github.com/guyezi/gofrontend@v0.0.0-20200228202240-7a62a49e62c0/libgo/go/net/http/transport.go (about) 1 // Copyright 2011 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // HTTP client implementation. See RFC 7230 through 7235. 6 // 7 // This is the low-level Transport implementation of RoundTripper. 8 // The high-level interface is in client.go. 9 10 package http 11 12 import ( 13 "bufio" 14 "compress/gzip" 15 "container/list" 16 "context" 17 "crypto/tls" 18 "errors" 19 "fmt" 20 "io" 21 "log" 22 "net" 23 "net/http/httptrace" 24 "net/textproto" 25 "net/url" 26 "os" 27 "reflect" 28 "strings" 29 "sync" 30 "sync/atomic" 31 "time" 32 33 "golang.org/x/net/http/httpguts" 34 "golang.org/x/net/http/httpproxy" 35 ) 36 37 // DefaultTransport is the default implementation of Transport and is 38 // used by DefaultClient. It establishes network connections as needed 39 // and caches them for reuse by subsequent calls. It uses HTTP proxies 40 // as directed by the $HTTP_PROXY and $NO_PROXY (or $http_proxy and 41 // $no_proxy) environment variables. 42 var DefaultTransport RoundTripper = &Transport{ 43 Proxy: ProxyFromEnvironment, 44 DialContext: (&net.Dialer{ 45 Timeout: 30 * time.Second, 46 KeepAlive: 30 * time.Second, 47 DualStack: true, 48 }).DialContext, 49 ForceAttemptHTTP2: true, 50 MaxIdleConns: 100, 51 IdleConnTimeout: 90 * time.Second, 52 TLSHandshakeTimeout: 10 * time.Second, 53 ExpectContinueTimeout: 1 * time.Second, 54 } 55 56 // DefaultMaxIdleConnsPerHost is the default value of Transport's 57 // MaxIdleConnsPerHost. 58 const DefaultMaxIdleConnsPerHost = 2 59 60 // Transport is an implementation of RoundTripper that supports HTTP, 61 // HTTPS, and HTTP proxies (for either HTTP or HTTPS with CONNECT). 62 // 63 // By default, Transport caches connections for future re-use. 64 // This may leave many open connections when accessing many hosts. 65 // This behavior can be managed using Transport's CloseIdleConnections method 66 // and the MaxIdleConnsPerHost and DisableKeepAlives fields. 67 // 68 // Transports should be reused instead of created as needed. 69 // Transports are safe for concurrent use by multiple goroutines. 70 // 71 // A Transport is a low-level primitive for making HTTP and HTTPS requests. 72 // For high-level functionality, such as cookies and redirects, see Client. 73 // 74 // Transport uses HTTP/1.1 for HTTP URLs and either HTTP/1.1 or HTTP/2 75 // for HTTPS URLs, depending on whether the server supports HTTP/2, 76 // and how the Transport is configured. The DefaultTransport supports HTTP/2. 77 // To explicitly enable HTTP/2 on a transport, use golang.org/x/net/http2 78 // and call ConfigureTransport. See the package docs for more about HTTP/2. 79 // 80 // Responses with status codes in the 1xx range are either handled 81 // automatically (100 expect-continue) or ignored. The one 82 // exception is HTTP status code 101 (Switching Protocols), which is 83 // considered a terminal status and returned by RoundTrip. To see the 84 // ignored 1xx responses, use the httptrace trace package's 85 // ClientTrace.Got1xxResponse. 86 // 87 // Transport only retries a request upon encountering a network error 88 // if the request is idempotent and either has no body or has its 89 // Request.GetBody defined. HTTP requests are considered idempotent if 90 // they have HTTP methods GET, HEAD, OPTIONS, or TRACE; or if their 91 // Header map contains an "Idempotency-Key" or "X-Idempotency-Key" 92 // entry. If the idempotency key value is a zero-length slice, the 93 // request is treated as idempotent but the header is not sent on the 94 // wire. 95 type Transport struct { 96 idleMu sync.Mutex 97 closeIdle bool // user has requested to close all idle conns 98 idleConn map[connectMethodKey][]*persistConn // most recently used at end 99 idleConnWait map[connectMethodKey]wantConnQueue // waiting getConns 100 idleLRU connLRU 101 102 reqMu sync.Mutex 103 reqCanceler map[*Request]func(error) 104 105 altMu sync.Mutex // guards changing altProto only 106 altProto atomic.Value // of nil or map[string]RoundTripper, key is URI scheme 107 108 connsPerHostMu sync.Mutex 109 connsPerHost map[connectMethodKey]int 110 connsPerHostWait map[connectMethodKey]wantConnQueue // waiting getConns 111 112 // Proxy specifies a function to return a proxy for a given 113 // Request. If the function returns a non-nil error, the 114 // request is aborted with the provided error. 115 // 116 // The proxy type is determined by the URL scheme. "http", 117 // "https", and "socks5" are supported. If the scheme is empty, 118 // "http" is assumed. 119 // 120 // If Proxy is nil or returns a nil *URL, no proxy is used. 121 Proxy func(*Request) (*url.URL, error) 122 123 // DialContext specifies the dial function for creating unencrypted TCP connections. 124 // If DialContext is nil (and the deprecated Dial below is also nil), 125 // then the transport dials using package net. 126 // 127 // DialContext runs concurrently with calls to RoundTrip. 128 // A RoundTrip call that initiates a dial may end up using 129 // a connection dialed previously when the earlier connection 130 // becomes idle before the later DialContext completes. 131 DialContext func(ctx context.Context, network, addr string) (net.Conn, error) 132 133 // Dial specifies the dial function for creating unencrypted TCP connections. 134 // 135 // Dial runs concurrently with calls to RoundTrip. 136 // A RoundTrip call that initiates a dial may end up using 137 // a connection dialed previously when the earlier connection 138 // becomes idle before the later Dial completes. 139 // 140 // Deprecated: Use DialContext instead, which allows the transport 141 // to cancel dials as soon as they are no longer needed. 142 // If both are set, DialContext takes priority. 143 Dial func(network, addr string) (net.Conn, error) 144 145 // DialTLSContext specifies an optional dial function for creating 146 // TLS connections for non-proxied HTTPS requests. 147 // 148 // If DialTLSContext is nil (and the deprecated DialTLS below is also nil), 149 // DialContext and TLSClientConfig are used. 150 // 151 // If DialTLSContext is set, the Dial and DialContext hooks are not used for HTTPS 152 // requests and the TLSClientConfig and TLSHandshakeTimeout 153 // are ignored. The returned net.Conn is assumed to already be 154 // past the TLS handshake. 155 DialTLSContext func(ctx context.Context, network, addr string) (net.Conn, error) 156 157 // DialTLS specifies an optional dial function for creating 158 // TLS connections for non-proxied HTTPS requests. 159 // 160 // Deprecated: Use DialTLSContext instead, which allows the transport 161 // to cancel dials as soon as they are no longer needed. 162 // If both are set, DialTLSContext takes priority. 163 DialTLS func(network, addr string) (net.Conn, error) 164 165 // TLSClientConfig specifies the TLS configuration to use with 166 // tls.Client. 167 // If nil, the default configuration is used. 168 // If non-nil, HTTP/2 support may not be enabled by default. 169 TLSClientConfig *tls.Config 170 171 // TLSHandshakeTimeout specifies the maximum amount of time waiting to 172 // wait for a TLS handshake. Zero means no timeout. 173 TLSHandshakeTimeout time.Duration 174 175 // DisableKeepAlives, if true, disables HTTP keep-alives and 176 // will only use the connection to the server for a single 177 // HTTP request. 178 // 179 // This is unrelated to the similarly named TCP keep-alives. 