github.com/graybobo/golang.org-package-offline-cache@v0.0.0-20200626051047-6608995c132f/x/tools/go/ssa/ssa14.go (about)

     1  // Copyright 2013 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // +build !go1.5
     6  
     7  package ssa
     8  
     9  // This package defines a high-level intermediate representation for
    10  // Go programs using static single-assignment (SSA) form.
    11  
    12  import (
    13  	"fmt"
    14  	"go/ast"
    15  	"go/token"
    16  	"sync"
    17  
    18  	"golang.org/x/tools/go/exact"
    19  	"golang.org/x/tools/go/types"
    20  	"golang.org/x/tools/go/types/typeutil"
    21  )
    22  
    23  // A Program is a partial or complete Go program converted to SSA form.
    24  type Program struct {
    25  	Fset       *token.FileSet              // position information for the files of this Program
    26  	imported   map[string]*Package         // all importable Packages, keyed by import path
    27  	packages   map[*types.Package]*Package // all loaded Packages, keyed by object
    28  	mode       BuilderMode                 // set of mode bits for SSA construction
    29  	MethodSets typeutil.MethodSetCache     // cache of type-checker's method-sets
    30  
    31  	methodsMu    sync.Mutex                 // guards the following maps:
    32  	methodSets   typeutil.Map               // maps type to its concrete methodSet
    33  	runtimeTypes typeutil.Map               // types for which rtypes are needed
    34  	canon        typeutil.Map               // type canonicalization map
    35  	bounds       map[*types.Func]*Function  // bounds for curried x.Method closures
    36  	thunks       map[selectionKey]*Function // thunks for T.Method expressions
    37  }
    38  
    39  // A Package is a single analyzed Go package containing Members for
    40  // all package-level functions, variables, constants and types it
    41  // declares.  These may be accessed directly via Members, or via the
    42  // type-specific accessor methods Func, Type, Var and Const.
    43  //
    44  // Members also contains entries for "init" (the synthetic package
    45  // initializer) and "init#%d", the nth declared init function,
    46  // and unspecified other things too.
    47  //
    48  type Package struct {
    49  	Prog    *Program               // the owning program
    50  	Pkg     *types.Package         // the corresponding go/types.Package
    51  	Members map[string]Member      // all package members keyed by name (incl. init and init#%d)
    52  	values  map[types.Object]Value // package members (incl. types and methods), keyed by object
    53  	init    *Function              // Func("init"); the package's init function
    54  	debug   bool                   // include full debug info in this package
    55  
    56  	// The following fields are set transiently, then cleared
    57  	// after building.
    58  	buildOnce sync.Once   // ensures package building occurs once
    59  	ninit     int32       // number of init functions
    60  	info      *types.Info // package type information
    61  	files     []*ast.File // package ASTs
    62  }
    63  
    64  // A Member is a member of a Go package, implemented by *NamedConst,
    65  // *Global, *Function, or *Type; they are created by package-level
    66  // const, var, func and type declarations respectively.
    67  //
    68  type Member interface {
    69  	Name() string                    // declared name of the package member
    70  	String() string                  // package-qualified name of the package member
    71  	RelString(*types.Package) string // like String, but relative refs are unqualified
    72  	Object() types.Object            // typechecker's object for this member, if any
    73  	Pos() token.Pos                  // position of member's declaration, if known
    74  	Type() types.Type                // type of the package member
    75  	Token() token.Token              // token.{VAR,FUNC,CONST,TYPE}
    76  	Package() *Package               // the containing package
    77  }
    78  
    79  // A Type is a Member of a Package representing a package-level named type.
    80  //
    81  // Type() returns a *types.Named.
    82  //
    83  type Type struct {
    84  	object *types.TypeName
    85  	pkg    *Package
    86  }
    87  
    88  // A NamedConst is a Member of a Package representing a package-level
    89  // named constant.
    90  //
    91  // Pos() returns the position of the declaring ast.ValueSpec.Names[*]
    92  // identifier.
    93  //
    94  // NB: a NamedConst is not a Value; it contains a constant Value, which
    95  // it augments with the name and position of its 'const' declaration.
    96  //
    97  type NamedConst struct {
    98  	object *types.Const
    99  	Value  *Const
   100  	pos    token.Pos
   101  	pkg    *Package
   102  }
   103  
   104  // A Value is an SSA value that can be referenced by an instruction.
   105  type Value interface {
   106  	// Name returns the name of this value, and determines how
   107  	// this Value appears when used as an operand of an
   108  	// Instruction.
   109  	//
   110  	// This is the same as the source name for Parameters,
   111  	// Builtins, Functions, FreeVars, Globals.
   112  	// For constants, it is a representation of the constant's value
   113  	// and type.  For all other Values this is the name of the
   114  	// virtual register defined by the instruction.
   115  	//
   116  	// The name of an SSA Value is not semantically significant,
   117  	// and may not even be unique within a function.
   118  	Name() string
   119  
   120  	// If this value is an Instruction, String returns its
   121  	// disassembled form; otherwise it returns unspecified
   122  	// human-readable information about the Value, such as its
   123  	// kind, name and type.
   124  	String() string
   125  
   126  	// Type returns the type of this value.  Many instructions
   127  	// (e.g. IndexAddr) change their behaviour depending on the
   128  	// types of their operands.
   129  	Type() types.Type
   130  
   131  	// Parent returns the function to which this Value belongs.
   132  	// It returns nil for named Functions, Builtin, Const and Global.
   133  	Parent() *Function
   134  
   135  	// Referrers returns the list of instructions that have this
   136  	// value as one of their operands; it may contain duplicates
   137  	// if an instruction has a repeated operand.
   138  	//
   139  	// Referrers actually returns a pointer through which the
   140  	// caller may perform mutations to the object's state.
   141  	//
   142  	// Referrers is currently only defined if Parent()!=nil,
   143  	// i.e. for the function-local values FreeVar, Parameter,
   144  	// Functions (iff anonymous) and all value-defining instructions.
   145  	// It returns nil for named Functions, Builtin, Const and Global.
   146  	//
   147  	// Instruction.Operands contains the inverse of this relation.
   148  	Referrers() *[]Instruction
   149  
   150  	// Pos returns the location of the AST token most closely
   151  	// associated with the operation that gave rise to this value,
   152  	// or token.NoPos if it was not explicit in the source.
   153  	//
   154  	// For each ast.Node type, a particular token is designated as
   155  	// the closest location for the expression, e.g. the Lparen
   156  	// for an *ast.CallExpr.  This permits a compact but
   157  	// approximate mapping from Values to source positions for use
   158  	// in diagnostic messages, for example.
   159  	//
   160  	// (Do not use this position to determine which Value
   161  	// corresponds to an ast.Expr; use Function.ValueForExpr
   162  	// instead.  NB: it requires that the function was built with
   163  	// debug information.)
   164  	Pos() token.Pos
   165  }
   166  
   167  // An Instruction is an SSA instruction that computes a new Value or
   168  // has some effect.
   169  //
   170  // An Instruction that defines a value (e.g. BinOp) also implements
   171  // the Value interface; an Instruction that only has an effect (e.g. Store)
   172  // does not.
   173  //
   174  type Instruction interface {
   175  	// String returns the disassembled form of this value.
   176  	//
   177  	// Examples of Instructions that are Values:
   178  	//       "x + y"     (BinOp)
   179  	//       "len([])"   (Call)
   180  	// Note that the name of the Value is not printed.
   181  	//
   182  	// Examples of Instructions that are not Values:
   183  	//       "return x"  (Return)
   184  	//       "*y = x"    (Store)
   185  	//
   186  	// (The separation Value.Name() from Value.String() is useful
   187  	// for some analyses which distinguish the operation from the
   188  	// value it defines, e.g., 'y = local int' is both an allocation
   189  	// of memory 'local int' and a definition of a pointer y.)
   190  	String() string
   191  
   192  	// Parent returns the function to which this instruction
   193  	// belongs.
   194  	Parent() *Function
   195  
   196  	// Block returns the basic block to which this instruction
   197  	// belongs.
   198  	Block() *BasicBlock
   199  
   200  	// setBlock sets the basic block to which this instruction belongs.
   201  	setBlock(*BasicBlock)
   202  
   203  	// Operands returns the operands of this instruction: the
   204  	// set of Values it references.
   205  	//
   206  	// Specifically, it appends their addresses to rands, a
   207  	// user-provided slice, and returns the resulting slice,
   208  	// permitting avoidance of memory allocation.
