github.com/graybobo/golang.org-package-offline-cache@v0.0.0-20200626051047-6608995c132f/x/tools/go/ssa/lift.go (about)

     1  // Copyright 2013 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // +build go1.5
     6  
     7  package ssa
     8  
     9  // This file defines the lifting pass which tries to "lift" Alloc
    10  // cells (new/local variables) into SSA registers, replacing loads
    11  // with the dominating stored value, eliminating loads and stores, and
    12  // inserting φ-nodes as needed.
    13  
    14  // Cited papers and resources:
    15  //
    16  // Ron Cytron et al. 1991. Efficiently computing SSA form...
    17  // http://doi.acm.org/10.1145/115372.115320
    18  //
    19  // Cooper, Harvey, Kennedy.  2001.  A Simple, Fast Dominance Algorithm.
    20  // Software Practice and Experience 2001, 4:1-10.
    21  // http://www.hipersoft.rice.edu/grads/publications/dom14.pdf
    22  //
    23  // Daniel Berlin, llvmdev mailing list, 2012.
    24  // http://lists.cs.uiuc.edu/pipermail/llvmdev/2012-January/046638.html
    25  // (Be sure to expand the whole thread.)
    26  
    27  // TODO(adonovan): opt: there are many optimizations worth evaluating, and
    28  // the conventional wisdom for SSA construction is that a simple
    29  // algorithm well engineered often beats those of better asymptotic
    30  // complexity on all but the most egregious inputs.
    31  //
    32  // Danny Berlin suggests that the Cooper et al. algorithm for
    33  // computing the dominance frontier is superior to Cytron et al.
    34  // Furthermore he recommends that rather than computing the DF for the
    35  // whole function then renaming all alloc cells, it may be cheaper to
    36  // compute the DF for each alloc cell separately and throw it away.
    37  //
    38  // Consider exploiting liveness information to avoid creating dead
    39  // φ-nodes which we then immediately remove.
    40  //
    41  // Integrate lifting with scalar replacement of aggregates (SRA) since
    42  // the two are synergistic.
    43  //
    44  // Also see many other "TODO: opt" suggestions in the code.
    45  
    46  import (
    47  	"fmt"
    48  	"go/token"
    49  	"go/types"
    50  	"math/big"
    51  	"os"
    52  )
    53  
    54  // If true, perform sanity checking and show diagnostic information at
    55  // each step of lifting.  Very verbose.
    56  const debugLifting = false
    57  
    58  // domFrontier maps each block to the set of blocks in its dominance
    59  // frontier.  The outer slice is conceptually a map keyed by
    60  // Block.Index.  The inner slice is conceptually a set, possibly
    61  // containing duplicates.
    62  //
    63  // TODO(adonovan): opt: measure impact of dups; consider a packed bit
    64  // representation, e.g. big.Int, and bitwise parallel operations for
    65  // the union step in the Children loop.
    66  //
    67  // domFrontier's methods mutate the slice's elements but not its
    68  // length, so their receivers needn't be pointers.
    69  //
    70  type domFrontier [][]*BasicBlock
    71  
    72  func (df domFrontier) add(u, v *BasicBlock) {
    73  	p := &df[u.Index]
    74  	*p = append(*p, v)
    75  }
    76  
    77  // build builds the dominance frontier df for the dominator (sub)tree
    78  // rooted at u, using the Cytron et al. algorithm.
    79  //
    80  // TODO(adonovan): opt: consider Berlin approach, computing pruned SSA
    81  // by pruning the entire IDF computation, rather than merely pruning
    82  // the DF -> IDF step.
    83  func (df domFrontier) build(u *BasicBlock) {
    84  	// Encounter each node u in postorder of dom tree.
