github.com/guyezi/gofrontend@v0.0.0-20200228202240-7a62a49e62c0/libgo/go/hash/crc32/crc32_amd64.go (about)

     1  // Copyright 2011 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // AMD64-specific hardware-assisted CRC32 algorithms. See crc32.go for a
     6  // description of the interface that each architecture-specific file
     7  // implements.
     8  
     9  // +build ignore
    10  
    11  package crc32
    12  
    13  import (
    14  	"internal/cpu"
    15  	"unsafe"
    16  )
    17  
    18  // This file contains the code to call the SSE 4.2 version of the Castagnoli
    19  // and IEEE CRC.
    20  
    21  // castagnoliSSE42 is defined in crc32_amd64.s and uses the SSE 4.2 CRC32
    22  // instruction.
    23  //go:noescape
    24  func castagnoliSSE42(crc uint32, p []byte) uint32
    25  
    26  // castagnoliSSE42Triple is defined in crc32_amd64.s and uses the SSE 4.2 CRC32
    27  // instruction.
    28  //go:noescape
    29  func castagnoliSSE42Triple(
    30  	crcA, crcB, crcC uint32,
    31  	a, b, c []byte,
    32  	rounds uint32,
    33  ) (retA uint32, retB uint32, retC uint32)
    34  
    35  // ieeeCLMUL is defined in crc_amd64.s and uses the PCLMULQDQ
    36  // instruction as well as SSE 4.1.
    37  //go:noescape
    38  func ieeeCLMUL(crc uint32, p []byte) uint32
    39  
    40  const castagnoliK1 = 168
    41  const castagnoliK2 = 1344
    42  
    43  type sse42Table [4]Table
    44  
    45  var castagnoliSSE42TableK1 *sse42Table
    46  var castagnoliSSE42TableK2 *sse42Table
    47  
    48  func archAvailableCastagnoli() bool {
    49  	return cpu.X86.HasSSE42
    50  }
    51  
    52  func archInitCastagnoli() {
    53  	if !cpu.X86.HasSSE42 {
    54  		panic("arch-specific Castagnoli not available")
    55  	}
    56  	castagnoliSSE42TableK1 = new(sse42Table)
    57  	castagnoliSSE42TableK2 = new(sse42Table)
    58  	// See description in updateCastagnoli.
    59  	//    t[0][i] = CRC(i000, O)
    60  	//    t[1][i] = CRC(0i00, O)
    61  	//    t[2][i] = CRC(00i0, O)
    62  	//    t[3][i] = CRC(000i, O)
    63  	// where O is a sequence of K zeros.
    64  	var tmp [castagnoliK2]byte
    65  	for b := 0; b < 4; b++ {
    66  		for i := 0; i < 256; i++ {
    67  			val := uint32(i) << uint32(b*8)
    68  			castagnoliSSE42TableK1[b][i] = castagnoliSSE42(val, tmp[:castagnoliK1])
    69  			castagnoliSSE42TableK2[b][i] = castagnoliSSE42(val, tmp[:])
    70  		}
    71  	}
    72  }
    73  
    74  // castagnoliShift computes the CRC32-C of K1 or K2 zeroes (depending on the
    75  // table given) with the given initial crc value. This corresponds to
    76  // CRC(crc, O) in the description in updateCastagnoli.
    77  func castagnoliShift(table *sse42Table, crc uint32) uint32 {
    78  	return table[3][crc>>24] ^
    79  		table[2][(crc>>16)&0xFF] ^
    80  		table[1][(crc>>8)&0xFF] ^
    81  		table[0][crc&0xFF]
    82  }
    83  
    84  func archUpdateCastagnoli(crc uint32, p []byte) uint32 {
    85  	if !cpu.X86.HasSSE42 {
    86  		panic("not available")
    87  	}
    88  
    89  	// This method is inspired from the algorithm in Intel's white paper:
    90  	//    "Fast CRC Computation for iSCSI Polynomial Using CRC32 Instruction"
    91  	// The same strategy of splitting the buffer in three is used but the
    92  	// combining calculation is different; the complete derivation is explained
    93  	// below.
    94  	//
    95  	// -- The basic idea --
    96  	//
    97  	// The CRC32 instruction (available in SSE4.2) can process 8 bytes at a
    98  	// time. In recent Intel architectures the instruction takes 3 cycles;
    99  	// however the processor can pipeline up to three instructions if they
   100  	// don't depend on each other.
   101  	//
   102  	// Roughly this means that we can process three buffers in about the same
   103  	// time we can process one buffer.
   104  	//
   105  	// The idea is then to split the buffer in three, CRC the three pieces
   106  	// separately and then combine the results.
   107  	//
   108  	// Combining the results requires precomputed tables, so we must choose a
   109  	// fixed buffer length to optimize. The longer the length, the faster; but
   110  	// only buffers longer than this length will use the optimization. We choose
   111  	// two cutoffs and compute tables for both:
   112  	//  - one around 512: 168*3=504
   113  	//  - one around 4KB: 1344*3=4032
   114  	//
   115  	// -- The nitty gritty --
   116  	//
   117  	// Let CRC(I, X) be the non-inverted CRC32-C of the sequence X (with
   118  	// initial non-inverted CRC I). This function has the following properties:
   119  	//   (a) CRC(I, AB) = CRC(CRC(I, A), B)
   120  	//   (b) CRC(I, A xor B) = CRC(I, A) xor CRC(0, B)
   121  	//
   122  	// Say we want to compute CRC(I, ABC) where A, B, C are three sequences of
   123  	// K bytes each, where K is a fixed constant. Let O be the sequence of K zero
   124  	// bytes.