   209  	//
   210  	// The operands are appended in undefined order, but the order
   211  	// is consistent for a given Instruction; the addresses are
   212  	// always non-nil but may point to a nil Value.  Clients may
   213  	// store through the pointers, e.g. to effect a value
   214  	// renaming.
   215  	//
   216  	// Value.Referrers is a subset of the inverse of this
   217  	// relation.  (Referrers are not tracked for all types of
   218  	// Values.)
   219  	Operands(rands []*Value) []*Value
   220  
   221  	// Pos returns the location of the AST token most closely
   222  	// associated with the operation that gave rise to this
   223  	// instruction, or token.NoPos if it was not explicit in the
   224  	// source.
   225  	//
   226  	// For each ast.Node type, a particular token is designated as
   227  	// the closest location for the expression, e.g. the Go token
   228  	// for an *ast.GoStmt.  This permits a compact but approximate
   229  	// mapping from Instructions to source positions for use in
   230  	// diagnostic messages, for example.
   231  	//
   232  	// (Do not use this position to determine which Instruction
   233  	// corresponds to an ast.Expr; see the notes for Value.Pos.
   234  	// This position may be used to determine which non-Value
   235  	// Instruction corresponds to some ast.Stmts, but not all: If
   236  	// and Jump instructions have no Pos(), for example.)
   237  	Pos() token.Pos
   238  }
   239  
   240  // A Node is a node in the SSA value graph.  Every concrete type that
   241  // implements Node is also either a Value, an Instruction, or both.
   242  //
   243  // Node contains the methods common to Value and Instruction, plus the
   244  // Operands and Referrers methods generalized to return nil for
   245  // non-Instructions and non-Values, respectively.
   246  //
   247  // Node is provided to simplify SSA graph algorithms.  Clients should
   248  // use the more specific and informative Value or Instruction
   249  // interfaces where appropriate.
   250  //
   251  type Node interface {
   252  	// Common methods:
   253  	String() string
   254  	Pos() token.Pos
   255  	Parent() *Function
   256  
   257  	// Partial methods:
   258  	Operands(rands []*Value) []*Value // nil for non-Instructions
   259  	Referrers() *[]Instruction        // nil for non-Values
   260  }
   261  
   262  // Function represents the parameters, results, and code of a function
   263  // or method.
   264  //
   265  // If Blocks is nil, this indicates an external function for which no
   266  // Go source code is available.  In this case, FreeVars and Locals
   267  // are nil too.  Clients performing whole-program analysis must
   268  // handle external functions specially.
   269  //
   270  // Blocks contains the function's control-flow graph (CFG).
   271  // Blocks[0] is the function entry point; block order is not otherwise
   272  // semantically significant, though it may affect the readability of
   273  // the disassembly.
   274  // To iterate over the blocks in dominance order, use DomPreorder().
   275  //
   276  // Recover is an optional second entry point to which control resumes
   277  // after a recovered panic.  The Recover block may contain only a return
   278  // statement, preceded by a load of the function's named return
   279  // parameters, if any.
   280  //
   281  // A nested function (Parent()!=nil) that refers to one or more
   282  // lexically enclosing local variables ("free variables") has FreeVars.
   283  // Such functions cannot be called directly but require a
   284  // value created by MakeClosure which, via its Bindings, supplies
   285  // values for these parameters.
   286  //
   287  // If the function is a method (Signature.Recv() != nil) then the first
   288  // element of Params is the receiver parameter.
   289  //
   290  // A Go package may declare many functions called "init".
   291  // For each one, Object().Name() returns "init" but Name() returns
   292  // "init#1", etc, in declaration order.
   293  //
   294  // Pos() returns the declaring ast.FuncLit.Type.Func or the position
   295  // of the ast.FuncDecl.Name, if the function was explicit in the
   296  // source.  Synthetic wrappers, for which Synthetic != "", may share
   297  // the same position as the function they wrap.
   298  // Syntax.Pos() always returns the position of the declaring "func" token.
   299  //
   300  // Type() returns the function's Signature.
   301  //
   302  type Function struct {
   303  	name      string
   304  	object    types.Object     // a declared *types.Func or one of its wrappers
   305  	method    *types.Selection // info about provenance of synthetic methods
   306  	Signature *types.Signature
   307  	pos       token.Pos
   308  
   309  	Synthetic string        // provenance of synthetic function; "" for true source functions
   310  	syntax    ast.Node      // *ast.Func{Decl,Lit}; replaced with simple ast.Node after build, unless debug mode
   311  	parent    *Function     // enclosing function if anon; nil if global
   312  	Pkg       *Package      // enclosing package; nil for shared funcs (wrappers and error.Error)
   313  	Prog      *Program      // enclosing program
   314  	Params    []*Parameter  // function parameters; for methods, includes receiver
   315  	FreeVars  []*FreeVar    // free variables whose values must be supplied by closure
   316  	Locals    []*Alloc      // local variables of this function
   317  	Blocks    []*BasicBlock // basic blocks of the function; nil => external
   318  	Recover   *BasicBlock   // optional; control transfers here after recovered panic
   319  	AnonFuncs []*Function   // anonymous functions directly beneath this one
   320  	referrers []Instruction // referring instructions (iff Parent() != nil)
   321  
   322  	// The following fields are set transiently during building,
   323  	// then cleared.
   324  	currentBlock *BasicBlock             // where to emit code
   325  	objects      map[types.Object]Value  // addresses of local variables
   326  	namedResults []*Alloc                // tuple of named results
   327  	targets      *targets                // linked stack of branch targets
   328  	lblocks      map[*ast.Object]*lblock // labelled blocks
   329  }
   330  
   331  // BasicBlock represents an SSA basic block.
   332  //
   333  // The final element of Instrs is always an explicit transfer of
   334  // control (If, Jump, Return, or Panic).
   335  //
   336  // A block may contain no Instructions only if it is unreachable,
   337  // i.e., Preds is nil.  Empty blocks are typically pruned.
   338  //
   339  // BasicBlocks and their Preds/Succs relation form a (possibly cyclic)
   340  // graph independent of the SSA Value graph: the control-flow graph or
   341  // CFG.  It is illegal for multiple edges to exist between the same
   342  // pair of blocks.
   343  //
   344  // Each BasicBlock is also a node in the dominator tree of the CFG.
   345  // The tree may be navigated using Idom()/Dominees() and queried using
   346  // Dominates().
   347  //
   348  // The order of Preds and Succs is significant (to Phi and If
   349  // instructions, respectively).
   350  //
   351  type BasicBlock struct {
   352  	Index        int            // index of this block within Parent().Blocks
   353  	Comment      string         // optional label; no semantic significance
   354  	parent       *Function      // parent function
   355  	Instrs       []Instruction  // instructions in order
   356  	Preds, Succs []*BasicBlock  // predecessors and successors
   357  	succs2       [2]*BasicBlock // initial space for Succs
   358  	dom          domInfo        // dominator tree info
   359  	gaps         int            // number of nil Instrs (transient)
   360  	rundefers    int            // number of rundefers (transient)
   361  }
   362  
   363  // Pure values ----------------------------------------
   364  
   365  // A FreeVar represents a free variable of the function to which it
   366  // belongs.
   367  //
   368  // FreeVars are used to implement anonymous functions, whose free
   369  // variables are lexically captured in a closure formed by
   370  // MakeClosure.  The value of such a free var is an Alloc or another
   371  // FreeVar and is considered a potentially escaping heap address, with
   372  // pointer type.
   373  //
   374  // FreeVars are also used to implement bound method closures.  Such a
   375  // free var represents the receiver value and may be of any type that
   376  // has concrete methods.
   377  //
   378  // Pos() returns the position of the value that was captured, which
   379  // belongs to an enclosing function.
   380  //
   381  type FreeVar struct {
   382  	name      string
   383  	typ       types.Type
   384  	pos       token.Pos
   385  	parent    *Function
   386  	referrers []Instruction
   387  
   388  	// Transiently needed during building.
   389  	outer Value // the Value captured from the enclosing context.
   390  }
   391  
   392  // A Parameter represents an input parameter of a function.
   393  //
   394  type Parameter struct {
   395  	name      string
   396  	object    types.Object // a *types.Var; nil for non-source locals
   397  	typ       types.Type
   398  	pos       token.Pos
   399  	parent    *Function
   400  	referrers []Instruction
   401  }
   402  
   403  // A Const represents the value of a constant expression.
   404  //
   405  // The underlying type of a constant may be any boolean, numeric, or
   406  // string type.  In addition, a Const may represent the nil value of
   407  // any reference type---interface, map, channel, pointer, slice, or
   408  // function---but not "untyped nil".