    85  	for _, child := range u.dom.children {
    86  		df.build(child)
    87  	}
    88  	for _, vb := range u.Succs {
    89  		if v := vb.dom; v.idom != u {
    90  			df.add(u, vb)
    91  		}
    92  	}
    93  	for _, w := range u.dom.children {
    94  		for _, vb := range df[w.Index] {
    95  			// TODO(adonovan): opt: use word-parallel bitwise union.
    96  			if v := vb.dom; v.idom != u {
    97  				df.add(u, vb)
    98  			}
    99  		}
   100  	}
   101  }
   102  
   103  func buildDomFrontier(fn *Function) domFrontier {
   104  	df := make(domFrontier, len(fn.Blocks))
   105  	df.build(fn.Blocks[0])
   106  	if fn.Recover != nil {
   107  		df.build(fn.Recover)
   108  	}
   109  	return df
   110  }
   111  
   112  func removeInstr(refs []Instruction, instr Instruction) []Instruction {
   113  	i := 0
   114  	for _, ref := range refs {
   115  		if ref == instr {
   116  			continue
   117  		}
   118  		refs[i] = ref
   119  		i++
   120  	}
   121  	for j := i; j != len(refs); j++ {
   122  		refs[j] = nil // aid GC
   123  	}
   124  	return refs[:i]
   125  }
   126  
   127  // lift attempts to replace local and new Allocs accessed only with
   128  // load/store by SSA registers, inserting φ-nodes where necessary.
   129  // The result is a program in classical pruned SSA form.
   130  //
   131  // Preconditions:
   132  // - fn has no dead blocks (blockopt has run).
   133  // - Def/use info (Operands and Referrers) is up-to-date.
   134  // - The dominator tree is up-to-date.
   135  //
   136  func lift(fn *Function) {
   137  	// TODO(adonovan): opt: lots of little optimizations may be
   138  	// worthwhile here, especially if they cause us to avoid
   139  	// buildDomFrontier.  For example:
   140  	//
   141  	// - Alloc never loaded?  Eliminate.
   142  	// - Alloc never stored?  Replace all loads with a zero constant.
   143  	// - Alloc stored once?  Replace loads with dominating store;
   144  	//   don't forget that an Alloc is itself an effective store
   145  	//   of zero.
   146  	// - Alloc used only within a single block?
   147  	//   Use degenerate algorithm avoiding φ-nodes.
   148  	// - Consider synergy with scalar replacement of aggregates (SRA).
   149  	//   e.g. *(&x.f) where x is an Alloc.
   150  	//   Perhaps we'd get better results if we generated this as x.f
   151  	//   i.e. Field(x, .f) instead of Load(FieldIndex(x, .f)).
   152  	//   Unclear.
   153  	//
   154  	// But we will start with the simplest correct code.
   155  	df := buildDomFrontier(fn)
   156  
   157  	if debugLifting {
   158  		title := false
   159  		for i, blocks := range df {
   160  			if blocks != nil {
   161  				if !title {
   162  					fmt.Fprintf(os.Stderr, "Dominance frontier of %s:\n", fn)
   163  					title = true
   164  				}
   165  				fmt.Fprintf(os.Stderr, "\t%s: %s\n", fn.Blocks[i], blocks)
   166  			}
   167  		}
   168  	}
   169  
   170  	newPhis := make(newPhiMap)
   171  
   172  	// During this pass we will replace some BasicBlock.Instrs
   173  	// (allocs, loads and stores) with nil, keeping a count in
   174  	// BasicBlock.gaps.  At the end we will reset Instrs to the
   175  	// concatenation of all non-dead newPhis and non-nil Instrs
   176  	// for the block, reusing the original array if space permits.
   177  
   178  	// While we're here, we also eliminate 'rundefers'
   179  	// instructions in functions that contain no 'defer'
   180  	// instructions.
   181  	usesDefer := false
   182  
   183  	// Determine which allocs we can lift and number them densely.
   184  	// The renaming phase uses this numbering for compact maps.