180 DisableKeepAlives bool 181 182 // DisableCompression, if true, prevents the Transport from 183 // requesting compression with an "Accept-Encoding: gzip" 184 // request header when the Request contains no existing 185 // Accept-Encoding value. If the Transport requests gzip on 186 // its own and gets a gzipped response, it's transparently 187 // decoded in the Response.Body. However, if the user 188 // explicitly requested gzip it is not automatically 189 // uncompressed. 190 DisableCompression bool 191 192 // MaxIdleConns controls the maximum number of idle (keep-alive) 193 // connections across all hosts. Zero means no limit. 194 MaxIdleConns int 195 196 // MaxIdleConnsPerHost, if non-zero, controls the maximum idle 197 // (keep-alive) connections to keep per-host. If zero, 198 // DefaultMaxIdleConnsPerHost is used. 199 MaxIdleConnsPerHost int 200 201 // MaxConnsPerHost optionally limits the total number of 202 // connections per host, including connections in the dialing, 203 // active, and idle states. On limit violation, dials will block. 204 // 205 // Zero means no limit. 206 MaxConnsPerHost int 207 208 // IdleConnTimeout is the maximum amount of time an idle 209 // (keep-alive) connection will remain idle before closing 210 // itself. 211 // Zero means no limit. 212 IdleConnTimeout time.Duration 213 214 // ResponseHeaderTimeout, if non-zero, specifies the amount of 215 // time to wait for a server's response headers after fully 216 // writing the request (including its body, if any). This 217 // time does not include the time to read the response body. 218 ResponseHeaderTimeout time.Duration 219 220 // ExpectContinueTimeout, if non-zero, specifies the amount of 221 // time to wait for a server's first response headers after fully 222 // writing the request headers if the request has an 223 // "Expect: 100-continue" header. Zero means no timeout and 224 // causes the body to be sent immediately, without 225 // waiting for the server to approve. 226 // This time does not include the time to send the request header. 227 ExpectContinueTimeout time.Duration 228 229 // TLSNextProto specifies how the Transport switches to an 230 // alternate protocol (such as HTTP/2) after a TLS ALPN 231 // protocol negotiation. If Transport dials an TLS connection 232 // with a non-empty protocol name and TLSNextProto contains a 233 // map entry for that key (such as "h2"), then the func is 234 // called with the request's authority (such as "example.com" 235 // or "example.com:1234") and the TLS connection. The function 236 // must return a RoundTripper that then handles the request. 237 // If TLSNextProto is not nil, HTTP/2 support is not enabled 238 // automatically. 239 TLSNextProto map[string]func(authority string, c *tls.Conn) RoundTripper 240 241 // ProxyConnectHeader optionally specifies headers to send to 242 // proxies during CONNECT requests. 243 ProxyConnectHeader Header 244 245 // MaxResponseHeaderBytes specifies a limit on how many 246 // response bytes are allowed in the server's response 247 // header. 248 // 249 // Zero means to use a default limit. 250 MaxResponseHeaderBytes int64 251 252 // WriteBufferSize specifies the size of the write buffer used 253 // when writing to the transport. 254 // If zero, a default (currently 4KB) is used. 255 WriteBufferSize int 256 257 // ReadBufferSize specifies the size of the read buffer used 258 // when reading from the transport. 259 // If zero, a default (currently 4KB) is used. 260 ReadBufferSize int 261 262 // nextProtoOnce guards initialization of TLSNextProto and 263 // h2transport (via onceSetNextProtoDefaults) 264 nextProtoOnce sync.Once 265 h2transport h2Transport // non-nil if http2 wired up 266 tlsNextProtoWasNil bool // whether TLSNextProto was nil when the Once fired 267 268 // ForceAttemptHTTP2 controls whether HTTP/2 is enabled when a non-zero 269 // Dial, DialTLS, or DialContext func or TLSClientConfig is provided. 270 // By default, use of any those fields conservatively disables HTTP/2. 271 // To use a custom dialer or TLS config and still attempt HTTP/2 272 // upgrades, set this to true. 273 ForceAttemptHTTP2 bool 274 } 275 276 func (t *Transport) writeBufferSize() int { 277 if t.WriteBufferSize > 0 { 278 return t.WriteBufferSize 279 } 280 return 4 << 10 281 } 282 283 func (t *Transport) readBufferSize() int { 284 if t.ReadBufferSize > 0 { 285 return t.ReadBufferSize 286 } 287 return 4 << 10 288 } 289 290 // Clone returns a deep copy of t's exported fields. 291 func (t *Transport) Clone() *Transport { 292 t.nextProtoOnce.Do(t.onceSetNextProtoDefaults) 293 t2 := &Transport{ 294 Proxy: t.Proxy, 295 DialContext: t.DialContext, 296 Dial: t.Dial, 297 DialTLS: t.DialTLS, 298 DialTLSContext: t.DialTLSContext, 299 TLSHandshakeTimeout: t.TLSHandshakeTimeout, 300 DisableKeepAlives: t.DisableKeepAlives, 301 DisableCompression: t.DisableCompression, 302 MaxIdleConns: t.MaxIdleConns, 303 MaxIdleConnsPerHost: t.MaxIdleConnsPerHost, 304 MaxConnsPerHost: t.MaxConnsPerHost, 305 IdleConnTimeout: t.IdleConnTimeout, 306 ResponseHeaderTimeout: t.ResponseHeaderTimeout, 307 ExpectContinueTimeout: t.ExpectContinueTimeout, 308 ProxyConnectHeader: t.ProxyConnectHeader.Clone(), 309 MaxResponseHeaderBytes: t.MaxResponseHeaderBytes, 310 ForceAttemptHTTP2: t.ForceAttemptHTTP2, 311 WriteBufferSize: t.WriteBufferSize, 312 ReadBufferSize: t.ReadBufferSize, 313 } 314 if t.TLSClientConfig != nil { 315 t2.TLSClientConfig = t.TLSClientConfig.Clone() 316 } 317 if !t.tlsNextProtoWasNil { 318 npm := map[string]func(authority string, c *tls.Conn) RoundTripper{} 319 for k, v := range t.TLSNextProto { 320 npm[k] = v 321 } 322 t2.TLSNextProto = npm 323 } 324 return t2 325 } 326 327 // h2Transport is the interface we expect to be able to call from 328 // net/http against an *http2.Transport that's either bundled into 329 // h2_bundle.go or supplied by the user via x/net/http2. 330 // 331 // We name it with the "h2" prefix to stay out of the "http2" prefix 332 // namespace used by x/tools/cmd/bundle for h2_bundle.go. 333 type h2Transport interface { 334 CloseIdleConnections() 335 } 336 337 func (t *Transport) hasCustomTLSDialer() bool { 338 return t.DialTLS != nil || t.DialTLSContext != nil 339 } 340 341 // onceSetNextProtoDefaults initializes TLSNextProto. 342 // It must be called via t.nextProtoOnce.Do. 343 func (t *Transport) onceSetNextProtoDefaults() { 344 t.tlsNextProtoWasNil = (t.TLSNextProto == nil) 345 if strings.Contains(os.Getenv("GODEBUG"), "http2client=0") { 346 return 347 } 348 349 // If they've already configured http2 with 350 // golang.org/x/net/http2 instead of the bundled copy, try to 351 // get at its http2.Transport value (via the "https" 352 // altproto map) so we can call CloseIdleConnections on it if 353 // requested. (Issue 22891) 354 altProto, _ := t.altProto.Load().(map[string]RoundTripper) 355 if rv := reflect.ValueOf(altProto["https"]); rv.IsValid() && rv.Type().Kind() == reflect.Struct && rv.Type().NumField() == 1 { 356 if v := rv.Field(0); v.CanInterface() { 357 if h2i, ok := v.Interface().(h2Transport); ok { 358 t.h2transport = h2i 359 return 360 } 361 } 362 } 363 364 if t.TLSNextProto != nil { 365 // This is the documented way to disable http2 on a 366 // Transport. 367 return 368 } 369 if !t.ForceAttemptHTTP2 && (t.TLSClientConfig != nil || t.Dial != nil || t.DialContext != nil || t.hasCustomTLSDialer()) { 370 // Be conservative and don't automatically enable 371 // http2 if they've specified a custom TLS config or 372 // custom dialers. Let them opt-in themselves via 373 // http2.ConfigureTransport so we don't surprise them 374 // by modifying their tls.Config. Issue 14275. 375 // However, if ForceAttemptHTTP2 is true, it overrides the above checks. 