   409  //
   410  // All source-level constant expressions are represented by a Const
   411  // of the same type and value.
   412  //
   413  // Value holds the exact value of the constant, independent of its
   414  // Type(), using the same representation as package go/exact uses for
   415  // constants, or nil for a typed nil value.
   416  //
   417  // Pos() returns token.NoPos.
   418  //
   419  // Example printed form:
   420  // 	42:int
   421  //	"hello":untyped string
   422  //	3+4i:MyComplex
   423  //
   424  type Const struct {
   425  	typ   types.Type
   426  	Value exact.Value
   427  }
   428  
   429  // A Global is a named Value holding the address of a package-level
   430  // variable.
   431  //
   432  // Pos() returns the position of the ast.ValueSpec.Names[*]
   433  // identifier.
   434  //
   435  type Global struct {
   436  	name   string
   437  	object types.Object // a *types.Var; may be nil for synthetics e.g. init$guard
   438  	typ    types.Type
   439  	pos    token.Pos
   440  
   441  	Pkg *Package
   442  }
   443  
   444  // A Builtin represents a specific use of a built-in function, e.g. len.
   445  //
   446  // Builtins are immutable values.  Builtins do not have addresses.
   447  // Builtins can only appear in CallCommon.Func.
   448  //
   449  // Name() indicates the function: one of the built-in functions from the
   450  // Go spec (excluding "make" and "new") or one of these ssa-defined
   451  // intrinsics:
   452  //
   453  //   // wrapnilchk returns ptr if non-nil, panics otherwise.
   454  //   // (For use in indirection wrappers.)
   455  //   func ssa:wrapnilchk(ptr *T, recvType, methodName string) *T
   456  //
   457  // Object() returns a *types.Builtin for built-ins defined by the spec,
   458  // nil for others.
   459  //
   460  // Type() returns a *types.Signature representing the effective
   461  // signature of the built-in for this call.
   462  //
   463  type Builtin struct {
   464  	name string
   465  	sig  *types.Signature
   466  }
   467  
   468  // Value-defining instructions  ----------------------------------------
   469  
   470  // The Alloc instruction reserves space for a variable of the given type,
   471  // zero-initializes it, and yields its address.
   472  //
   473  // Alloc values are always addresses, and have pointer types, so the
   474  // type of the allocated variable is actually
   475  // Type().Underlying().(*types.Pointer).Elem().
   476  //
   477  // If Heap is false, Alloc allocates space in the function's
   478  // activation record (frame); we refer to an Alloc(Heap=false) as a
   479  // "local" alloc.  Each local Alloc returns the same address each time
   480  // it is executed within the same activation; the space is
   481  // re-initialized to zero.
   482  //
   483  // If Heap is true, Alloc allocates space in the heap; we
   484  // refer to an Alloc(Heap=true) as a "new" alloc.  Each new Alloc
   485  // returns a different address each time it is executed.
   486  //
   487  // When Alloc is applied to a channel, map or slice type, it returns
   488  // the address of an uninitialized (nil) reference of that kind; store
   489  // the result of MakeSlice, MakeMap or MakeChan in that location to
   490  // instantiate these types.
   491  //
   492  // Pos() returns the ast.CompositeLit.Lbrace for a composite literal,
   493  // or the ast.CallExpr.Rparen for a call to new() or for a call that
   494  // allocates a varargs slice.
   495  //
   496  // Example printed form:
   497  // 	t0 = local int
   498  // 	t1 = new int
   499  //
   500  type Alloc struct {
   501  	register
   502  	Comment string
   503  	Heap    bool
   504  	index   int // dense numbering; for lifting
   505  }
   506  
   507  // The Phi instruction represents an SSA φ-node, which combines values
   508  // that differ across incoming control-flow edges and yields a new
   509  // value.  Within a block, all φ-nodes must appear before all non-φ
   510  // nodes.
   511  //
   512  // Pos() returns the position of the && or || for short-circuit
   513  // control-flow joins, or that of the *Alloc for φ-nodes inserted
   514  // during SSA renaming.
   515  //
   516  // Example printed form:
   517  // 	t2 = phi [0: t0, 1: t1]
   518  //
   519  type Phi struct {
   520  	register
   521  	Comment string  // a hint as to its purpose
   522  	Edges   []Value // Edges[i] is value for Block().Preds[i]
   523  }
   524  
   525  // The Call instruction represents a function or method call.
   526  //
   527  // The Call instruction yields the function result if there is exactly
   528  // one.  Otherwise it returns a tuple, the components of which are
   529  // accessed via Extract.
   530  //
   531  // See CallCommon for generic function call documentation.
   532  //
   533  // Pos() returns the ast.CallExpr.Lparen, if explicit in the source.
   534  //
   535  // Example printed form:
   536  // 	t2 = println(t0, t1)
   537  // 	t4 = t3()
   538  // 	t7 = invoke t5.Println(...t6)
   539  //
   540  type Call struct {
   541  	register
   542  	Call CallCommon
   543  }
   544  
   545  // The BinOp instruction yields the result of binary operation X Op Y.
   546  //
   547  // Pos() returns the ast.BinaryExpr.OpPos, if explicit in the source.
   548  //
   549  // Example printed form:
   550  // 	t1 = t0 + 1:int
   551  //
   552  type BinOp struct {
   553  	register
   554  	// One of:
   555  	// ADD SUB MUL QUO REM          + - * / %
   556  	// AND OR XOR SHL SHR AND_NOT   & | ^ << >> &~
   557  	// EQL LSS GTR NEQ LEQ GEQ      == != < <= < >=
   558  	Op   token.Token
   559  	X, Y Value
   560  }
   561  
   562  // The UnOp instruction yields the result of Op X.
   563  // ARROW is channel receive.
   564  // MUL is pointer indirection (load).
   565  // XOR is bitwise complement.
   566  // SUB is negation.
   567  // NOT is logical negation.
   568  //
   569  // If CommaOk and Op=ARROW, the result is a 2-tuple of the value above
   570  // and a boolean indicating the success of the receive.  The
   571  // components of the tuple are accessed using Extract.
   572  //
   573  // Pos() returns the ast.UnaryExpr.OpPos, if explicit in the source.
   574  // For receive operations (ARROW) implicit in ranging over a channel,
   575  // Pos() returns the ast.RangeStmt.For.
   576  // For implicit memory loads (STAR), Pos() returns the position of the
   577  // most closely associated source-level construct; the details are not
   578  // specified.
   579  //
   580  // Example printed form:
   581  // 	t0 = *x
   582  // 	t2 = <-t1,ok
   583  //
   584  type UnOp struct {
   585  	register
   586  	Op      token.Token // One of: NOT SUB ARROW MUL XOR ! - <- * ^
   587  	X       Value
   588  	CommaOk bool
   589  }
   590  
   591  // The ChangeType instruction applies to X a value-preserving type
   592  // change to Type().
   593  //
   594  // Type changes are permitted:
   595  //    - between a named type and its underlying type.
   596  //    - between two named types of the same underlying type.
   597  //    - between (possibly named) pointers to identical base types.
   598  //    - from a bidirectional channel to a read- or write-channel,
   599  //      optionally adding/removing a name.
   600  //
   601  // This operation cannot fail dynamically.
   602  //
   603  // Pos() returns the ast.CallExpr.Lparen, if the instruction arose
   604  // from an explicit conversion in the source.
   605  //
   606  // Example printed form:
   607  // 	t1 = changetype *int <- IntPtr (t0)
   608  //
   609  type ChangeType struct {
   610  	register
   611  	X Value
   612  }
   613  
   614  // The Convert instruction yields the conversion of value X to type
   615  // Type().  One or both of those types is basic (but possibly named).
   616  //
   617  // A conversion may change the value and representation of its operand.
   618  // Conversions are permitted:
   619  //    - between real numeric types.
   620  //    - between complex numeric types.
   621  //    - between string and []byte or []rune.
   622  //    - between pointers and unsafe.Pointer.
   623  //    - between unsafe.Pointer and uintptr.
   624  //    - from (Unicode) integer to (UTF-8) string.
   625  // A conversion may imply a type name change also.
   626  //
   627  // This operation cannot fail dynamically.
   628  //
   629  // Conversions of untyped string/number/bool constants to a specific
   630  // representation are eliminated during SSA construction.
   631  //
   632  // Pos() returns the ast.CallExpr.Lparen, if the instruction arose
   633  // from an explicit conversion in the source.
   634  //
   635  // Example printed form:
   636  // 	t1 = convert []byte <- string (t0)
   637  //
   638  type Convert struct {
   639  	register
   640  	X Value
   641  }
   642  
   643  // ChangeInterface constructs a value of one interface type from a
   644  // value of another interface type known to be assignable to it.