   185  	numAllocs := 0
   186  	for _, b := range fn.Blocks {
   187  		b.gaps = 0
   188  		b.rundefers = 0
   189  		for _, instr := range b.Instrs {
   190  			switch instr := instr.(type) {
   191  			case *Alloc:
   192  				index := -1
   193  				if liftAlloc(df, instr, newPhis) {
   194  					index = numAllocs
   195  					numAllocs++
   196  				}
   197  				instr.index = index
   198  			case *Defer:
   199  				usesDefer = true
   200  			case *RunDefers:
   201  				b.rundefers++
   202  			}
   203  		}
   204  	}
   205  
   206  	// renaming maps an alloc (keyed by index) to its replacement
   207  	// value.  Initially the renaming contains nil, signifying the
   208  	// zero constant of the appropriate type; we construct the
   209  	// Const lazily at most once on each path through the domtree.
   210  	// TODO(adonovan): opt: cache per-function not per subtree.
   211  	renaming := make([]Value, numAllocs)
   212  
   213  	// Renaming.
   214  	rename(fn.Blocks[0], renaming, newPhis)
   215  
   216  	// Eliminate dead new phis, then prepend the live ones to each block.
   217  	for _, b := range fn.Blocks {
   218  
   219  		// Compress the newPhis slice to eliminate unused phis.
   220  		// TODO(adonovan): opt: compute liveness to avoid
   221  		// placing phis in blocks for which the alloc cell is
   222  		// not live.
   223  		nps := newPhis[b]
   224  		j := 0
   225  		for _, np := range nps {
   226  			if !phiIsLive(np.phi) {
   227  				// discard it, first removing it from referrers
   228  				for _, newval := range np.phi.Edges {
   229  					if refs := newval.Referrers(); refs != nil {
   230  						*refs = removeInstr(*refs, np.phi)
   231  					}
   232  				}
   233  				continue
   234  			}
   235  			nps[j] = np
   236  			j++
   237  		}
   238  		nps = nps[:j]
   239  
   240  		rundefersToKill := b.rundefers
   241  		if usesDefer {
   242  			rundefersToKill = 0
   243  		}
   244  
   245  		if j+b.gaps+rundefersToKill == 0 {
   246  			continue // fast path: no new phis or gaps
   247  		}
   248  
   249  		// Compact nps + non-nil Instrs into a new slice.
   250  		// TODO(adonovan): opt: compact in situ if there is
   251  		// sufficient space or slack in the slice.
   252  		dst := make([]Instruction, len(b.Instrs)+j-b.gaps-rundefersToKill)
   253  		for i, np := range nps {
   254  			dst[i] = np.phi
   255  		}
   256  		for _, instr := range b.Instrs {
   257  			if instr == nil {
   258  				continue
   259  			}
   260  			if !usesDefer {
   261  				if _, ok := instr.(*RunDefers); ok {
   262  					continue
   263  				}
   264  			}
   265  			dst[j] = instr
   266  			j++
   267  		}
   268  		for i, np := range nps {
   269  			dst[i] = np.phi
   270  		}
   271  		b.Instrs = dst
   272  	}
   273  
   274  	// Remove any fn.Locals that were lifted.
   275  	j := 0
   276  	for _, l := range fn.Locals {
   277  		if l.index < 0 {
   278  			fn.Locals[j] = l
   279  			j++
   280  		}
   281  	}
   282  	// Nil out fn.Locals[j:] to aid GC.
   283  	for i := j; i < len(fn.Locals); i++ {
   284  		fn.Locals[i] = nil
   285  	}
   286  	fn.Locals = fn.Locals[:j]
   287  }
   288  
   289  func phiIsLive(phi *Phi) bool {
   290  	for _, instr := range *phi.Referrers() {
   291  		if instr == phi {
   292  			continue // self-refs don't count
   293  		}
   294  		if _, ok := instr.(*DebugRef); ok {
   295  			continue // debug refs don't count
   296  		}
   297  		return true
   298  	}
   299  	return false
   300  }
   301  
   302  type blockSet struct{ big.Int } // (inherit methods from Int)
   303  
   304  // add adds b to the set and returns true if the set changed.