376 return 377 } 378 if omitBundledHTTP2 { 379 return 380 } 381 t2, err := http2configureTransport(t) 382 if err != nil { 383 log.Printf("Error enabling Transport HTTP/2 support: %v", err) 384 return 385 } 386 t.h2transport = t2 387 388 // Auto-configure the http2.Transport's MaxHeaderListSize from 389 // the http.Transport's MaxResponseHeaderBytes. They don't 390 // exactly mean the same thing, but they're close. 391 // 392 // TODO: also add this to x/net/http2.Configure Transport, behind 393 // a +build go1.7 build tag: 394 if limit1 := t.MaxResponseHeaderBytes; limit1 != 0 && t2.MaxHeaderListSize == 0 { 395 const h2max = 1<<32 - 1 396 if limit1 >= h2max { 397 t2.MaxHeaderListSize = h2max 398 } else { 399 t2.MaxHeaderListSize = uint32(limit1) 400 } 401 } 402 } 403 404 // ProxyFromEnvironment returns the URL of the proxy to use for a 405 // given request, as indicated by the environment variables 406 // HTTP_PROXY, HTTPS_PROXY and NO_PROXY (or the lowercase versions 407 // thereof). HTTPS_PROXY takes precedence over HTTP_PROXY for https 408 // requests. 409 // 410 // The environment values may be either a complete URL or a 411 // "host[:port]", in which case the "http" scheme is assumed. 412 // An error is returned if the value is a different form. 413 // 414 // A nil URL and nil error are returned if no proxy is defined in the 415 // environment, or a proxy should not be used for the given request, 416 // as defined by NO_PROXY. 417 // 418 // As a special case, if req.URL.Host is "localhost" (with or without 419 // a port number), then a nil URL and nil error will be returned. 420 func ProxyFromEnvironment(req *Request) (*url.URL, error) { 421 return envProxyFunc()(req.URL) 422 } 423 424 // ProxyURL returns a proxy function (for use in a Transport) 425 // that always returns the same URL. 426 func ProxyURL(fixedURL *url.URL) func(*Request) (*url.URL, error) { 427 return func(*Request) (*url.URL, error) { 428 return fixedURL, nil 429 } 430 } 431 432 // transportRequest is a wrapper around a *Request that adds 433 // optional extra headers to write and stores any error to return 434 // from roundTrip. 435 type transportRequest struct { 436 *Request // original request, not to be mutated 437 extra Header // extra headers to write, or nil 438 trace *httptrace.ClientTrace // optional 439 440 mu sync.Mutex // guards err 441 err error // first setError value for mapRoundTripError to consider 442 } 443 444 func (tr *transportRequest) extraHeaders() Header { 445 if tr.extra == nil { 446 tr.extra = make(Header) 447 } 448 return tr.extra 449 } 450 451 func (tr *transportRequest) setError(err error) { 452 tr.mu.Lock() 453 if tr.err == nil { 454 tr.err = err 455 } 456 tr.mu.Unlock() 457 } 458 459 // useRegisteredProtocol reports whether an alternate protocol (as registered 460 // with Transport.RegisterProtocol) should be respected for this request. 461 func (t *Transport) useRegisteredProtocol(req *Request) bool { 462 if req.URL.Scheme == "https" && req.requiresHTTP1() { 463 // If this request requires HTTP/1, don't use the 464 // "https" alternate protocol, which is used by the 465 // HTTP/2 code to take over requests if there's an 466 // existing cached HTTP/2 connection. 467 return false 468 } 469 return true 470 } 471 472 // alternateRoundTripper returns the alternate RoundTripper to use 473 // for this request if the Request's URL scheme requires one, 474 // or nil for the normal case of using the Transport. 475 func (t *Transport) alternateRoundTripper(req *Request) RoundTripper { 476 if !t.useRegisteredProtocol(req) { 477 return nil 478 } 479 altProto, _ := t.altProto.Load().(map[string]RoundTripper) 480 return altProto[req.URL.Scheme] 481 } 482 483 // roundTrip implements a RoundTripper over HTTP. 484 func (t *Transport) roundTrip(req *Request) (*Response, error) { 485 t.nextProtoOnce.Do(t.onceSetNextProtoDefaults) 486 ctx := req.Context() 487 trace := httptrace.ContextClientTrace(ctx) 488 489 if req.URL == nil { 490 req.closeBody() 491 return nil, errors.New("http: nil Request.URL") 492 } 493 if req.Header == nil { 494 req.closeBody() 495 return nil, errors.New("http: nil Request.Header") 496 } 497 scheme := req.URL.Scheme 498 isHTTP := scheme == "http" || scheme == "https" 499 if isHTTP { 500 for k, vv := range req.Header { 501 if !httpguts.ValidHeaderFieldName(k) { 502 req.closeBody() 503 return nil, fmt.Errorf("net/http: invalid header field name %q", k) 504 } 505 for _, v := range vv { 506 if !httpguts.ValidHeaderFieldValue(v) { 507 req.closeBody() 508 return nil, fmt.Errorf("net/http: invalid header field value %q for key %v", v, k) 509 } 510 } 511 } 512 } 513 514 if altRT := t.alternateRoundTripper(req); altRT != nil { 515 if resp, err := altRT.RoundTrip(req); err != ErrSkipAltProtocol { 516 return resp, err 517 } 518 } 519 if !isHTTP { 520 req.closeBody() 521 return nil, &badStringError{"unsupported protocol scheme", scheme} 522 } 523 if req.Method != "" && !validMethod(req.Method) { 524 req.closeBody() 525 return nil, fmt.Errorf("net/http: invalid method %q", req.Method) 526 } 527 if req.URL.Host == "" { 528 req.closeBody() 529 return nil, errors.New("http: no Host in request URL") 530 } 531 532 for { 533 select { 534 case <-ctx.Done(): 535 req.closeBody() 536 return nil, ctx.Err() 537 default: 538 } 539 540 // treq gets modified by roundTrip, so we need to recreate for each retry. 541 treq := &transportRequest{Request: req, trace: trace} 542 cm, err := t.connectMethodForRequest(treq) 543 if err != nil { 544 req.closeBody() 545 return nil, err 546 } 547 548 // Get the cached or newly-created connection to either the 549 // host (for http or https), the http proxy, or the http proxy 550 // pre-CONNECTed to https server. In any case, we'll be ready 551 // to send it requests. 552 pconn, err := t.getConn(treq, cm) 553 if err != nil { 554 t.setReqCanceler(req, nil) 555 req.closeBody() 556 return nil, err 557 } 558 559 var resp *Response 560 if pconn.alt != nil { 561 // HTTP/2 path. 562 t.setReqCanceler(req, nil) // not cancelable with CancelRequest 563 resp, err = pconn.alt.RoundTrip(req) 564 } else { 565 resp, err = pconn.roundTrip(treq) 566 } 567 if err == nil { 568 return resp, nil 569 } 570 571 // Failed. Clean up and determine whether to retry. 572 573 _, isH2DialError := pconn.alt.(http2erringRoundTripper) 574 if http2isNoCachedConnError(err) || isH2DialError { 575 if t.removeIdleConn(pconn) { 576 t.decConnsPerHost(pconn.cacheKey) 577 } 578 } 579 if !pconn.shouldRetryRequest(req, err) { 580 // Issue 16465: return underlying net.Conn.Read error from peek, 581 // as we've historically done. 582 if e, ok := err.(transportReadFromServerError); ok { 583 err = e.err 584 } 585 return nil, err 586 } 587 testHookRoundTripRetried() 588 589 // Rewind the body if we're able to. 590 if req.GetBody != nil { 591 newReq := *req 592 var err error 593 newReq.Body, err = req.GetBody() 594 if err != nil { 595 return nil, err 596 } 597 req = &newReq 598 } 599 } 600 } 601 602 // shouldRetryRequest reports whether we should retry sending a failed 603 // HTTP request on a new connection. The non-nil input error is the 604 // error from roundTrip. 605 func (pc *persistConn) shouldRetryRequest(req *Request, err error) bool { 606 if http2isNoCachedConnError(err) { 607 // Issue 16582: if the user started a bunch of 608 // requests at once, they can all pick the same conn 609 // and violate the server's max concurrent streams. 610 // Instead, match the HTTP/1 behavior for now and dial 611 // again to get a new TCP connection, rather than failing 612 // this request. 