   645  // This operation cannot fail.
   646  //
   647  // Pos() returns the ast.CallExpr.Lparen if the instruction arose from
   648  // an explicit T(e) conversion; the ast.TypeAssertExpr.Lparen if the
   649  // instruction arose from an explicit e.(T) operation; or token.NoPos
   650  // otherwise.
   651  //
   652  // Example printed form:
   653  // 	t1 = change interface interface{} <- I (t0)
   654  //
   655  type ChangeInterface struct {
   656  	register
   657  	X Value
   658  }
   659  
   660  // MakeInterface constructs an instance of an interface type from a
   661  // value of a concrete type.
   662  //
   663  // Use Program.MethodSets.MethodSet(X.Type()) to find the method-set
   664  // of X, and Program.Method(m) to find the implementation of a method.
   665  //
   666  // To construct the zero value of an interface type T, use:
   667  // 	NewConst(exact.MakeNil(), T, pos)
   668  //
   669  // Pos() returns the ast.CallExpr.Lparen, if the instruction arose
   670  // from an explicit conversion in the source.
   671  //
   672  // Example printed form:
   673  // 	t1 = make interface{} <- int (42:int)
   674  // 	t2 = make Stringer <- t0
   675  //
   676  type MakeInterface struct {
   677  	register
   678  	X Value
   679  }
   680  
   681  // The MakeClosure instruction yields a closure value whose code is
   682  // Fn and whose free variables' values are supplied by Bindings.
   683  //
   684  // Type() returns a (possibly named) *types.Signature.
   685  //
   686  // Pos() returns the ast.FuncLit.Type.Func for a function literal
   687  // closure or the ast.SelectorExpr.Sel for a bound method closure.
   688  //
   689  // Example printed form:
   690  // 	t0 = make closure anon@1.2 [x y z]
   691  // 	t1 = make closure bound$(main.I).add [i]
   692  //
   693  type MakeClosure struct {
   694  	register
   695  	Fn       Value   // always a *Function
   696  	Bindings []Value // values for each free variable in Fn.FreeVars
   697  }
   698  
   699  // The MakeMap instruction creates a new hash-table-based map object
   700  // and yields a value of kind map.
   701  //
   702  // Type() returns a (possibly named) *types.Map.
   703  //
   704  // Pos() returns the ast.CallExpr.Lparen, if created by make(map), or
   705  // the ast.CompositeLit.Lbrack if created by a literal.
   706  //
   707  // Example printed form:
   708  // 	t1 = make map[string]int t0
   709  // 	t1 = make StringIntMap t0
   710  //
   711  type MakeMap struct {
   712  	register
   713  	Reserve Value // initial space reservation; nil => default
   714  }
   715  
   716  // The MakeChan instruction creates a new channel object and yields a
   717  // value of kind chan.
   718  //
   719  // Type() returns a (possibly named) *types.Chan.
   720  //
   721  // Pos() returns the ast.CallExpr.Lparen for the make(chan) that
   722  // created it.
   723  //
   724  // Example printed form:
   725  // 	t0 = make chan int 0
   726  // 	t0 = make IntChan 0
   727  //
   728  type MakeChan struct {
   729  	register
   730  	Size Value // int; size of buffer; zero => synchronous.
   731  }
   732  
   733  // The MakeSlice instruction yields a slice of length Len backed by a
   734  // newly allocated array of length Cap.
   735  //
   736  // Both Len and Cap must be non-nil Values of integer type.
   737  //
   738  // (Alloc(types.Array) followed by Slice will not suffice because
   739  // Alloc can only create arrays of constant length.)
   740  //
   741  // Type() returns a (possibly named) *types.Slice.
   742  //
   743  // Pos() returns the ast.CallExpr.Lparen for the make([]T) that
   744  // created it.
   745  //
   746  // Example printed form:
   747  // 	t1 = make []string 1:int t0
   748  // 	t1 = make StringSlice 1:int t0
   749  //
   750  type MakeSlice struct {
   751  	register
   752  	Len Value
   753  	Cap Value
   754  }
   755  
   756  // The Slice instruction yields a slice of an existing string, slice
   757  // or *array X between optional integer bounds Low and High.
   758  //
   759  // Dynamically, this instruction panics if X evaluates to a nil *array
   760  // pointer.
   761  //
   762  // Type() returns string if the type of X was string, otherwise a
   763  // *types.Slice with the same element type as X.
   764  //
   765  // Pos() returns the ast.SliceExpr.Lbrack if created by a x[:] slice
   766  // operation, the ast.CompositeLit.Lbrace if created by a literal, or
   767  // NoPos if not explicit in the source (e.g. a variadic argument slice).
   768  //
   769  // Example printed form:
   770  // 	t1 = slice t0[1:]
   771  //
   772  type Slice struct {
   773  	register
   774  	X              Value // slice, string, or *array
   775  	Low, High, Max Value // each may be nil
   776  }
   777  
   778  // The FieldAddr instruction yields the address of Field of *struct X.
   779  //
   780  // The field is identified by its index within the field list of the
   781  // struct type of X.
   782  //
   783  // Dynamically, this instruction panics if X evaluates to a nil
   784  // pointer.
   785  //
   786  // Type() returns a (possibly named) *types.Pointer.
   787  //
   788  // Pos() returns the position of the ast.SelectorExpr.Sel for the
   789  // field, if explicit in the source.
   790  //
   791  // Example printed form:
   792  // 	t1 = &t0.name [#1]
   793  //
   794  type FieldAddr struct {
   795  	register
   796  	X     Value // *struct
   797  	Field int   // index into X.Type().Deref().(*types.Struct).Fields
   798  }
   799  
   800  // The Field instruction yields the Field of struct X.
   801  //
   802  // The field is identified by its index within the field list of the
   803  // struct type of X; by using numeric indices we avoid ambiguity of
   804  // package-local identifiers and permit compact representations.
   805  //
   806  // Pos() returns the position of the ast.SelectorExpr.Sel for the
   807  // field, if explicit in the source.
   808  //
   809  // Example printed form:
   810  // 	t1 = t0.name [#1]
   811  //
   812  type Field struct {
   813  	register
   814  	X     Value // struct
   815  	Field int   // index into X.Type().(*types.Struct).Fields
   816  }
   817  
   818  // The IndexAddr instruction yields the address of the element at
   819  // index Index of collection X.  Index is an integer expression.
   820  //
   821  // The elements of maps and strings are not addressable; use Lookup or
   822  // MapUpdate instead.
   823  //
   824  // Dynamically, this instruction panics if X evaluates to a nil *array
   825  // pointer.
   826  //
   827  // Type() returns a (possibly named) *types.Pointer.
   828  //
   829  // Pos() returns the ast.IndexExpr.Lbrack for the index operation, if
   830  // explicit in the source.
   831  //
   832  // Example printed form:
   833  // 	t2 = &t0[t1]
   834  //
   835  type IndexAddr struct {
   836  	register
   837  	X     Value // slice or *array,
   838  	Index Value // numeric index
   839  }
   840  
   841  // The Index instruction yields element Index of array X.
   842  //
   843  // Pos() returns the ast.IndexExpr.Lbrack for the index operation, if
   844  // explicit in the source.
   845  //
   846  // Example printed form:
   847  // 	t2 = t0[t1]
   848  //
   849  type Index struct {
   850  	register
   851  	X     Value // array
   852  	Index Value // integer index
   853  }
   854  
   855  // The Lookup instruction yields element Index of collection X, a map
   856  // or string.  Index is an integer expression if X is a string or the
   857  // appropriate key type if X is a map.
   858  //
   859  // If CommaOk, the result is a 2-tuple of the value above and a
   860  // boolean indicating the result of a map membership test for the key.
   861  // The components of the tuple are accessed using Extract.
   862  //
   863  // Pos() returns the ast.IndexExpr.Lbrack, if explicit in the source.
   864  //
   865  // Example printed form:
   866  // 	t2 = t0[t1]
   867  // 	t5 = t3[t4],ok
   868  //
   869  type Lookup struct {
   870  	register
   871  	X       Value // string or map
   872  	Index   Value // numeric or key-typed index
   873  	CommaOk bool  // return a value,ok pair
   874  }
   875  
   876  // SelectState is a helper for Select.
   877  // It represents one goal state and its corresponding communication.
