgnode) {
  1147  	fn := cgn.fn
  1148  
  1149  	impl := a.findIntrinsic(fn)
  1150  
  1151  	if a.log != nil {
  1152  		fmt.Fprintf(a.log, "\n\n==== Generating constraints for %s, %s\n", cgn, cgn.contour())
  1153  
  1154  		// Hack: don't display body if intrinsic.
  1155  		if impl != nil {
  1156  			fn2 := *cgn.fn // copy
  1157  			fn2.Locals = nil
  1158  			fn2.Blocks = nil
  1159  			fn2.WriteTo(a.log)
  1160  		} else {
  1161  			cgn.fn.WriteTo(a.log)
  1162  		}
  1163  	}
  1164  
  1165  	if impl != nil {
  1166  		impl(a, cgn)
  1167  		return
  1168  	}
  1169  
  1170  	if fn.Blocks == nil {
  1171  		// External function with no intrinsic treatment.
  1172  		// We'll warn about calls to such functions at the end.
  1173  		return
  1174  	}
  1175  
  1176  	if a.log != nil {
  1177  		fmt.Fprintln(a.log, "; Creating nodes for local values")
  1178  	}
  1179  
  1180  	a.localval = make(map[ssa.Value]nodeid)
  1181  	a.localobj = make(map[ssa.Value]nodeid)
  1182  
  1183  	// The value nodes for the params are in the func object block.
  1184  	params := a.funcParams(cgn.obj)
  1185  	for _, p := range fn.Params {
  1186  		a.setValueNode(p, params, cgn)
  1187  		params += nodeid(a.sizeof(p.Type()))
  1188  	}
  1189  
  1190  	// Free variables have global cardinality:
  1191  	// the outer function sets them with MakeClosure;
  1192  	// the inner function accesses them with FreeVar.
  1193  	//
  1194  	// TODO(adonovan): treat free vars context-sensitively.
  1195  
  1196  	// Create value nodes for all value instructions
  1197  	// since SSA may contain forward references.
  1198  	var space [10]*ssa.Value
  1199  	for _, b := range fn.Blocks {
  1200  		for _, instr := range b.Instrs {
  1201  			switch instr := instr.(type) {
  1202  			case *ssa.Range:
  1203  				// do nothing: it has a funky type,
  1204  				// and *ssa.Next does all the work.
  1205  
  1206  			case ssa.Value:
  1207  				var comment string
  1208  				if a.log != nil {
  1209  					comment = instr.Name()
  1210  				}
  1211  				id := a.addNodes(instr.Type(), comment)
  1212  				a.setValueNode(instr, id, cgn)
  1213  			}
  1214  
  1215  			// Record all address-taken functions (for presolver).
  1216  			rands := instr.Operands(space[:0])
  1217  			if call, ok := instr.(ssa.CallInstruction); ok && !call.Common().IsInvoke() {
  1218  				// Skip CallCommon.Value in "call" mode.
  1219  				// TODO(adonovan): fix: relies on unspecified ordering.  Specify it.
  1220  				rands = rands[1:]
  1221  			}
  1222  			for _, rand := range rands {
  1223  				if atf, ok := (*rand).(*ssa.Function); ok {
  1224  					a.atFuncs[atf] = true
  1225  				}
  1226  			}
  1227  		}
  1228  	}
  1229  
  1230  	// Generate constraints for instructions.
  1231  	for _, b := range fn.Blocks {
  1232  		for _, instr := range b.Instrs {
  1233  			a.genInstr(cgn, instr)
  1234  		}
  1235  	}
  1236  
  1237  	a.localval = nil
  1238  	a.localobj = nil
  1239  }
  1240  
  1241  // genMethodsOf generates nodes and constraints for all methods of type T.
  1242  func (a *analysis) genMethodsOf(T types.Type) {
  1243  	itf := isInterface(T)
  1244  
  1245  	// TODO(adonovan): can we skip this entirely if itf is true?
  1246  	// I think so, but the answer may depend on reflection.
  1247  	mset := a.prog.MethodSets.MethodSet(T)
  1248  	for i, n := 0, mset.Len(); i < n; i++ {
  1249  		m := a.prog.MethodValue(mset.At(i))
  1250  		a.valueNode(m)
  1251  
  1252  		if !itf {
  1253  			// Methods of concrete types are address-taken functions.
  1254  			a.atFuncs[m] = true
  1255  		}
  1256  	}
  1257  }
  1258  
  1259  // generate generates offline constraints for the entire program.
  1260  func (a *analysis) generate() {
  1261  	start("Constraint generation")
  1262  	if a.log != nil {
  1263  		fmt.Fprintln(a.log, "==== Generating constraints")
  1264  	}
  1265  
  1266  	// Create a dummy node since we use the nodeid 0 for
  1267  	// non-pointerlike variables.
  1268  	a.addNodes(tInvalid, "(zero)")
  1269  
  1270  	// Create the global node for panic values.
  1271  	a.panicNode = a.addNodes(tEface, "panic")
  1272  
  1273  	// Create nodes and constraints for all methods of reflect.rtype.
  1274  	// (Shared contours are used by dynamic calls to reflect.Type
  1275  	// methods---typically just String().)
  1276  	if rtype := a.reflectRtypePtr; rtype != nil {
  1277  		a.genMethodsOf(rtype)
  1278  	}
  1279  
  1280  	root := a.genRootCalls()
  1281  
  1282  	if a.config.BuildCallGraph {
  1283  		a.result.CallGraph = callgraph.New(root.fn)
  1284  	}
  1285  
  1286  	// Create nodes and constraints for all methods of all types
  1287  	// that are dynamically accessible via reflection or interfaces.
  1288  	for _, T := range a.prog.RuntimeTypes() {
  1289  		a.genMethodsOf(T)
  1290  	}
  1291  
  1292  	// Generate constraints for entire program.
  1293  	for len(a.genq) > 0 {
  1294  		cgn := a.genq[0]
  1295  		a.genq = a.genq[1:]
  1296  		a.genFunc(cgn)
  1297  	}
  1298  
  1299  	// The runtime magically allocates os.Args; so should we.
  1300  	if os := a.prog.ImportedPackage("os"); os != nil {
  1301  		// In effect:  os.Args = new([1]string)[:]
  1302  		T := types.NewSlice(types.Typ[types.String])
  1303  		obj := a.addNodes(sliceToArray(T), "<command-line args>")
  1304  		a.endObject(obj, nil, "<command-line args>")
  1305  		a.addressOf(T, a.objectNode(nil, os.Var("Args")), obj)
  1306  	}
  1307  
  1308  	// Discard generation state, to avoid confusion after node renumbering.
  1309  	a.panicNode = 0
  1310  	a.globalval = nil
  1311  	a.localval = nil
  1312  	a.localobj = nil
  1313  
  1314  	stop("Constraint generation")
  1315  }