   305  func (s *blockSet) add(b *BasicBlock) bool {
   306  	i := b.Index
   307  	if s.Bit(i) != 0 {
   308  		return false
   309  	}
   310  	s.SetBit(&s.Int, i, 1)
   311  	return true
   312  }
   313  
   314  // take removes an arbitrary element from a set s and
   315  // returns its index, or returns -1 if empty.
   316  func (s *blockSet) take() int {
   317  	l := s.BitLen()
   318  	for i := 0; i < l; i++ {
   319  		if s.Bit(i) == 1 {
   320  			s.SetBit(&s.Int, i, 0)
   321  			return i
   322  		}
   323  	}
   324  	return -1
   325  }
   326  
   327  // newPhi is a pair of a newly introduced φ-node and the lifted Alloc
   328  // it replaces.
   329  type newPhi struct {
   330  	phi   *Phi
   331  	alloc *Alloc
   332  }
   333  
   334  // newPhiMap records for each basic block, the set of newPhis that
   335  // must be prepended to the block.
   336  type newPhiMap map[*BasicBlock][]newPhi
   337  
   338  // liftAlloc determines whether alloc can be lifted into registers,
   339  // and if so, it populates newPhis with all the φ-nodes it may require
   340  // and returns true.
   341  //
   342  func liftAlloc(df domFrontier, alloc *Alloc, newPhis newPhiMap) bool {
   343  	// Don't lift aggregates into registers, because we don't have
   344  	// a way to express their zero-constants.
   345  	switch deref(alloc.Type()).Underlying().(type) {
   346  	case *types.Array, *types.Struct:
   347  		return false
   348  	}
   349  
   350  	// Don't lift named return values in functions that defer
   351  	// calls that may recover from panic.
   352  	if fn := alloc.Parent(); fn.Recover != nil {
   353  		for _, nr := range fn.namedResults {
   354  			if nr == alloc {
   355  				return false
   356  			}
   357  		}
   358  	}
   359  
   360  	// Compute defblocks, the set of blocks containing a
   361  	// definition of the alloc cell.
   362  	var defblocks blockSet
   363  	for _, instr := range *alloc.Referrers() {
   364  		// Bail out if we discover the alloc is not liftable;
   365  		// the only operations permitted to use the alloc are
   366  		// loads/stores into the cell, and DebugRef.
   367  		switch instr := instr.(type) {
   368  		case *Store:
   369  			if instr.Val == alloc {
   370  				return false // address used as value
   371  			}
   372  			if instr.Addr != alloc {
   373  				panic("Alloc.Referrers is inconsistent")
   374  			}
   375  			defblocks.add(instr.Block())
   376  		case *UnOp:
   377  			if instr.Op != token.MUL {
   378  				return false // not a load
   379  			}
   380  			if instr.X != alloc {
   381  				panic("Alloc.Referrers is inconsistent")
   382  			}
   383  		case *DebugRef:
   384  			// ok
   385  		default:
   386  			return false // some other instruction
   387  		}
   388  	}
   389  	// The Alloc itself counts as a (zero) definition of the cell.
   390  	defblocks.add(alloc.Block())
   391  
   392  	if debugLifting {
   393  		fmt.Fprintln(os.Stderr, "\tlifting ", alloc, alloc.Name())
   394  	}
   395  
   396  	fn := alloc.Parent()
   397  
   398  	// Φ-insertion.
   399  	//
   400  	// What follows is the body of the main loop of the insert-φ
   401  	// function described by Cytron et al, but instead of using
   402  	// counter tricks, we just reset the 'hasAlready' and 'work'
   403  	// sets each iteration.  These are bitmaps so it's pretty cheap.
   404  	//
   405  	// TODO(adonovan): opt: recycle slice storage for W,
   406  	// hasAlready, defBlocks across liftAlloc calls.