   878  //
   879  type SelectState struct {
   880  	Dir       types.ChanDir // direction of case (SendOnly or RecvOnly)
   881  	Chan      Value         // channel to use (for send or receive)
   882  	Send      Value         // value to send (for send)
   883  	Pos       token.Pos     // position of token.ARROW
   884  	DebugNode ast.Node      // ast.SendStmt or ast.UnaryExpr(<-) [debug mode]
   885  }
   886  
   887  // The Select instruction tests whether (or blocks until) one
   888  // of the specified sent or received states is entered.
   889  //
   890  // Let n be the number of States for which Dir==RECV and T_i (0<=i<n)
   891  // be the element type of each such state's Chan.
   892  // Select returns an n+2-tuple
   893  //    (index int, recvOk bool, r_0 T_0, ... r_n-1 T_n-1)
   894  // The tuple's components, described below, must be accessed via the
   895  // Extract instruction.
   896  //
   897  // If Blocking, select waits until exactly one state holds, i.e. a
   898  // channel becomes ready for the designated operation of sending or
   899  // receiving; select chooses one among the ready states
   900  // pseudorandomly, performs the send or receive operation, and sets
   901  // 'index' to the index of the chosen channel.
   902  //
   903  // If !Blocking, select doesn't block if no states hold; instead it
   904  // returns immediately with index equal to -1.
   905  //
   906  // If the chosen channel was used for a receive, the r_i component is
   907  // set to the received value, where i is the index of that state among
   908  // all n receive states; otherwise r_i has the zero value of type T_i.
   909  // Note that the receive index i is not the same as the state
   910  // index index.
   911  //
   912  // The second component of the triple, recvOk, is a boolean whose value
   913  // is true iff the selected operation was a receive and the receive
   914  // successfully yielded a value.
   915  //
   916  // Pos() returns the ast.SelectStmt.Select.
   917  //
   918  // Example printed form:
   919  // 	t3 = select nonblocking [<-t0, t1<-t2]
   920  // 	t4 = select blocking []
   921  //
   922  type Select struct {
   923  	register
   924  	States   []*SelectState
   925  	Blocking bool
   926  }
   927  
   928  // The Range instruction yields an iterator over the domain and range
   929  // of X, which must be a string or map.
   930  //
   931  // Elements are accessed via Next.
   932  //
   933  // Type() returns an opaque and degenerate "rangeIter" type.
   934  //
   935  // Pos() returns the ast.RangeStmt.For.
   936  //
   937  // Example printed form:
   938  // 	t0 = range "hello":string
   939  //
   940  type Range struct {
   941  	register
   942  	X Value // string or map
   943  }
   944  
   945  // The Next instruction reads and advances the (map or string)
   946  // iterator Iter and returns a 3-tuple value (ok, k, v).  If the
   947  // iterator is not exhausted, ok is true and k and v are the next
   948  // elements of the domain and range, respectively.  Otherwise ok is
   949  // false and k and v are undefined.
   950  //
   951  // Components of the tuple are accessed using Extract.
   952  //
   953  // The IsString field distinguishes iterators over strings from those
   954  // over maps, as the Type() alone is insufficient: consider
   955  // map[int]rune.
   956  //
   957  // Type() returns a *types.Tuple for the triple (ok, k, v).
   958  // The types of k and/or v may be types.Invalid.
   959  //
   960  // Example printed form:
   961  // 	t1 = next t0
   962  //
   963  type Next struct {
   964  	register
   965  	Iter     Value
   966  	IsString bool // true => string iterator; false => map iterator.
   967  }
   968  
   969  // The TypeAssert instruction tests whether interface value X has type
   970  // AssertedType.
   971  //
   972  // If !CommaOk, on success it returns v, the result of the conversion
   973  // (defined below); on failure it panics.
   974  //
   975  // If CommaOk: on success it returns a pair (v, true) where v is the
   976  // result of the conversion; on failure it returns (z, false) where z
   977  // is AssertedType's zero value.  The components of the pair must be
   978  // accessed using the Extract instruction.
   979  //
   980  // If AssertedType is a concrete type, TypeAssert checks whether the
   981  // dynamic type in interface X is equal to it, and if so, the result
   982  // of the conversion is a copy of the value in the interface.
   983  //
   984  // If AssertedType is an interface, TypeAssert checks whether the
   985  // dynamic type of the interface is assignable to it, and if so, the
   986  // result of the conversion is a copy of the interface value X.
   987  // If AssertedType is a superinterface of X.Type(), the operation will
   988  // fail iff the operand is nil.  (Contrast with ChangeInterface, which
   989  // performs no nil-check.)
   990  //
   991  // Type() reflects the actual type of the result, possibly a
   992  // 2-types.Tuple; AssertedType is the asserted type.
   993  //
   994  // Pos() returns the ast.CallExpr.Lparen if the instruction arose from
   995  // an explicit T(e) conversion; the ast.TypeAssertExpr.Lparen if the
   996  // instruction arose from an explicit e.(T) operation; or the
   997  // ast.CaseClause.Case if the instruction arose from a case of a
   998  // type-switch statement.
   999  //
  1000  // Example printed form:
  1001  // 	t1 = typeassert t0.(int)
  1002  // 	t3 = typeassert,ok t2.(T)
  1003  //
  1004  type TypeAssert struct {
  1005  	register
  1006  	X            Value
  1007  	AssertedType types.Type
  1008  	CommaOk      bool
  1009  }
  1010  
  1011  // The Extract instruction yields component Index of Tuple.
  1012  //
  1013  // This is used to access the results of instructions with multiple
  1014  // return values, such as Call, TypeAssert, Next, UnOp(ARROW) and
  1015  // IndexExpr(Map).
  1016  //
  1017  // Example printed form:
  1018  // 	t1 = extract t0 #1
  1019  //
  1020  type Extract struct {
  1021  	register
  1022  	Tuple Value
  1023  	Index int
  1024  }
  1025  
  1026  // Instructions executed for effect.  They do not yield a value. --------------------
  1027  
  1028  // The Jump instruction transfers control to the sole successor of its
  1029  // owning block.
  1030  //
  1031  // A Jump must be the last instruction of its containing BasicBlock.
  1032  //
  1033  // Pos() returns NoPos.
  1034  //
  1035  // Example printed form:
  1036  // 	jump done
  1037  //
  1038  type Jump struct {
  1039  	anInstruction
  1040  }
  1041  
  1042  // The If instruction transfers control to one of the two successors
  1043  // of its owning block, depending on the boolean Cond: the first if
  1044  // true, the second if false.
  1045  //
  1046  // An If instruction must be the last instruction of its containing
  1047  // BasicBlock.
  1048  //
  1049  // Pos() returns NoPos.
  1050  //
  1051  // Example printed form:
  1052  // 	if t0 goto done else body
  1053  //
  1054  type If struct {
  1055  	anInstruction
  1056  	Cond Value
  1057  }
  1058  
  1059  // The Return instruction returns values and control back to the calling
  1060  // function.
  1061  //
  1062  // len(Results) is always equal to the number of results in the
  1063  // function's signature.
  1064  //
  1065  // If len(Results) > 1, Return returns a tuple value with the specified
  1066  // components which the caller must access using Extract instructions.
  1067  //
  1068  // There is no instruction to return a ready-made tuple like those
  1069  // returned by a "value,ok"-mode TypeAssert, Lookup or UnOp(ARROW) or
  1070  // a tail-call to a function with multiple result parameters.
  1071  //
  1072  // Return must be the last instruction of its containing BasicBlock.
  1073  // Such a block has no successors.
  1074  //
  1075  // Pos() returns the ast.ReturnStmt.Return, if explicit in the source.
  1076  //
  1077  // Example printed form:
  1078  // 	return
  1079  // 	return nil:I, 2:int
  1080  //
  1081  type Return struct {
  1082  	anInstruction
  1083  	Results []Value
  1084  	pos     token.Pos
  1085  }
  1086  
  1087  // The RunDefers instruction pops and invokes the entire stack of
  1088  // procedure calls pushed by Defer instructions in this function.
  1089  //
  1090  // It is legal to encounter multiple 'rundefers' instructions in a
  1091  // single control-flow path through a function; this is useful in
  1092  // the combined init() function, for example.
  1093  //
  1094  // Pos() returns NoPos.
  1095  //
  1096  // Example printed form:
  1097  //	rundefers
  1098  //
  1099  type RunDefers struct {
  1100  	anInstruction
  1101  }
  1102  
  1103  // The Panic instruction initiates a panic with value X.
  1104  //
  1105  // A Panic instruction must be the last instruction of its containing
  1106  // BasicBlock, which must have no successors.
  1107  //
  1108  // NB: 'go panic(x)' and 'defer panic(x)' do not use this instruction;
  1109  // they are treated as calls to a built-in function.