   125  	//
   126  	// CRC(I, ABC) = CRC(I, ABO xor C)
   127  	//             = CRC(I, ABO) xor CRC(0, C)
   128  	//             = CRC(CRC(I, AB), O) xor CRC(0, C)
   129  	//             = CRC(CRC(I, AO xor B), O) xor CRC(0, C)
   130  	//             = CRC(CRC(I, AO) xor CRC(0, B), O) xor CRC(0, C)
   131  	//             = CRC(CRC(CRC(I, A), O) xor CRC(0, B), O) xor CRC(0, C)
   132  	//
   133  	// The castagnoliSSE42Triple function can compute CRC(I, A), CRC(0, B),
   134  	// and CRC(0, C) efficiently.  We just need to find a way to quickly compute
   135  	// CRC(uvwx, O) given a 4-byte initial value uvwx. We can precompute these
   136  	// values; since we can't have a 32-bit table, we break it up into four
   137  	// 8-bit tables:
   138  	//
   139  	//    CRC(uvwx, O) = CRC(u000, O) xor
   140  	//                   CRC(0v00, O) xor
   141  	//                   CRC(00w0, O) xor
   142  	//                   CRC(000x, O)
   143  	//
   144  	// We can compute tables corresponding to the four terms for all 8-bit
   145  	// values.
   146  
   147  	crc = ^crc
   148  
   149  	// If a buffer is long enough to use the optimization, process the first few
   150  	// bytes to align the buffer to an 8 byte boundary (if necessary).
   151  	if len(p) >= castagnoliK1*3 {
   152  		delta := int(uintptr(unsafe.Pointer(&p[0])) & 7)
   153  		if delta != 0 {
   154  			delta = 8 - delta
   155  			crc = castagnoliSSE42(crc, p[:delta])
   156  			p = p[delta:]
   157  		}
   158  	}
   159  
   160  	// Process 3*K2 at a time.
   161  	for len(p) >= castagnoliK2*3 {
   162  		// Compute CRC(I, A), CRC(0, B), and CRC(0, C).
   163  		crcA, crcB, crcC := castagnoliSSE42Triple(
   164  			crc, 0, 0,
   165  			p, p[castagnoliK2:], p[castagnoliK2*2:],
   166  			castagnoliK2/24)
   167  
   168  		// CRC(I, AB) = CRC(CRC(I, A), O) xor CRC(0, B)
   169  		crcAB := castagnoliShift(castagnoliSSE42TableK2, crcA) ^ crcB
   170  		// CRC(I, ABC) = CRC(CRC(I, AB), O) xor CRC(0, C)
   171  		crc = castagnoliShift(castagnoliSSE42TableK2, crcAB) ^ crcC
   172  		p = p[castagnoliK2*3:]
   173  	}
   174  
   175  	// Process 3*K1 at a time.
   176  	for len(p) >= castagnoliK1*3 {
   177  		// Compute CRC(I, A), CRC(0, B), and CRC(0, C).
   178  		crcA, crcB, crcC := castagnoliSSE42Triple(
   179  			crc, 0, 0,
   180  			p, p[castagnoliK1:], p[castagnoliK1*2:],
   181  			castagnoliK1/24)
   182  
   183  		// CRC(I, AB) = CRC(CRC(I, A), O) xor CRC(0, B)
   184  		crcAB := castagnoliShift(castagnoliSSE42TableK1, crcA) ^ crcB
   185  		// CRC(I, ABC) = CRC(CRC(I, AB), O) xor CRC(0, C)
   186  		crc = castagnoliShift(castagnoliSSE42TableK1, crcAB) ^ crcC
   187  		p = p[castagnoliK1*3:]
   188  	}
   189  
   190  	// Use the simple implementation for what's left.
   191  	crc = castagnoliSSE42(crc, p)
   192  	return ^crc
   193  }
   194  
   195  func archAvailableIEEE() bool {
   196  	return cpu.X86.HasPCLMULQDQ && cpu.X86.HasSSE41
   197  }
   198  
   199  var archIeeeTable8 *slicing8Table
   200  
   201  func archInitIEEE() {
   202  	if !cpu.X86.HasPCLMULQDQ || !cpu.X86.HasSSE41 {
   203  		panic("not available")
   204  	}
   205  	// We still use slicing-by-8 for small buffers.
   206  	archIeeeTable8 = slicingMakeTable(IEEE)
   207  }
   208  
   209  func archUpdateIEEE(crc uint32, p []byte) uint32 {
   210  	if !cpu.X86.HasPCLMULQDQ || !cpu.X86.HasSSE41 {
   211  		panic("not available")
   212  	}
   213  
   214  	if len(p) >= 64 {
   215  		left := len(p) & 15
   216  		do := len(p) - left
   217  		crc = ^ieeeCLMUL(^crc, p[:do])
   218  		p = p[do:]
   219  	}
   220  	if len(p) == 0 {
   221  		return crc
   222  	}
   223  	return slicingUpdate(crc, archIeeeTable8, p)
   224  }