613 return true 614 } 615 if err == errMissingHost { 616 // User error. 617 return false 618 } 619 if !pc.isReused() { 620 // This was a fresh connection. There's no reason the server 621 // should've hung up on us. 622 // 623 // Also, if we retried now, we could loop forever 624 // creating new connections and retrying if the server 625 // is just hanging up on us because it doesn't like 626 // our request (as opposed to sending an error). 627 return false 628 } 629 if _, ok := err.(nothingWrittenError); ok { 630 // We never wrote anything, so it's safe to retry, if there's no body or we 631 // can "rewind" the body with GetBody. 632 return req.outgoingLength() == 0 || req.GetBody != nil 633 } 634 if !req.isReplayable() { 635 // Don't retry non-idempotent requests. 636 return false 637 } 638 if _, ok := err.(transportReadFromServerError); ok { 639 // We got some non-EOF net.Conn.Read failure reading 640 // the 1st response byte from the server. 641 return true 642 } 643 if err == errServerClosedIdle { 644 // The server replied with io.EOF while we were trying to 645 // read the response. Probably an unfortunately keep-alive 646 // timeout, just as the client was writing a request. 647 return true 648 } 649 return false // conservatively 650 } 651 652 // ErrSkipAltProtocol is a sentinel error value defined by Transport.RegisterProtocol. 653 var ErrSkipAltProtocol = errors.New("net/http: skip alternate protocol") 654 655 // RegisterProtocol registers a new protocol with scheme. 656 // The Transport will pass requests using the given scheme to rt. 657 // It is rt's responsibility to simulate HTTP request semantics. 658 // 659 // RegisterProtocol can be used by other packages to provide 660 // implementations of protocol schemes like "ftp" or "file". 661 // 662 // If rt.RoundTrip returns ErrSkipAltProtocol, the Transport will 663 // handle the RoundTrip itself for that one request, as if the 664 // protocol were not registered. 665 func (t *Transport) RegisterProtocol(scheme string, rt RoundTripper) { 666 t.altMu.Lock() 667 defer t.altMu.Unlock() 668 oldMap, _ := t.altProto.Load().(map[string]RoundTripper) 669 if _, exists := oldMap[scheme]; exists { 670 panic("protocol " + scheme + " already registered") 671 } 672 newMap := make(map[string]RoundTripper) 673 for k, v := range oldMap { 674 newMap[k] = v 675 } 676 newMap[scheme] = rt 677 t.altProto.Store(newMap) 678 } 679 680 // CloseIdleConnections closes any connections which were previously 681 // connected from previous requests but are now sitting idle in 682 // a "keep-alive" state. It does not interrupt any connections currently 683 // in use. 684 func (t *Transport) CloseIdleConnections() { 685 t.nextProtoOnce.Do(t.onceSetNextProtoDefaults) 686 t.idleMu.Lock() 687 m := t.idleConn 688 t.idleConn = nil 689 t.closeIdle = true // close newly idle connections 690 t.idleLRU = connLRU{} 691 t.idleMu.Unlock() 692 for _, conns := range m { 693 for _, pconn := range conns { 694 pconn.close(errCloseIdleConns) 695 } 696 } 697 if t2 := t.h2transport; t2 != nil { 698 t2.CloseIdleConnections() 699 } 700 } 701 702 // CancelRequest cancels an in-flight request by closing its connection. 703 // CancelRequest should only be called after RoundTrip has returned. 704 // 705 // Deprecated: Use Request.WithContext to create a request with a 706 // cancelable context instead. CancelRequest cannot cancel HTTP/2 707 // requests. 708 func (t *Transport) CancelRequest(req *Request) { 709 t.cancelRequest(req, errRequestCanceled) 710 } 711 712 // Cancel an in-flight request, recording the error value. 713 func (t *Transport) cancelRequest(req *Request, err error) { 714 t.reqMu.Lock() 715 cancel := t.reqCanceler[req] 716 delete(t.reqCanceler, req) 717 t.reqMu.Unlock() 718 if cancel != nil { 719 cancel(err) 720 } 721 } 722 723 // 724 // Private implementation past this point. 725 // 726 727 var ( 728 // proxyConfigOnce guards proxyConfig 729 envProxyOnce sync.Once 730 envProxyFuncValue func(*url.URL) (*url.URL, error) 731 ) 732 733 // defaultProxyConfig returns a ProxyConfig value looked up 734 // from the environment. This mitigates expensive lookups 735 // on some platforms (e.g. Windows). 736 func envProxyFunc() func(*url.URL) (*url.URL, error) { 737 envProxyOnce.Do(func() { 738 envProxyFuncValue = httpproxy.FromEnvironment().ProxyFunc() 739 }) 740 return envProxyFuncValue 741 } 742 743 // resetProxyConfig is used by tests. 744 func resetProxyConfig() { 745 envProxyOnce = sync.Once{} 746 envProxyFuncValue = nil 747 } 748 749 func (t *Transport) connectMethodForRequest(treq *transportRequest) (cm connectMethod, err error) { 750 cm.targetScheme = treq.URL.Scheme 751 cm.targetAddr = canonicalAddr(treq.URL) 752 if t.Proxy != nil { 753 cm.proxyURL, err = t.Proxy(treq.Request) 754 } 755 cm.onlyH1 = treq.requiresHTTP1() 756 return cm, err 757 } 758 759 // proxyAuth returns the Proxy-Authorization header to set 760 // on requests, if applicable. 761 func (cm *connectMethod) proxyAuth() string { 762 if cm.proxyURL == nil { 763 return "" 764 } 765 if u := cm.proxyURL.User; u != nil { 766 username := u.Username() 767 password, _ := u.Password() 768 return "Basic " + basicAuth(username, password) 769 } 770 return "" 771 } 772 773 // error values for debugging and testing, not seen by users. 774 var ( 775 errKeepAlivesDisabled = errors.New("http: putIdleConn: keep alives disabled") 776 errConnBroken = errors.New("http: putIdleConn: connection is in bad state") 777 errCloseIdle = errors.New("http: putIdleConn: CloseIdleConnections was called") 778 errTooManyIdle = errors.New("http: putIdleConn: too many idle connections") 779 errTooManyIdleHost = errors.New("http: putIdleConn: too many idle connections for host") 780 errCloseIdleConns = errors.New("http: CloseIdleConnections called") 781 errReadLoopExiting = errors.New("http: persistConn.readLoop exiting") 782 errIdleConnTimeout = errors.New("http: idle connection timeout") 783 784 // errServerClosedIdle is not seen by users for idempotent requests, but may be 785 // seen by a user if the server shuts down an idle connection and sends its FIN 786 // in flight with already-written POST body bytes from the client. 787 // See https://github.com/golang/go/issues/19943#issuecomment-355607646 788 errServerClosedIdle = errors.New("http: server closed idle connection") 789 ) 790 791 // transportReadFromServerError is used by Transport.readLoop when the 792 // 1 byte peek read fails and we're actually anticipating a response. 793 // Usually this is just due to the inherent keep-alive shut down race, 794 // where the server closed the connection at the same time the client 795 // wrote. The underlying err field is usually io.EOF or some 796 // ECONNRESET sort of thing which varies by platform. But it might be 797 // the user's custom net.Conn.Read error too, so we carry it along for 798 // them to return from Transport.RoundTrip. 799 type transportReadFromServerError struct { 800 err error 801 } 802 803 func (e transportReadFromServerError) Unwrap() error { return e.err } 804 805 func (e transportReadFromServerError) Error() string { 806 return fmt.Sprintf("net/http: Transport failed to read from server: %v", e.err) 807 } 808 809 func (t *Transport) putOrCloseIdleConn(pconn *persistConn) { 810 if err := t.tryPutIdleConn(pconn); err != nil { 811 pconn.close(err) 812 } 813 } 814 815 func (t *Transport) maxIdleConnsPerHost() int { 816 if v := t.MaxIdleConnsPerHost; v != 0 { 817 return v 818 } 819 return DefaultMaxIdleConnsPerHost 820 } 821 822 // tryPutIdleConn adds pconn to the list of idle persistent connections awaiting 823 // a new request. 