  1110  //
  1111  // Pos() returns the ast.CallExpr.Lparen if this panic was explicit
  1112  // in the source.
  1113  //
  1114  // Example printed form:
  1115  // 	panic t0
  1116  //
  1117  type Panic struct {
  1118  	anInstruction
  1119  	X   Value // an interface{}
  1120  	pos token.Pos
  1121  }
  1122  
  1123  // The Go instruction creates a new goroutine and calls the specified
  1124  // function within it.
  1125  //
  1126  // See CallCommon for generic function call documentation.
  1127  //
  1128  // Pos() returns the ast.GoStmt.Go.
  1129  //
  1130  // Example printed form:
  1131  // 	go println(t0, t1)
  1132  // 	go t3()
  1133  // 	go invoke t5.Println(...t6)
  1134  //
  1135  type Go struct {
  1136  	anInstruction
  1137  	Call CallCommon
  1138  	pos  token.Pos
  1139  }
  1140  
  1141  // The Defer instruction pushes the specified call onto a stack of
  1142  // functions to be called by a RunDefers instruction or by a panic.
  1143  //
  1144  // See CallCommon for generic function call documentation.
  1145  //
  1146  // Pos() returns the ast.DeferStmt.Defer.
  1147  //
  1148  // Example printed form:
  1149  // 	defer println(t0, t1)
  1150  // 	defer t3()
  1151  // 	defer invoke t5.Println(...t6)
  1152  //
  1153  type Defer struct {
  1154  	anInstruction
  1155  	Call CallCommon
  1156  	pos  token.Pos
  1157  }
  1158  
  1159  // The Send instruction sends X on channel Chan.
  1160  //
  1161  // Pos() returns the ast.SendStmt.Arrow, if explicit in the source.
  1162  //
  1163  // Example printed form:
  1164  // 	send t0 <- t1
  1165  //
  1166  type Send struct {
  1167  	anInstruction
  1168  	Chan, X Value
  1169  	pos     token.Pos
  1170  }
  1171  
  1172  // The Store instruction stores Val at address Addr.
  1173  // Stores can be of arbitrary types.
  1174  //
  1175  // Pos() returns the position of the source-level construct most closely
  1176  // associated with the memory store operation.
  1177  // Since implicit memory stores are numerous and varied and depend upon
  1178  // implementation choices, the details are not specified.
  1179  //
  1180  // Example printed form:
  1181  // 	*x = y
  1182  //
  1183  type Store struct {
  1184  	anInstruction
  1185  	Addr Value
  1186  	Val  Value
  1187  	pos  token.Pos
  1188  }
  1189  
  1190  // The MapUpdate instruction updates the association of Map[Key] to
  1191  // Value.
  1192  //
  1193  // Pos() returns the ast.KeyValueExpr.Colon or ast.IndexExpr.Lbrack,
  1194  // if explicit in the source.
  1195  //
  1196  // Example printed form:
  1197  //	t0[t1] = t2
  1198  //
  1199  type MapUpdate struct {
  1200  	anInstruction
  1201  	Map   Value
  1202  	Key   Value
  1203  	Value Value
  1204  	pos   token.Pos
  1205  }
  1206  
  1207  // A DebugRef instruction maps a source-level expression Expr to the
  1208  // SSA value X that represents the value (!IsAddr) or address (IsAddr)
  1209  // of that expression.
  1210  //
  1211  // DebugRef is a pseudo-instruction: it has no dynamic effect.
  1212  //
  1213  // Pos() returns Expr.Pos(), the start position of the source-level
  1214  // expression.  This is not the same as the "designated" token as
  1215  // documented at Value.Pos(). e.g. CallExpr.Pos() does not return the
  1216  // position of the ("designated") Lparen token.
  1217  //
  1218  // If Expr is an *ast.Ident denoting a var or func, Object() returns
  1219  // the object; though this information can be obtained from the type
  1220  // checker, including it here greatly facilitates debugging.
  1221  // For non-Ident expressions, Object() returns nil.
  1222  //
  1223  // DebugRefs are generated only for functions built with debugging
  1224  // enabled; see Package.SetDebugMode() and the GlobalDebug builder
  1225  // mode flag.
  1226  //
  1227  // DebugRefs are not emitted for ast.Idents referring to constants or
  1228  // predeclared identifiers, since they are trivial and numerous.
  1229  // Nor are they emitted for ast.ParenExprs.
  1230  //
  1231  // (By representing these as instructions, rather than out-of-band,
  1232  // consistency is maintained during transformation passes by the
  1233  // ordinary SSA renaming machinery.)
  1234  //
  1235  // Example printed form:
  1236  //      ; *ast.CallExpr @ 102:9 is t5
  1237  //      ; var x float64 @ 109:72 is x
  1238  //      ; address of *ast.CompositeLit @ 216:10 is t0
  1239  //
  1240  type DebugRef struct {
  1241  	anInstruction
  1242  	Expr   ast.Expr     // the referring expression (never *ast.ParenExpr)
  1243  	object types.Object // the identity of the source var/func
  1244  	IsAddr bool         // Expr is addressable and X is the address it denotes
  1245  	X      Value        // the value or address of Expr
  1246  }
  1247  
  1248  // Embeddable mix-ins and helpers for common parts of other structs. -----------
  1249  
  1250  // register is a mix-in embedded by all SSA values that are also
  1251  // instructions, i.e. virtual registers, and provides a uniform
  1252  // implementation of most of the Value interface: Value.Name() is a
  1253  // numbered register (e.g. "t0"); the other methods are field accessors.
  1254  //
  1255  // Temporary names are automatically assigned to each register on
  1256  // completion of building a function in SSA form.
  1257  //
  1258  // Clients must not assume that the 'id' value (and the Name() derived
  1259  // from it) is unique within a function.  As always in this API,
  1260  // semantics are determined only by identity; names exist only to
  1261  // facilitate debugging.
  1262  //
  1263  type register struct {
  1264  	anInstruction
  1265  	num       int        // "name" of virtual register, e.g. "t0".  Not guaranteed unique.
  1266  	typ       types.Type // type of virtual register
  1267  	pos       token.Pos  // position of source expression, or NoPos
  1268  	referrers []Instruction
  1269  }
  1270  
  1271  // anInstruction is a mix-in embedded by all Instructions.
  1272  // It provides the implementations of the Block and setBlock methods.
  1273  type anInstruction struct {
  1274  	block *BasicBlock // the basic block of this instruction
  1275  }
  1276  
  1277  // CallCommon is contained by Go, Defer and Call to hold the
  1278  // common parts of a function or method call.
  1279  //
  1280  // Each CallCommon exists in one of two modes, function call and
  1281  // interface method invocation, or "call" and "invoke" for short.
  1282  //
  1283  // 1. "call" mode: when Method is nil (!IsInvoke), a CallCommon
  1284  // represents an ordinary function call of the value in Value,
  1285  // which may be a *Builtin, a *Function or any other value of kind
  1286  // 'func'.
  1287  //
  1288  // Value may be one of:
  1289  //    (a) a *Function, indicating a statically dispatched call
  1290  //        to a package-level function, an anonymous function, or
  1291  //        a method of a named type.
  1292  //    (b) a *MakeClosure, indicating an immediately applied
  1293  //        function literal with free variables.
  1294  //    (c) a *Builtin, indicating a statically dispatched call
  1295  //        to a built-in function.
  1296  //    (d) any other value, indicating a dynamically dispatched
  1297  //        function call.
  1298  // StaticCallee returns the identity of the callee in cases
  1299  // (a) and (b), nil otherwise.
  1300  //
  1301  // Args contains the arguments to the call.  If Value is a method,
  1302  // Args[0] contains the receiver parameter.
  1303  //
  1304  // Example printed form:
  1305  // 	t2 = println(t0, t1)
  1306  // 	go t3()
  1307  //	defer t5(...t6)
  1308  //
  1309  // 2. "invoke" mode: when Method is non-nil (IsInvoke), a CallCommon
  1310  // represents a dynamically dispatched call to an interface method.
  1311  // In this mode, Value is the interface value and Method is the
  1312  // interface's abstract method.  Note: an abstract method may be
  1313  // shared by multiple interfaces due to embedding; Value.Type()
  1314  // provides the specific interface used for this call.
  1315  //
  1316  // Value is implicitly supplied to the concrete method implementation
  1317  // as the receiver parameter; in other words, Args[0] holds not the
  1318  // receiver but the first true argument.
