github.com/guiltylotus/go-ethereum@v1.9.7/crypto/secp256k1/libsecp256k1/src/group.h (about)

     1  /**********************************************************************
     2   * Copyright (c) 2013, 2014 Pieter Wuille                             *
     3   * Distributed under the MIT software license, see the accompanying   *
     4   * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
     5   **********************************************************************/
     6  
     7  #ifndef _SECP256K1_GROUP_
     8  #define _SECP256K1_GROUP_
     9  
    10  #include "num.h"
    11  #include "field.h"
    12  
    13  /** A group element of the secp256k1 curve, in affine coordinates. */
    14  typedef struct {
    15      secp256k1_fe x;
    16      secp256k1_fe y;
    17      int infinity; /* whether this represents the point at infinity */
    18  } secp256k1_ge;
    19  
    20  #define SECP256K1_GE_CONST(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) {SECP256K1_FE_CONST((a),(b),(c),(d),(e),(f),(g),(h)), SECP256K1_FE_CONST((i),(j),(k),(l),(m),(n),(o),(p)), 0}
    21  #define SECP256K1_GE_CONST_INFINITY {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), 1}
    22  
    23  /** A group element of the secp256k1 curve, in jacobian coordinates. */
    24  typedef struct {
    25      secp256k1_fe x; /* actual X: x/z^2 */
    26      secp256k1_fe y; /* actual Y: y/z^3 */
    27      secp256k1_fe z;
    28      int infinity; /* whether this represents the point at infinity */
    29  } secp256k1_gej;
    30  
    31  #define SECP256K1_GEJ_CONST(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) {SECP256K1_FE_CONST((a),(b),(c),(d),(e),(f),(g),(h)), SECP256K1_FE_CONST((i),(j),(k),(l),(m),(n),(o),(p)), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 1), 0}
    32  #define SECP256K1_GEJ_CONST_INFINITY {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), 1}
    33  
    34  typedef struct {
    35      secp256k1_fe_storage x;
    36      secp256k1_fe_storage y;
    37  } secp256k1_ge_storage;
    38  
    39  #define SECP256K1_GE_STORAGE_CONST(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) {SECP256K1_FE_STORAGE_CONST((a),(b),(c),(d),(e),(f),(g),(h)), SECP256K1_FE_STORAGE_CONST((i),(j),(k),(l),(m),(n),(o),(p))}
    40  
    41  #define SECP256K1_GE_STORAGE_CONST_GET(t) SECP256K1_FE_STORAGE_CONST_GET(t.x), SECP256K1_FE_STORAGE_CONST_GET(t.y)
    42  
    43  /** Set a group element equal to the point with given X and Y coordinates */
    44  static void secp256k1_ge_set_xy(secp256k1_ge *r, const secp256k1_fe *x, const secp256k1_fe *y);
    45  
    46  /** Set a group element (affine) equal to the point with the given X coordinate
    47   *  and a Y coordinate that is a quadratic residue modulo p. The return value
    48   *  is true iff a coordinate with the given X coordinate exists.
    49   */
    50  static int secp256k1_ge_set_xquad(secp256k1_ge *r, const secp256k1_fe *x);
    51  
    52  /** Set a group element (affine) equal to the point with the given X coordinate, and given oddness
    53   *  for Y. Return value indicates whether the result is valid. */
    54  static int secp256k1_ge_set_xo_var(secp256k1_ge *r, const secp256k1_fe *x, int odd);
    55  
    56  /** Check whether a group element is the point at infinity. */
    57  static int secp256k1_ge_is_infinity(const secp256k1_ge *a);
    58  
    59  /** Check whether a group element is valid (i.e., on the curve). */
    60  static int secp256k1_ge_is_valid_var(const secp256k1_ge *a);
    61  
    62  static void secp256k1_ge_neg(secp256k1_ge *r, const secp256k1_ge *a);
    63  
    64  /** Set a group element equal to another which is given in jacobian coordinates */
    65  static void secp256k1_ge_set_gej(secp256k1_ge *r, secp256k1_gej *a);
    66  
    67  /** Set a batch of group elements equal to the inputs given in jacobian coordinates */
    68  static void secp256k1_ge_set_all_gej_var(secp256k1_ge *r, const secp256k1_gej *a, size_t len, const secp256k1_callback *cb);
    69  
    70  /** Set a batch of group elements equal to the inputs given in jacobian
    71   *  coordinates (with known z-ratios). zr must contain the known z-ratios such
    72   *  that mul(a[i].z, zr[i+1]) == a[i+1].z. zr[0] is ignored. */
    73  static void secp256k1_ge_set_table_gej_var(secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_fe *zr, size_t len);
    74  