824 // If pconn is no longer needed or not in a good state, tryPutIdleConn returns 825 // an error explaining why it wasn't registered. 826 // tryPutIdleConn does not close pconn. Use putOrCloseIdleConn instead for that. 827 func (t *Transport) tryPutIdleConn(pconn *persistConn) error { 828 if t.DisableKeepAlives || t.MaxIdleConnsPerHost < 0 { 829 return errKeepAlivesDisabled 830 } 831 if pconn.isBroken() { 832 return errConnBroken 833 } 834 pconn.markReused() 835 836 t.idleMu.Lock() 837 defer t.idleMu.Unlock() 838 839 // HTTP/2 (pconn.alt != nil) connections do not come out of the idle list, 840 // because multiple goroutines can use them simultaneously. 841 // If this is an HTTP/2 connection being “returned,” we're done. 842 if pconn.alt != nil && t.idleLRU.m[pconn] != nil { 843 return nil 844 } 845 846 // Deliver pconn to goroutine waiting for idle connection, if any. 847 // (They may be actively dialing, but this conn is ready first. 848 // Chrome calls this socket late binding. 849 // See https://insouciant.org/tech/connection-management-in-chromium/.) 850 key := pconn.cacheKey 851 if q, ok := t.idleConnWait[key]; ok { 852 done := false 853 if pconn.alt == nil { 854 // HTTP/1. 855 // Loop over the waiting list until we find a w that isn't done already, and hand it pconn. 856 for q.len() > 0 { 857 w := q.popFront() 858 if w.tryDeliver(pconn, nil) { 859 done = true 860 break 861 } 862 } 863 } else { 864 // HTTP/2. 865 // Can hand the same pconn to everyone in the waiting list, 866 // and we still won't be done: we want to put it in the idle 867 // list unconditionally, for any future clients too. 868 for q.len() > 0 { 869 w := q.popFront() 870 w.tryDeliver(pconn, nil) 871 } 872 } 873 if q.len() == 0 { 874 delete(t.idleConnWait, key) 875 } else { 876 t.idleConnWait[key] = q 877 } 878 if done { 879 return nil 880 } 881 } 882 883 if t.closeIdle { 884 return errCloseIdle 885 } 886 if t.idleConn == nil { 887 t.idleConn = make(map[connectMethodKey][]*persistConn) 888 } 889 idles := t.idleConn[key] 890 if len(idles) >= t.maxIdleConnsPerHost() { 891 return errTooManyIdleHost 892 } 893 for _, exist := range idles { 894 if exist == pconn { 895 log.Fatalf("dup idle pconn %p in freelist", pconn) 896 } 897 } 898 t.idleConn[key] = append(idles, pconn) 899 t.idleLRU.add(pconn) 900 if t.MaxIdleConns != 0 && t.idleLRU.len() > t.MaxIdleConns { 901 oldest := t.idleLRU.removeOldest() 902 oldest.close(errTooManyIdle) 903 t.removeIdleConnLocked(oldest) 904 } 905 906 // Set idle timer, but only for HTTP/1 (pconn.alt == nil). 907 // The HTTP/2 implementation manages the idle timer itself 908 // (see idleConnTimeout in h2_bundle.go). 909 if t.IdleConnTimeout > 0 && pconn.alt == nil { 910 if pconn.idleTimer != nil { 911 pconn.idleTimer.Reset(t.IdleConnTimeout) 912 } else { 913 pconn.idleTimer = time.AfterFunc(t.IdleConnTimeout, pconn.closeConnIfStillIdle) 914 } 915 } 916 pconn.idleAt = time.Now() 917 return nil 918 } 919 920 // queueForIdleConn queues w to receive the next idle connection for w.cm. 921 // As an optimization hint to the caller, queueForIdleConn reports whether 922 // it successfully delivered an already-idle connection. 923 func (t *Transport) queueForIdleConn(w *wantConn) (delivered bool) { 924 if t.DisableKeepAlives { 925 return false 926 } 927 928 t.idleMu.Lock() 929 defer t.idleMu.Unlock() 930 931 // Stop closing connections that become idle - we might want one. 932 // (That is, undo the effect of t.CloseIdleConnections.) 933 t.closeIdle = false 934 935 if w == nil { 936 // Happens in test hook. 937 return false 938 } 939 940 // If IdleConnTimeout is set, calculate the oldest 941 // persistConn.idleAt time we're willing to use a cached idle 942 // conn. 943 var oldTime time.Time 944 if t.IdleConnTimeout > 0 { 945 oldTime = time.Now().Add(-t.IdleConnTimeout) 946 } 947 948 // Look for most recently-used idle connection. 949 if list, ok := t.idleConn[w.key]; ok { 950 stop := false 951 delivered := false 952 for len(list) > 0 && !stop { 953 pconn := list[len(list)-1] 954 955 // See whether this connection has been idle too long, considering 956 // only the wall time (the Round(0)), in case this is a laptop or VM 957 // coming out of suspend with previously cached idle connections. 958 tooOld := !oldTime.IsZero() && pconn.idleAt.Round(0).Before(oldTime) 959 if tooOld { 960 // Async cleanup. Launch in its own goroutine (as if a 961 // time.AfterFunc called it); it acquires idleMu, which we're 962 // holding, and does a synchronous net.Conn.Close. 963 go pconn.closeConnIfStillIdle() 964 } 965 if pconn.isBroken() || tooOld { 966 // If either persistConn.readLoop has marked the connection 967 // broken, but Transport.removeIdleConn has not yet removed it 968 // from the idle list, or if this persistConn is too old (it was 969 // idle too long), then ignore it and look for another. In both 970 // cases it's already in the process of being closed. 971 list = list[:len(list)-1] 972 continue 973 } 974 delivered = w.tryDeliver(pconn, nil) 975 if delivered { 976 if pconn.alt != nil { 977 // HTTP/2: multiple clients can share pconn. 978 // Leave it in the list. 979 } else { 980 // HTTP/1: only one client can use pconn. 981 // Remove it from the list. 982 t.idleLRU.remove(pconn) 983 list = list[:len(list)-1] 984 } 985 } 986 stop = true 987 } 988 if len(list) > 0 { 989 t.idleConn[w.key] = list 990 } else { 991 delete(t.idleConn, w.key) 992 } 993 if stop { 994 return delivered 995 } 996 } 997 998 // Register to receive next connection that becomes idle. 999 if t.idleConnWait == nil { 1000 t.idleConnWait = make(map[connectMethodKey]wantConnQueue) 1001 } 1002 q := t.idleConnWait[w.key] 1003 q.cleanFront() 1004 q.pushBack(w) 1005 t.idleConnWait[w.key] = q 1006 return false 1007 } 1008 1009 // removeIdleConn marks pconn as dead. 1010 func (t *Transport) removeIdleConn(pconn *persistConn) bool { 1011 t.idleMu.Lock() 1012 defer t.idleMu.Unlock() 1013 return t.removeIdleConnLocked(pconn) 1014 } 1015 1016 // t.idleMu must be held. 1017 func (t *Transport) removeIdleConnLocked(pconn *persistConn) bool { 1018 if pconn.idleTimer != nil { 1019 pconn.idleTimer.Stop() 1020 } 1021 t.idleLRU.remove(pconn) 1022 key := pconn.cacheKey 1023 pconns := t.idleConn[key] 1024 var removed bool 1025 switch len(pconns) { 1026 case 0: 1027 // Nothing 1028 case 1: 1029 if pconns[0] == pconn { 1030 delete(t.idleConn, key) 1031 removed = true 1032 } 1033 default: 1034 for i, v := range pconns { 1035 if v != pconn { 1036 continue 1037 } 1038 // Slide down, keeping most recently-used 1039 // conns at the end. 1040 copy(pconns[i:], pconns[i+1:]) 1041 t.idleConn[key] = pconns[:len(pconns)-1] 1042 removed = true 1043 break 1044 } 1045 } 1046 return removed 1047 } 1048 1049 func (t *Transport) setReqCanceler(r *Request, fn func(error)) { 1050 t.reqMu.Lock() 1051 defer t.reqMu.Unlock() 1052 if t.reqCanceler == nil { 1053 t.reqCanceler = make(map[*Request]func(error)) 1054 } 1055 if fn != nil { 1056 t.reqCanceler[r] = fn 1057 } else { 1058 delete(t.reqCanceler, r) 1059 } 1060 } 1061 1062 // replaceReqCanceler replaces an existing cancel function. If there is no cancel function 1063 // for the request, we don't set the function and return false. 