  1319  //
  1320  // Example printed form:
  1321  // 	t1 = invoke t0.String()
  1322  // 	go invoke t3.Run(t2)
  1323  // 	defer invoke t4.Handle(...t5)
  1324  //
  1325  // For all calls to variadic functions (Signature().Variadic()),
  1326  // the last element of Args is a slice.
  1327  //
  1328  type CallCommon struct {
  1329  	Value  Value       // receiver (invoke mode) or func value (call mode)
  1330  	Method *types.Func // abstract method (invoke mode)
  1331  	Args   []Value     // actual parameters (in static method call, includes receiver)
  1332  	pos    token.Pos   // position of CallExpr.Lparen, iff explicit in source
  1333  }
  1334  
  1335  // IsInvoke returns true if this call has "invoke" (not "call") mode.
  1336  func (c *CallCommon) IsInvoke() bool {
  1337  	return c.Method != nil
  1338  }
  1339  
  1340  func (c *CallCommon) Pos() token.Pos { return c.pos }
  1341  
  1342  // Signature returns the signature of the called function.
  1343  //
  1344  // For an "invoke"-mode call, the signature of the interface method is
  1345  // returned.
  1346  //
  1347  // In either "call" or "invoke" mode, if the callee is a method, its
  1348  // receiver is represented by sig.Recv, not sig.Params().At(0).
  1349  //
  1350  func (c *CallCommon) Signature() *types.Signature {
  1351  	if c.Method != nil {
  1352  		return c.Method.Type().(*types.Signature)
  1353  	}
  1354  	return c.Value.Type().Underlying().(*types.Signature)
  1355  }
  1356  
  1357  // StaticCallee returns the callee if this is a trivially static
  1358  // "call"-mode call to a function.
  1359  func (c *CallCommon) StaticCallee() *Function {
  1360  	switch fn := c.Value.(type) {
  1361  	case *Function:
  1362  		return fn
  1363  	case *MakeClosure:
  1364  		return fn.Fn.(*Function)
  1365  	}
  1366  	return nil
  1367  }
  1368  
  1369  // Description returns a description of the mode of this call suitable
  1370  // for a user interface, e.g., "static method call".
  1371  func (c *CallCommon) Description() string {
  1372  	switch fn := c.Value.(type) {
  1373  	case *Builtin:
  1374  		return "built-in function call"
  1375  	case *MakeClosure:
  1376  		return "static function closure call"
  1377  	case *Function:
  1378  		if fn.Signature.Recv() != nil {
  1379  			return "static method call"
  1380  		}
  1381  		return "static function call"
  1382  	}
  1383  	if c.IsInvoke() {
  1384  		return "dynamic method call" // ("invoke" mode)
  1385  	}
  1386  	return "dynamic function call"
  1387  }
  1388  
  1389  // The CallInstruction interface, implemented by *Go, *Defer and *Call,
  1390  // exposes the common parts of function-calling instructions,
  1391  // yet provides a way back to the Value defined by *Call alone.
  1392  //
  1393  type CallInstruction interface {
  1394  	Instruction
  1395  	Common() *CallCommon // returns the common parts of the call
  1396  	Value() *Call        // returns the result value of the call (*Call) or nil (*Go, *Defer)
  1397  }
  1398  
  1399  func (s *Call) Common() *CallCommon  { return &s.Call }
  1400  func (s *Defer) Common() *CallCommon { return &s.Call }
  1401  func (s *Go) Common() *CallCommon    { return &s.Call }
  1402  
  1403  func (s *Call) Value() *Call  { return s }
  1404  func (s *Defer) Value() *Call { return nil }
  1405  func (s *Go) Value() *Call    { return nil }
  1406  
  1407  func (v *Builtin) Type() types.Type        { return v.sig }
  1408  func (v *Builtin) Name() string            { return v.name }
  1409  func (*Builtin) Referrers() *[]Instruction { return nil }
  1410  func (v *Builtin) Pos() token.Pos          { return token.NoPos }
  1411  func (v *Builtin) Object() types.Object    { return types.Universe.Lookup(v.name) }
  1412  func (v *Builtin) Parent() *Function       { return nil }
  1413  
  1414  func (v *FreeVar) Type() types.Type          { return v.typ }
  1415  func (v *FreeVar) Name() string              { return v.name }
  1416  func (v *FreeVar) Referrers() *[]Instruction { return &v.referrers }
  1417  func (v *FreeVar) Pos() token.Pos            { return v.pos }
  1418  func (v *FreeVar) Parent() *Function         { return v.parent }
  1419  
  1420  func (v *Global) Type() types.Type                     { return v.typ }
  1421  func (v *Global) Name() string                         { return v.name }
  1422  func (v *Global) Parent() *Function                    { return nil }
  1423  func (v *Global) Pos() token.Pos                       { return v.pos }
  1424  func (v *Global) Referrers() *[]Instruction            { return nil }
  1425  func (v *Global) Token() token.Token                   { return token.VAR }
  1426  func (v *Global) Object() types.Object                 { return v.object }
  1427  func (v *Global) String() string                       { return v.RelString(nil) }
  1428  func (v *Global) Package() *Package                    { return v.Pkg }
  1429  func (v *Global) RelString(from *types.Package) string { return relString(v, from) }
  1430  
  1431  func (v *Function) Name() string         { return v.name }
  1432  func (v *Function) Type() types.Type     { return v.Signature }
  1433  func (v *Function) Pos() token.Pos       { return v.pos }
  1434  func (v *Function) Token() token.Token   { return token.FUNC }
  1435  func (v *Function) Object() types.Object { return v.object }
  1436  func (v *Function) String() string       { return v.RelString(nil) }
  1437  func (v *Function) Package() *Package    { return v.Pkg }
  1438  func (v *Function) Parent() *Function    { return v.parent }
  1439  func (v *Function) Referrers() *[]Instruction {
  1440  	if v.parent != nil {
  1441  		return &v.referrers
  1442  	}
  1443  	return nil
  1444  }
  1445  
  1446  func (v *Parameter) Type() types.Type          { return v.typ }
  1447  func (v *Parameter) Name() string              { return v.name }
  1448  func (v *Parameter) Object() types.Object      { return v.object }
  1449  func (v *Parameter) Referrers() *[]Instruction { return &v.referrers }
  1450  func (v *Parameter) Pos() token.Pos            { return v.pos }
  1451  func (v *Parameter) Parent() *Function         { return v.parent }
  1452  
  1453  func (v *Alloc) Type() types.Type          { return v.typ }
  1454  func (v *Alloc) Referrers() *[]Instruction { return &v.referrers }
  1455  func (v *Alloc) Pos() token.Pos            { return v.pos }
  1456  
  1457  func (v *register) Type() types.Type          { return v.typ }
  1458  func (v *register) setType(typ types.Type)    { v.typ = typ }
  1459  func (v *register) Name() string              { return fmt.Sprintf("t%d", v.num) }
  1460  func (v *register) setNum(num int)            { v.num = num }
  1461  func (v *register) Referrers() *[]Instruction { return &v.referrers }
  1462  func (v *register) Pos() token.Pos            { return v.pos }
  1463  func (v *register) setPos(pos token.Pos)      { v.pos = pos }
  1464  
  1465  func (v *anInstruction) Parent() *Function          { return v.block.parent }
  1466  func (v *anInstruction) Block() *BasicBlock         { return v.block }
  1467  func (v *anInstruction) setBlock(block *BasicBlock) { v.block = block }
  1468  func (v *anInstruction) Referrers() *[]Instruction  { return nil }
  1469  
  1470  func (t *Type) Name() string                         { return t.object.Name() }
  1471  func (t *Type) Pos() token.Pos                       { return t.object.Pos() }
  1472  func (t *Type) Type() types.Type                     { return t.object.Type() }
  1473  func (t *Type) Token() token.Token                   { return token.TYPE }
  1474  func (t *Type) Object() types.Object                 { return t.object }
  1475  func (t *Type) String() string                       { return t.RelString(nil) }
  1476  func (t *Type) Package() *Package                    { return t.pkg }
  1477  func (t *Type) RelString(from *types.Package) string { return relString(t, from) }
  1478  
  1479  func (c *NamedConst) Name() string                         { return c.object.Name() }
  1480  func (c *NamedConst) Pos() token.Pos                       { return c.object.Pos() }
  1481  func (c *NamedConst) String() string                       { return c.RelString(nil) }
  1482  func (c *NamedConst) Type() types.Type                     { return c.object.Type() }
  1483  func (c *NamedConst) Token() token.Token                   { return token.CONST }
  1484  func (c *NamedConst) Object() types.Object                 { return c.object }
  1485  func (c *NamedConst) Package() *Package                    { return c.pkg }
  1486  func (c *NamedConst) RelString(from *types.Package) string { return relString(c, from) }
  1487  
  1488  // Func returns the package-level function of the specified name,
  1489  // or nil if not found.