   407  	var hasAlready blockSet
   408  
   409  	// Initialize W and work to defblocks.
   410  	var work blockSet = defblocks // blocks seen
   411  	var W blockSet                // blocks to do
   412  	W.Set(&defblocks.Int)
   413  
   414  	// Traverse iterated dominance frontier, inserting φ-nodes.
   415  	for i := W.take(); i != -1; i = W.take() {
   416  		u := fn.Blocks[i]
   417  		for _, v := range df[u.Index] {
   418  			if hasAlready.add(v) {
   419  				// Create φ-node.
   420  				// It will be prepended to v.Instrs later, if needed.
   421  				phi := &Phi{
   422  					Edges:   make([]Value, len(v.Preds)),
   423  					Comment: alloc.Comment,
   424  				}
   425  				phi.pos = alloc.Pos()
   426  				phi.setType(deref(alloc.Type()))
   427  				phi.block = v
   428  				if debugLifting {
   429  					fmt.Fprintf(os.Stderr, "\tplace %s = %s at block %s\n", phi.Name(), phi, v)
   430  				}
   431  				newPhis[v] = append(newPhis[v], newPhi{phi, alloc})
   432  
   433  				if work.add(v) {
   434  					W.add(v)
   435  				}
   436  			}
   437  		}
   438  	}
   439  
   440  	return true
   441  }
   442  
   443  // replaceAll replaces all intraprocedural uses of x with y,
   444  // updating x.Referrers and y.Referrers.
   445  // Precondition: x.Referrers() != nil, i.e. x must be local to some function.
   446  //
   447  func replaceAll(x, y Value) {
   448  	var rands []*Value
   449  	pxrefs := x.Referrers()
   450  	pyrefs := y.Referrers()
   451  	for _, instr := range *pxrefs {
   452  		rands = instr.Operands(rands[:0]) // recycle storage
   453  		for _, rand := range rands {
   454  			if *rand != nil {
   455  				if *rand == x {
   456  					*rand = y
   457  				}
   458  			}
   459  		}
   460  		if pyrefs != nil {
   461  			*pyrefs = append(*pyrefs, instr) // dups ok
   462  		}
   463  	}
   464  	*pxrefs = nil // x is now unreferenced
   465  }
   466  
   467  // renamed returns the value to which alloc is being renamed,
   468  // constructing it lazily if it's the implicit zero initialization.
   469  //
   470  func renamed(renaming []Value, alloc *Alloc) Value {
   471  	v := renaming[alloc.index]
   472  	if v == nil {
   473  		v = zeroConst(deref(alloc.Type()))
   474  		renaming[alloc.index] = v
   475  	}
   476  	return v
   477  }
   478  
   479  // rename implements the (Cytron et al) SSA renaming algorithm, a
   480  // preorder traversal of the dominator tree replacing all loads of
   481  // Alloc cells with the value stored to that cell by the dominating
   482  // store instruction.  For lifting, we need only consider loads,
   483  // stores and φ-nodes.
   484  //
   485  // renaming is a map from *Alloc (keyed by index number) to its
   486  // dominating stored value; newPhis[x] is the set of new φ-nodes to be
   487  // prepended to block x.
   488  //
   489  func rename(u *BasicBlock, renaming []Value, newPhis newPhiMap) {
   490  	// Each φ-node becomes the new name for its associated Alloc.
   491  	for _, np := range newPhis[u] {
   492  		phi := np.phi
   493  		alloc := np.alloc
   494  		renaming[alloc.index] = phi
   495  	}
   496  
   497  	// Rename loads and stores of allocs.
   498  	for i, instr := range u.Instrs {
   499  		switch instr := instr.(type) {
   500  		case *Alloc:
   501  			if instr.index >= 0 { // store of zero to Alloc cell
   502  				// Replace dominated loads by the zero value.