1064 // Since CancelRequest will clear the canceler, we can use the return value to detect if 1065 // the request was canceled since the last setReqCancel call. 1066 func (t *Transport) replaceReqCanceler(r *Request, fn func(error)) bool { 1067 t.reqMu.Lock() 1068 defer t.reqMu.Unlock() 1069 _, ok := t.reqCanceler[r] 1070 if !ok { 1071 return false 1072 } 1073 if fn != nil { 1074 t.reqCanceler[r] = fn 1075 } else { 1076 delete(t.reqCanceler, r) 1077 } 1078 return true 1079 } 1080 1081 var zeroDialer net.Dialer 1082 1083 func (t *Transport) dial(ctx context.Context, network, addr string) (net.Conn, error) { 1084 if t.DialContext != nil { 1085 return t.DialContext(ctx, network, addr) 1086 } 1087 if t.Dial != nil { 1088 c, err := t.Dial(network, addr) 1089 if c == nil && err == nil { 1090 err = errors.New("net/http: Transport.Dial hook returned (nil, nil)") 1091 } 1092 return c, err 1093 } 1094 return zeroDialer.DialContext(ctx, network, addr) 1095 } 1096 1097 // A wantConn records state about a wanted connection 1098 // (that is, an active call to getConn). 1099 // The conn may be gotten by dialing or by finding an idle connection, 1100 // or a cancellation may make the conn no longer wanted. 1101 // These three options are racing against each other and use 1102 // wantConn to coordinate and agree about the winning outcome. 1103 type wantConn struct { 1104 cm connectMethod 1105 key connectMethodKey // cm.key() 1106 ctx context.Context // context for dial 1107 ready chan struct{} // closed when pc, err pair is delivered 1108 1109 // hooks for testing to know when dials are done 1110 // beforeDial is called in the getConn goroutine when the dial is queued. 1111 // afterDial is called when the dial is completed or cancelled. 1112 beforeDial func() 1113 afterDial func() 1114 1115 mu sync.Mutex // protects pc, err, close(ready) 1116 pc *persistConn 1117 err error 1118 } 1119 1120 // waiting reports whether w is still waiting for an answer (connection or error). 1121 func (w *wantConn) waiting() bool { 1122 select { 1123 case <-w.ready: 1124 return false 1125 default: 1126 return true 1127 } 1128 } 1129 1130 // tryDeliver attempts to deliver pc, err to w and reports whether it succeeded. 1131 func (w *wantConn) tryDeliver(pc *persistConn, err error) bool { 1132 w.mu.Lock() 1133 defer w.mu.Unlock() 1134 1135 if w.pc != nil || w.err != nil { 1136 return false 1137 } 1138 1139 w.pc = pc 1140 w.err = err 1141 if w.pc == nil && w.err == nil { 1142 panic("net/http: internal error: misuse of tryDeliver") 1143 } 1144 close(w.ready) 1145 return true 1146 } 1147 1148 // cancel marks w as no longer wanting a result (for example, due to cancellation). 1149 // If a connection has been delivered already, cancel returns it with t.putOrCloseIdleConn. 1150 func (w *wantConn) cancel(t *Transport, err error) { 1151 w.mu.Lock() 1152 if w.pc == nil && w.err == nil { 1153 close(w.ready) // catch misbehavior in future delivery 1154 } 1155 pc := w.pc 1156 w.pc = nil 1157 w.err = err 1158 w.mu.Unlock() 1159 1160 if pc != nil { 1161 t.putOrCloseIdleConn(pc) 1162 } 1163 } 1164 1165 // A wantConnQueue is a queue of wantConns. 1166 type wantConnQueue struct { 1167 // This is a queue, not a deque. 1168 // It is split into two stages - head[headPos:] and tail. 1169 // popFront is trivial (headPos++) on the first stage, and 1170 // pushBack is trivial (append) on the second stage. 1171 // If the first stage is empty, popFront can swap the 1172 // first and second stages to remedy the situation. 1173 // 1174 // This two-stage split is analogous to the use of two lists 1175 // in Okasaki's purely functional queue but without the 1176 // overhead of reversing the list when swapping stages. 1177 head []*wantConn 1178 headPos int 1179 tail []*wantConn 1180 } 1181 1182 // len returns the number of items in the queue. 1183 func (q *wantConnQueue) len() int { 1184 return len(q.head) - q.headPos + len(q.tail) 1185 } 1186 1187 // pushBack adds w to the back of the queue. 1188 func (q *wantConnQueue) pushBack(w *wantConn) { 1189 q.tail = append(q.tail, w) 1190 } 1191 1192 // popFront removes and returns the wantConn at the front of the queue. 1193 func (q *wantConnQueue) popFront() *wantConn { 1194 if q.headPos >= len(q.head) { 1195 if len(q.tail) == 0 { 1196 return nil 1197 } 1198 // Pick up tail as new head, clear tail. 1199 q.head, q.headPos, q.tail = q.tail, 0, q.head[:0] 1200 } 1201 w := q.head[q.headPos] 1202 q.head[q.headPos] = nil 1203 q.headPos++ 1204 return w 1205 } 1206 1207 // peekFront returns the wantConn at the front of the queue without removing it. 1208 func (q *wantConnQueue) peekFront() *wantConn { 1209 if q.headPos < len(q.head) { 1210 return q.head[q.headPos] 1211 } 1212 if len(q.tail) > 0 { 1213 return q.tail[0] 1214 } 1215 return nil 1216 } 1217 1218 // cleanFront pops any wantConns that are no longer waiting from the head of the 1219 // queue, reporting whether any were popped. 1220 func (q *wantConnQueue) cleanFront() (cleaned bool) { 1221 for { 1222 w := q.peekFront() 1223 if w == nil || w.waiting() { 1224 return cleaned 1225 } 1226 q.popFront() 1227 cleaned = true 1228 } 1229 } 1230 1231 func (t *Transport) customDialTLS(ctx context.Context, network, addr string) (conn net.Conn, err error) { 1232 if t.DialTLSContext != nil { 1233 conn, err = t.DialTLSContext(ctx, network, addr) 1234 } else { 1235 conn, err = t.DialTLS(network, addr) 1236 } 1237 if conn == nil && err == nil { 1238 err = errors.New("net/http: Transport.DialTLS or DialTLSContext returned (nil, nil)") 1239 } 1240 return 1241 } 1242 1243 // getConn dials and creates a new persistConn to the target as 1244 // specified in the connectMethod. This includes doing a proxy CONNECT 1245 // and/or setting up TLS. If this doesn't return an error, the persistConn 1246 // is ready to write requests to. 1247 func (t *Transport) getConn(treq *transportRequest, cm connectMethod) (pc *persistConn, err error) { 1248 req := treq.Request 1249 trace := treq.trace 1250 ctx := req.Context() 1251 if trace != nil && trace.GetConn != nil { 1252 trace.GetConn(cm.addr()) 1253 } 1254 1255 w := &wantConn{ 1256 cm: cm, 1257 key: cm.key(), 1258 ctx: ctx, 1259 ready: make(chan struct{}, 1), 1260 beforeDial: testHookPrePendingDial, 1261 afterDial: testHookPostPendingDial, 1262 } 1263 defer func() { 1264 if err != nil { 1265 w.cancel(t, err) 1266 } 1267 }() 1268 1269 // Queue for idle connection. 1270 if delivered := t.queueForIdleConn(w); delivered { 1271 pc := w.pc 1272 // Trace only for HTTP/1. 1273 // HTTP/2 calls trace.GotConn itself. 1274 if pc.alt == nil && trace != nil && trace.GotConn != nil { 1275 trace.GotConn(pc.gotIdleConnTrace(pc.idleAt)) 1276 } 1277 // set request canceler to some non-nil function so we 1278 // can detect whether it was cleared between now and when 1279 // we enter roundTrip 1280 t.setReqCanceler(req, func(error) {}) 1281 return pc, nil 1282 } 1283 1284 cancelc := make(chan error, 1) 1285 t.setReqCanceler(req, func(err error) { cancelc <- err }) 1286 1287 // Queue for permission to dial. 1288 t.queueForDial(w) 1289 1290 // Wait for completion or cancellation. 1291 select { 1292 case <-w.ready: 1293 // Trace success but only for HTTP/1. 1294 // HTTP/2 calls trace.GotConn itself. 1295 if w.pc != nil && w.pc.alt == nil && trace != nil && trace.GotConn != nil { 1296 trace.GotConn(httptrace.GotConnInfo{Conn: w.pc.conn, Reused: w.pc.isReused()}) 1297 } 1298 if w.err != nil { 1299 // If the request has been cancelled, that's probably 1300 // what caused w.err; if so, prefer to return the 1301 // cancellation error (see golang.org/issue/16049). 