  1490  //
  1491  func (p *Package) Func(name string) (f *Function) {
  1492  	f, _ = p.Members[name].(*Function)
  1493  	return
  1494  }
  1495  
  1496  // Var returns the package-level variable of the specified name,
  1497  // or nil if not found.
  1498  //
  1499  func (p *Package) Var(name string) (g *Global) {
  1500  	g, _ = p.Members[name].(*Global)
  1501  	return
  1502  }
  1503  
  1504  // Const returns the package-level constant of the specified name,
  1505  // or nil if not found.
  1506  //
  1507  func (p *Package) Const(name string) (c *NamedConst) {
  1508  	c, _ = p.Members[name].(*NamedConst)
  1509  	return
  1510  }
  1511  
  1512  // Type returns the package-level type of the specified name,
  1513  // or nil if not found.
  1514  //
  1515  func (p *Package) Type(name string) (t *Type) {
  1516  	t, _ = p.Members[name].(*Type)
  1517  	return
  1518  }
  1519  
  1520  func (v *Call) Pos() token.Pos      { return v.Call.pos }
  1521  func (s *Defer) Pos() token.Pos     { return s.pos }
  1522  func (s *Go) Pos() token.Pos        { return s.pos }
  1523  func (s *MapUpdate) Pos() token.Pos { return s.pos }
  1524  func (s *Panic) Pos() token.Pos     { return s.pos }
  1525  func (s *Return) Pos() token.Pos    { return s.pos }
  1526  func (s *Send) Pos() token.Pos      { return s.pos }
  1527  func (s *Store) Pos() token.Pos     { return s.pos }
  1528  func (s *If) Pos() token.Pos        { return token.NoPos }
  1529  func (s *Jump) Pos() token.Pos      { return token.NoPos }
  1530  func (s *RunDefers) Pos() token.Pos { return token.NoPos }
  1531  func (s *DebugRef) Pos() token.Pos  { return s.Expr.Pos() }
  1532  
  1533  // Operands.
  1534  
  1535  func (v *Alloc) Operands(rands []*Value) []*Value {
  1536  	return rands
  1537  }
  1538  
  1539  func (v *BinOp) Operands(rands []*Value) []*Value {
  1540  	return append(rands, &v.X, &v.Y)
  1541  }
  1542  
  1543  func (c *CallCommon) Operands(rands []*Value) []*Value {
  1544  	rands = append(rands, &c.Value)
  1545  	for i := range c.Args {
  1546  		rands = append(rands, &c.Args[i])
  1547  	}
  1548  	return rands
  1549  }
  1550  
  1551  func (s *Go) Operands(rands []*Value) []*Value {
  1552  	return s.Call.Operands(rands)
  1553  }
  1554  
  1555  func (s *Call) Operands(rands []*Value) []*Value {
  1556  	return s.Call.Operands(rands)
  1557  }
  1558  
  1559  func (s *Defer) Operands(rands []*Value) []*Value {
  1560  	return s.Call.Operands(rands)
  1561  }
  1562  
  1563  func (v *ChangeInterface) Operands(rands []*Value) []*Value {
  1564  	return append(rands, &v.X)
  1565  }
  1566  
  1567  func (v *ChangeType) Operands(rands []*Value) []*Value {
  1568  	return append(rands, &v.X)
  1569  }
  1570  
  1571  func (v *Convert) Operands(rands []*Value) []*Value {
  1572  	return append(rands, &v.X)
  1573  }
  1574  
  1575  func (s *DebugRef) Operands(rands []*Value) []*Value {
  1576  	return append(rands, &s.X)
  1577  }
  1578  
  1579  func (v *Extract) Operands(rands []*Value) []*Value {
  1580  	return append(rands, &v.Tuple)
  1581  }
  1582  
  1583  func (v *Field) Operands(rands []*Value) []*Value {
  1584  	return append(rands, &v.X)
  1585  }
  1586  
  1587  func (v *FieldAddr) Operands(rands []*Value) []*Value {
  1588  	return append(rands, &v.X)
  1589  }
  1590  
  1591  func (s *If) Operands(rands []*Value) []*Value {
  1592  	return append(rands, &s.Cond)
  1593  }
  1594  
  1595  func (v *Index) Operands(rands []*Value) []*Value {
  1596  	return append(rands, &v.X, &v.Index)
  1597  }
  1598  
  1599  func (v *IndexAddr) Operands(rands []*Value) []*Value {
  1600  	return append(rands, &v.X, &v.Index)
  1601  }
  1602  
  1603  func (*Jump) Operands(rands []*Value) []*Value {
  1604  	return rands
  1605  }
  1606  
  1607  func (v *Lookup) Operands(rands []*Value) []*Value {
  1608  	return append(rands, &v.X, &v.Index)
  1609  }
  1610  
  1611  func (v *MakeChan) Operands(rands []*Value) []*Value {
  1612  	return append(rands, &v.Size)
  1613  }
  1614  
  1615  func (v *MakeClosure) Operands(rands []*Value) []*Value {
  1616  	rands = append(rands, &v.Fn)
  1617  	for i := range v.Bindings {
  1618  		rands = append(rands, &v.Bindings[i])
  1619  	}
  1620  	return rands
  1621  }
  1622  
  1623  func (v *MakeInterface) Operands(rands []*Value) []*Value {
  1624  	return append(rands, &v.X)
  1625  }
  1626  
  1627  func (v *MakeMap) Operands(rands []*Value) []*Value {
  1628  	return append(rands, &v.Reserve)
  1629  }
  1630  
  1631  func (v *MakeSlice) Operands(rands []*Value) []*Value {
  1632  	return append(rands, &v.Len, &v.Cap)
  1633  }
  1634  
  1635  func (v *MapUpdate) Operands(rands []*Value) []*Value {
  1636  	return append(rands, &v.Map, &v.Key, &v.Value)
  1637  }
  1638  
  1639  func (v *Next) Operands(rands []*Value) []*Value {
  1640  	return append(rands, &v.Iter)
  1641  }
  1642  
  1643  func (s *Panic) Operands(rands []*Value) []*Value {
  1644  	return append(rands, &s.X)
  1645  }
  1646  
  1647  func (v *Phi) Operands(rands []*Value) []*Value {
  1648  	for i := range v.Edges {
  1649  		rands = append(rands, &v.Edges[i])
  1650  	}
  1651  	return rands
  1652  }
  1653  
  1654  func (v *Range) Operands(rands []*Value) []*Value {
  1655  	return append(rands, &v.X)
  1656  }
  1657  
  1658  func (s *Return) Operands(rands []*Value) []*Value {
  1659  	for i := range s.Results {
  1660  		rands = append(rands, &s.Results[i])
  1661  	}
  1662  	return rands
  1663  }
  1664  
  1665  func (*RunDefers) Operands(rands []*Value) []*Value {
  1666  	return rands
  1667  }
  1668  
  1669  func (v *Select) Operands(rands []*Value) []*Value {
  1670  	for i := range v.States {
  1671  		rands = append(rands, &v.States[i].Chan, &v.States[i].Send)
  1672  	}
  1673  	return rands
  1674  }
  1675  
  1676  func (s *Send) Operands(rands []*Value) []*Value {
  1677  	return append(rands, &s.Chan, &s.X)
  1678  }
  1679  
  1680  func (v *Slice) Operands(rands []*Value) []*Value {
  1681  	return append(rands, &v.X, &v.Low, &v.High, &v.Max)
  1682  }
  1683  
  1684  func (s *Store) Operands(rands []*Value) []*Value {
  1685  	return append(rands, &s.Addr, &s.Val)
  1686  }
  1687  
  1688  func (v *TypeAssert) Operands(rands []*Value) []*Value {
  1689  	return append(rands, &v.X)
  1690  }
  1691  
  1692  func (v *UnOp) Operands(rands []*Value) []*Value {
  1693  	return append(rands, &v.X)
  1694  }
  1695  
  1696  // Non-Instruction Values:
  1697  func (v *Builtin) Operands(rands []*Value) []*Value   { return rands }
  1698  func (v *FreeVar) Operands(rands []*Value) []*Value   { return rands }
  1699  func (v *Const) Operands(rands []*Value) []*Value     { return rands }
  1700  func (v *Function) Operands(rands []*Value) []*Value  { return rands }
  1701  func (v *Global) Operands(rands []*Value) []*Value    { return rands }
  1702  func (v *Parameter) Operands(rands []*Value) []*Value { return rands }