    75  /** Bring a batch inputs given in jacobian coordinates (with known z-ratios) to
    76   *  the same global z "denominator". zr must contain the known z-ratios such
    77   *  that mul(a[i].z, zr[i+1]) == a[i+1].z. zr[0] is ignored. The x and y
    78   *  coordinates of the result are stored in r, the common z coordinate is
    79   *  stored in globalz. */
    80  static void secp256k1_ge_globalz_set_table_gej(size_t len, secp256k1_ge *r, secp256k1_fe *globalz, const secp256k1_gej *a, const secp256k1_fe *zr);
    81  
    82  /** Set a group element (jacobian) equal to the point at infinity. */
    83  static void secp256k1_gej_set_infinity(secp256k1_gej *r);
    84  
    85  /** Set a group element (jacobian) equal to another which is given in affine coordinates. */
    86  static void secp256k1_gej_set_ge(secp256k1_gej *r, const secp256k1_ge *a);
    87  
    88  /** Compare the X coordinate of a group element (jacobian). */
    89  static int secp256k1_gej_eq_x_var(const secp256k1_fe *x, const secp256k1_gej *a);
    90  
    91  /** Set r equal to the inverse of a (i.e., mirrored around the X axis) */
    92  static void secp256k1_gej_neg(secp256k1_gej *r, const secp256k1_gej *a);
    93  
    94  /** Check whether a group element is the point at infinity. */
    95  static int secp256k1_gej_is_infinity(const secp256k1_gej *a);
    96  
    97  /** Check whether a group element's y coordinate is a quadratic residue. */
    98  static int secp256k1_gej_has_quad_y_var(const secp256k1_gej *a);
    99  
   100  /** Set r equal to the double of a. If rzr is not-NULL, r->z = a->z * *rzr (where infinity means an implicit z = 0).
   101   * a may not be zero. Constant time. */
   102  static void secp256k1_gej_double_nonzero(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr);
   103  
   104  /** Set r equal to the double of a. If rzr is not-NULL, r->z = a->z * *rzr (where infinity means an implicit z = 0). */
   105  static void secp256k1_gej_double_var(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr);
   106  
   107  /** Set r equal to the sum of a and b. If rzr is non-NULL, r->z = a->z * *rzr (a cannot be infinity in that case). */
   108  static void secp256k1_gej_add_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_gej *b, secp256k1_fe *rzr);
   109  
   110  /** Set r equal to the sum of a and b (with b given in affine coordinates, and not infinity). */
   111  static void secp256k1_gej_add_ge(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b);
   112  
   113  /** Set r equal to the sum of a and b (with b given in affine coordinates). This is more efficient
   114      than secp256k1_gej_add_var. It is identical to secp256k1_gej_add_ge but without constant-time
   115      guarantee, and b is allowed to be infinity. If rzr is non-NULL, r->z = a->z * *rzr (a cannot be infinity in that case). */
   116  static void secp256k1_gej_add_ge_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, secp256k1_fe *rzr);
   117  
   118  /** Set r equal to the sum of a and b (with the inverse of b's Z coordinate passed as bzinv). */
   119  static void secp256k1_gej_add_zinv_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, const secp256k1_fe *bzinv);
   120  
   121  #ifdef USE_ENDOMORPHISM
   122  /** Set r to be equal to lambda times a, where lambda is chosen in a way such that this is very fast. */
   123  static void secp256k1_ge_mul_lambda(secp256k1_ge *r, const secp256k1_ge *a);
   124  #endif
   125  
   126  /** Clear a secp256k1_gej to prevent leaking sensitive information. */
   127  static void secp256k1_gej_clear(secp256k1_gej *r);
   128  
   129  /** Clear a secp256k1_ge to prevent leaking sensitive information. */
   130  static void secp256k1_ge_clear(secp256k1_ge *r);
   131  
   132  /** Convert a group element to the storage type. */
   133  static void secp256k1_ge_to_storage(secp256k1_ge_storage *r, const secp256k1_ge *a);
   134  
   135  /** Convert a group element back from the storage type. */
   136  static void secp256k1_ge_from_storage(secp256k1_ge *r, const secp256k1_ge_storage *a);
   137  
   138  /** If flag is true, set *r equal to *a; otherwise leave it. Constant-time. */
   139  static void secp256k1_ge_storage_cmov(secp256k1_ge_storage *r, const secp256k1_ge_storage *a, int flag);
   140  
   141  /** Rescale a jacobian point by b which must be non-zero. Constant-time. */
   142  static void secp256k1_gej_rescale(secp256k1_gej *r, const secp256k1_fe *b);
   143  
   144  #endif