1302 select { 1303 case <-req.Cancel: 1304 return nil, errRequestCanceledConn 1305 case <-req.Context().Done(): 1306 return nil, req.Context().Err() 1307 case err := <-cancelc: 1308 if err == errRequestCanceled { 1309 err = errRequestCanceledConn 1310 } 1311 return nil, err 1312 default: 1313 // return below 1314 } 1315 } 1316 return w.pc, w.err 1317 case <-req.Cancel: 1318 return nil, errRequestCanceledConn 1319 case <-req.Context().Done(): 1320 return nil, req.Context().Err() 1321 case err := <-cancelc: 1322 if err == errRequestCanceled { 1323 err = errRequestCanceledConn 1324 } 1325 return nil, err 1326 } 1327 } 1328 1329 // queueForDial queues w to wait for permission to begin dialing. 1330 // Once w receives permission to dial, it will do so in a separate goroutine. 1331 func (t *Transport) queueForDial(w *wantConn) { 1332 w.beforeDial() 1333 if t.MaxConnsPerHost <= 0 { 1334 go t.dialConnFor(w) 1335 return 1336 } 1337 1338 t.connsPerHostMu.Lock() 1339 defer t.connsPerHostMu.Unlock() 1340 1341 if n := t.connsPerHost[w.key]; n < t.MaxConnsPerHost { 1342 if t.connsPerHost == nil { 1343 t.connsPerHost = make(map[connectMethodKey]int) 1344 } 1345 t.connsPerHost[w.key] = n + 1 1346 go t.dialConnFor(w) 1347 return 1348 } 1349 1350 if t.connsPerHostWait == nil { 1351 t.connsPerHostWait = make(map[connectMethodKey]wantConnQueue) 1352 } 1353 q := t.connsPerHostWait[w.key] 1354 q.cleanFront() 1355 q.pushBack(w) 1356 t.connsPerHostWait[w.key] = q 1357 } 1358 1359 // dialConnFor dials on behalf of w and delivers the result to w. 1360 // dialConnFor has received permission to dial w.cm and is counted in t.connCount[w.cm.key()]. 1361 // If the dial is cancelled or unsuccessful, dialConnFor decrements t.connCount[w.cm.key()]. 1362 func (t *Transport) dialConnFor(w *wantConn) { 1363 defer w.afterDial() 1364 1365 pc, err := t.dialConn(w.ctx, w.cm) 1366 delivered := w.tryDeliver(pc, err) 1367 if err == nil && (!delivered || pc.alt != nil) { 1368 // pconn was not passed to w, 1369 // or it is HTTP/2 and can be shared. 1370 // Add to the idle connection pool. 1371 t.putOrCloseIdleConn(pc) 1372 } 1373 if err != nil { 1374 t.decConnsPerHost(w.key) 1375 } 1376 } 1377 1378 // decConnsPerHost decrements the per-host connection count for key, 1379 // which may in turn give a different waiting goroutine permission to dial. 1380 func (t *Transport) decConnsPerHost(key connectMethodKey) { 1381 if t.MaxConnsPerHost <= 0 { 1382 return 1383 } 1384 1385 t.connsPerHostMu.Lock() 1386 defer t.connsPerHostMu.Unlock() 1387 n := t.connsPerHost[key] 1388 if n == 0 { 1389 // Shouldn't happen, but if it does, the counting is buggy and could 1390 // easily lead to a silent deadlock, so report the problem loudly. 1391 panic("net/http: internal error: connCount underflow") 1392 } 1393 1394 // Can we hand this count to a goroutine still waiting to dial? 1395 // (Some goroutines on the wait list may have timed out or 1396 // gotten a connection another way. If they're all gone, 1397 // we don't want to kick off any spurious dial operations.) 1398 if q := t.connsPerHostWait[key]; q.len() > 0 { 1399 done := false 1400 for q.len() > 0 { 1401 w := q.popFront() 1402 if w.waiting() { 1403 go t.dialConnFor(w) 1404 done = true 1405 break 1406 } 1407 } 1408 if q.len() == 0 { 1409 delete(t.connsPerHostWait, key) 1410 } else { 1411 // q is a value (like a slice), so we have to store 1412 // the updated q back into the map. 1413 t.connsPerHostWait[key] = q 1414 } 1415 if done { 1416 return 1417 } 1418 } 1419 1420 // Otherwise, decrement the recorded count. 1421 if n--; n == 0 { 1422 delete(t.connsPerHost, key) 1423 } else { 1424 t.connsPerHost[key] = n 1425 } 1426 } 1427 1428 // Add TLS to a persistent connection, i.e. negotiate a TLS session. If pconn is already a TLS 1429 // tunnel, this function establishes a nested TLS session inside the encrypted channel. 1430 // The remote endpoint's name may be overridden by TLSClientConfig.ServerName. 1431 func (pconn *persistConn) addTLS(name string, trace *httptrace.ClientTrace) error { 1432 // Initiate TLS and check remote host name against certificate. 1433 cfg := cloneTLSConfig(pconn.t.TLSClientConfig) 1434 if cfg.ServerName == "" { 1435 cfg.ServerName = name 1436 } 1437 if pconn.cacheKey.onlyH1 { 1438 cfg.NextProtos = nil 1439 } 1440 plainConn := pconn.conn 1441 tlsConn := tls.Client(plainConn, cfg) 1442 errc := make(chan error, 2) 1443 var timer *time.Timer // for canceling TLS handshake 1444 if d := pconn.t.TLSHandshakeTimeout; d != 0 { 1445 timer = time.AfterFunc(d, func() { 1446 errc <- tlsHandshakeTimeoutError{} 1447 }) 1448 } 1449 go func() { 1450 if trace != nil && trace.TLSHandshakeStart != nil { 1451 trace.TLSHandshakeStart() 1452 } 1453 err := tlsConn.Handshake() 1454 if timer != nil { 1455 timer.Stop() 1456 } 1457 errc <- err 1458 }() 1459 if err := <-errc; err != nil { 1460 plainConn.Close() 1461 if trace != nil && trace.TLSHandshakeDone != nil { 1462 trace.TLSHandshakeDone(tls.ConnectionState{}, err) 1463 } 1464 return err 1465 } 1466 cs := tlsConn.ConnectionState() 1467 if trace != nil && trace.TLSHandshakeDone != nil { 1468 trace.TLSHandshakeDone(cs, nil) 1469 } 1470 pconn.tlsState = &cs 1471 pconn.conn = tlsConn 1472 return nil 1473 } 1474 1475 func (t *Transport) dialConn(ctx context.Context, cm connectMethod) (pconn *persistConn, err error) { 1476 pconn = &persistConn{ 1477 t: t, 1478 cacheKey: cm.key(), 1479 reqch: make(chan requestAndChan, 1), 1480 writech: make(chan writeRequest, 1), 1481 closech: make(chan struct{}), 1482 writeErrCh: make(chan error, 1), 1483 writeLoopDone: make(chan struct{}), 1484 } 1485 trace := httptrace.ContextClientTrace(ctx) 1486 wrapErr := func(err error) error { 1487 if cm.proxyURL != nil { 1488 // Return a typed error, per Issue 16997 1489 return &net.OpError{Op: "proxyconnect", Net: "tcp", Err: err} 1490 } 1491 return err 1492 } 1493 if cm.scheme() == "https" && t.hasCustomTLSDialer() { 1494 var err error 1495 pconn.conn, err = t.customDialTLS(ctx, "tcp", cm.addr()) 1496 if err != nil { 1497 return nil, wrapErr(err) 1498 } 1499 if tc, ok := pconn.conn.(*tls.Conn); ok { 1500 // Handshake here, in case DialTLS didn't. TLSNextProto below 1501 // depends on it for knowing the connection state. 1502 if trace != nil && trace.TLSHandshakeStart != nil { 1503 trace.TLSHandshakeStart() 1504 } 1505 if err := tc.Handshake(); err != nil { 1506 go pconn.conn.Close() 1507 if trace != nil && trace.TLSHandshakeDone != nil { 1508 trace.TLSHandshakeDone(tls.ConnectionState{}, err) 1509 } 1510 return nil, err 1511 } 1512 cs := tc.ConnectionState() 1513 if trace != nil && trace.TLSHandshakeDone != nil { 1514 trace.TLSHandshakeDone(cs, nil) 1515 } 1516 pconn.tlsState = &cs 1517 } 1518 } else { 1519 conn, err := t.dial(ctx, "tcp", cm.addr()) 1520 if err != nil { 1521 return nil, wrapErr(err) 1522 } 1523 pconn.conn = conn 1524 if cm.scheme() == "https" { 1525 var firstTLSHost string 1526 if firstTLSHost, _, err = net.SplitHostPort(cm.addr()); err != nil { 1527 return nil, wrapErr(err) 1528 } 1529 if err = pconn.addTLS(firstTLSHost, trace); err != nil { 1530 return nil, wrapErr(err) 1531 } 1532 } 1533 } 1534 1535 // Proxy setup. 1536 switch { 1537 case cm.proxyURL == nil: 1538 // Do nothing. Not using a proxy. 