   503  				renaming[instr.index] = nil
   504  				if debugLifting {
   505  					fmt.Fprintf(os.Stderr, "\tkill alloc %s\n", instr)
   506  				}
   507  				// Delete the Alloc.
   508  				u.Instrs[i] = nil
   509  				u.gaps++
   510  			}
   511  
   512  		case *Store:
   513  			if alloc, ok := instr.Addr.(*Alloc); ok && alloc.index >= 0 { // store to Alloc cell
   514  				// Replace dominated loads by the stored value.
   515  				renaming[alloc.index] = instr.Val
   516  				if debugLifting {
   517  					fmt.Fprintf(os.Stderr, "\tkill store %s; new value: %s\n",
   518  						instr, instr.Val.Name())
   519  				}
   520  				// Remove the store from the referrer list of the stored value.
   521  				if refs := instr.Val.Referrers(); refs != nil {
   522  					*refs = removeInstr(*refs, instr)
   523  				}
   524  				// Delete the Store.
   525  				u.Instrs[i] = nil
   526  				u.gaps++
   527  			}
   528  
   529  		case *UnOp:
   530  			if instr.Op == token.MUL {
   531  				if alloc, ok := instr.X.(*Alloc); ok && alloc.index >= 0 { // load of Alloc cell
   532  					newval := renamed(renaming, alloc)
   533  					if debugLifting {
   534  						fmt.Fprintf(os.Stderr, "\tupdate load %s = %s with %s\n",
   535  							instr.Name(), instr, newval.Name())
   536  					}
   537  					// Replace all references to
   538  					// the loaded value by the
   539  					// dominating stored value.
   540  					replaceAll(instr, newval)
   541  					// Delete the Load.
   542  					u.Instrs[i] = nil
   543  					u.gaps++
   544  				}
   545  			}
   546  
   547  		case *DebugRef:
   548  			if alloc, ok := instr.X.(*Alloc); ok && alloc.index >= 0 { // ref of Alloc cell
   549  				if instr.IsAddr {
   550  					instr.X = renamed(renaming, alloc)
   551  					instr.IsAddr = false
   552  
   553  					// Add DebugRef to instr.X's referrers.
   554  					if refs := instr.X.Referrers(); refs != nil {
   555  						*refs = append(*refs, instr)
   556  					}
   557  				} else {
   558  					// A source expression denotes the address
   559  					// of an Alloc that was optimized away.
   560  					instr.X = nil
   561  
   562  					// Delete the DebugRef.
   563  					u.Instrs[i] = nil
   564  					u.gaps++
   565  				}
   566  			}
   567  		}
   568  	}
   569  
   570  	// For each φ-node in a CFG successor, rename the edge.
   571  	for _, v := range u.Succs {
   572  		phis := newPhis[v]
   573  		if len(phis) == 0 {
   574  			continue
   575  		}
   576  		i := v.predIndex(u)
   577  		for _, np := range phis {
   578  			phi := np.phi
   579  			alloc := np.alloc
   580  			newval := renamed(renaming, alloc)
   581  			if debugLifting {
   582  				fmt.Fprintf(os.Stderr, "\tsetphi %s edge %s -> %s (#%d) (alloc=%s) := %s\n",
   583  					phi.Name(), u, v, i, alloc.Name(), newval.Name())
   584  			}
   585  			phi.Edges[i] = newval
   586  			if prefs := newval.Referrers(); prefs != nil {
   587  				*prefs = append(*prefs, phi)
   588  			}
   589  		}
   590  	}
   591  
   592  	// Continue depth-first recursion over domtree, pushing a
   593  	// fresh copy of the renaming map for each subtree.
   594  	for _, v := range u.dom.children {
   595  		// TODO(adonovan): opt: avoid copy on final iteration; use destructive update.
   596  		r := make([]Value, len(renaming))
   597  		copy(r, renaming)
   598  		rename(v, r, newPhis)
   599  	}
   600  }