1539 case cm.proxyURL.Scheme == "socks5": 1540 conn := pconn.conn 1541 d := socksNewDialer("tcp", conn.RemoteAddr().String()) 1542 if u := cm.proxyURL.User; u != nil { 1543 auth := &socksUsernamePassword{ 1544 Username: u.Username(), 1545 } 1546 auth.Password, _ = u.Password() 1547 d.AuthMethods = []socksAuthMethod{ 1548 socksAuthMethodNotRequired, 1549 socksAuthMethodUsernamePassword, 1550 } 1551 d.Authenticate = auth.Authenticate 1552 } 1553 if _, err := d.DialWithConn(ctx, conn, "tcp", cm.targetAddr); err != nil { 1554 conn.Close() 1555 return nil, err 1556 } 1557 case cm.targetScheme == "http": 1558 pconn.isProxy = true 1559 if pa := cm.proxyAuth(); pa != "" { 1560 pconn.mutateHeaderFunc = func(h Header) { 1561 h.Set("Proxy-Authorization", pa) 1562 } 1563 } 1564 case cm.targetScheme == "https": 1565 conn := pconn.conn 1566 hdr := t.ProxyConnectHeader 1567 if hdr == nil { 1568 hdr = make(Header) 1569 } 1570 if pa := cm.proxyAuth(); pa != "" { 1571 hdr = hdr.Clone() 1572 hdr.Set("Proxy-Authorization", pa) 1573 } 1574 connectReq := &Request{ 1575 Method: "CONNECT", 1576 URL: &url.URL{Opaque: cm.targetAddr}, 1577 Host: cm.targetAddr, 1578 Header: hdr, 1579 } 1580 1581 // If there's no done channel (no deadline or cancellation 1582 // from the caller possible), at least set some (long) 1583 // timeout here. This will make sure we don't block forever 1584 // and leak a goroutine if the connection stops replying 1585 // after the TCP connect. 1586 connectCtx := ctx 1587 if ctx.Done() == nil { 1588 newCtx, cancel := context.WithTimeout(ctx, 1*time.Minute) 1589 defer cancel() 1590 connectCtx = newCtx 1591 } 1592 1593 didReadResponse := make(chan struct{}) // closed after CONNECT write+read is done or fails 1594 var ( 1595 resp *Response 1596 err error // write or read error 1597 ) 1598 // Write the CONNECT request & read the response. 1599 go func() { 1600 defer close(didReadResponse) 1601 err = connectReq.Write(conn) 1602 if err != nil { 1603 return 1604 } 1605 // Okay to use and discard buffered reader here, because 1606 // TLS server will not speak until spoken to. 1607 br := bufio.NewReader(conn) 1608 resp, err = ReadResponse(br, connectReq) 1609 }() 1610 select { 1611 case <-connectCtx.Done(): 1612 conn.Close() 1613 <-didReadResponse 1614 return nil, connectCtx.Err() 1615 case <-didReadResponse: 1616 // resp or err now set 1617 } 1618 if err != nil { 1619 conn.Close() 1620 return nil, err 1621 } 1622 if resp.StatusCode != 200 { 1623 f := strings.SplitN(resp.Status, " ", 2) 1624 conn.Close() 1625 if len(f) < 2 { 1626 return nil, errors.New("unknown status code") 1627 } 1628 return nil, errors.New(f[1]) 1629 } 1630 } 1631 1632 if cm.proxyURL != nil && cm.targetScheme == "https" { 1633 if err := pconn.addTLS(cm.tlsHost(), trace); err != nil { 1634 return nil, err 1635 } 1636 } 1637 1638 if s := pconn.tlsState; s != nil && s.NegotiatedProtocolIsMutual && s.NegotiatedProtocol != "" { 1639 if next, ok := t.TLSNextProto[s.NegotiatedProtocol]; ok { 1640 return &persistConn{t: t, cacheKey: pconn.cacheKey, alt: next(cm.targetAddr, pconn.conn.(*tls.Conn))}, nil 1641 } 1642 } 1643 1644 pconn.br = bufio.NewReaderSize(pconn, t.readBufferSize()) 1645 pconn.bw = bufio.NewWriterSize(persistConnWriter{pconn}, t.writeBufferSize()) 1646 1647 go pconn.readLoop() 1648 go pconn.writeLoop() 1649 return pconn, nil 1650 } 1651 1652 // persistConnWriter is the io.Writer written to by pc.bw. 1653 // It accumulates the number of bytes written to the underlying conn, 1654 // so the retry logic can determine whether any bytes made it across 1655 // the wire. 1656 // This is exactly 1 pointer field wide so it can go into an interface 1657 // without allocation. 1658 type persistConnWriter struct { 1659 pc *persistConn 1660 } 1661 1662 func (w persistConnWriter) Write(p []byte) (n int, err error) { 1663 n, err = w.pc.conn.Write(p) 1664 w.pc.nwrite += int64(n) 1665 return 1666 } 1667 1668 // ReadFrom exposes persistConnWriter's underlying Conn to io.Copy and if 1669 // the Conn implements io.ReaderFrom, it can take advantage of optimizations 1670 // such as sendfile. 1671 func (w persistConnWriter) ReadFrom(r io.Reader) (n int64, err error) { 1672 n, err = io.Copy(w.pc.conn, r) 1673 w.pc.nwrite += n 1674 return 1675 } 1676 1677 var _ io.ReaderFrom = (*persistConnWriter)(nil) 1678 1679 // connectMethod is the map key (in its String form) for keeping persistent 1680 // TCP connections alive for subsequent HTTP requests. 1681 // 1682 // A connect method may be of the following types: 1683 // 1684 // connectMethod.key().String() Description 1685 // ------------------------------ ------------------------- 1686 // |http|foo.com http directly to server, no proxy 1687 // |https|foo.com https directly to server, no proxy 1688 // |https,h1|foo.com https directly to server w/o HTTP/2, no proxy 1689 // http://proxy.com|https|foo.com http to proxy, then CONNECT to foo.com 1690 // http://proxy.com|http http to proxy, http to anywhere after that 1691 // socks5://proxy.com|http|foo.com socks5 to proxy, then http to foo.com 1692 // socks5://proxy.com|https|foo.com socks5 to proxy, then https to foo.com 1693 // https://proxy.com|https|foo.com https to proxy, then CONNECT to foo.com 1694 // https://proxy.com|http https to proxy, http to anywhere after that 1695 // 1696 type connectMethod struct { 1697 proxyURL *url.URL // nil for no proxy, else full proxy URL 1698 targetScheme string // "http" or "https" 1699 // If proxyURL specifies an http or https proxy, and targetScheme is http (not https), 1700 // then targetAddr is not included in the connect method key, because the socket can 1701 // be reused for different targetAddr values. 1702 targetAddr string 1703 onlyH1 bool // whether to disable HTTP/2 and force HTTP/1 1704 } 1705 1706 func (cm *connectMethod) key() connectMethodKey { 1707 proxyStr := "" 1708 targetAddr := cm.targetAddr 1709 if cm.proxyURL != nil { 1710 proxyStr = cm.proxyURL.String() 1711 if (cm.proxyURL.Scheme == "http" || cm.proxyURL.Scheme == "https") && cm.targetScheme == "http" { 1712 targetAddr = "" 1713 } 1714 } 1715 return connectMethodKey{ 1716 proxy: proxyStr, 1717 scheme: cm.targetScheme, 1718 addr: targetAddr, 1719 onlyH1: cm.onlyH1, 1720 } 1721 } 1722 1723 // scheme returns the first hop scheme: http, https, or socks5 1724 func (cm *connectMethod) scheme() string { 1725 if cm.proxyURL != nil { 1726 return cm.proxyURL.Scheme 1727 } 1728 return cm.targetScheme 1729 } 1730 1731 // addr returns the first hop "host:port" to which we need to TCP connect. 1732 func (cm *connectMethod) addr() string { 1733 if cm.proxyURL != nil { 1734 return canonicalAddr(cm.proxyURL) 1735 } 1736 return cm.targetAddr 1737 } 1738 1739 // tlsHost returns the host name to match against the peer's 1740 // TLS certificate. 1741 func (cm *connectMethod) tlsHost() string { 1742 h := cm.targetAddr 1743 if hasPort(h) { 1744 h = h[:strings.LastIndex(h, ":")] 1745 } 1746 return h 1747 } 1748 1749 // connectMethodKey is the map key version of connectMethod, with a 1750 // stringified proxy URL (or the empty string) instead of a pointer to 1751 // a URL. 1752 type connectMethodKey struct { 1753 proxy, scheme, addr string 1754 onlyH1 bool 1755 } 1756 1757 func (k connectMethodKey) String() string { 1758 // Only used by tests. 1759 var h1 string 1760 if k.onlyH1 { 1761 h1 = ",h1" 1762 } 1763 return fmt.Sprintf("%s|%s%s|%s", k.proxy, k.scheme, h1, k.addr) 1764 } 1765 1766 // persistConn wraps a connection, usually a persistent one 1767 // (but may be used for non-keep-alive requests as well) 1768 type persistConn struct { 1769 // alt optionally specifies the TLS NextProto RoundTripper. 1770 // This is used for HTTP/2 today and future protocols later. 1771 // If it's non-nil, the rest of the fields are unused. 1772 alt RoundTripper 1773 1774 t *Transport 1775 cacheKey connectMethodKey 1776 conn net.Conn 1777 tlsState *tls.ConnectionState 1778 br *bufio.Reader // from conn 1779 bw *bufio.Writer // to conn 1780 nwrite int64 // bytes written 1781 reqch chan requestAndChan // written by roundTrip; read by readLoop 1782 writech chan writeRequest // written by roundTrip; read by writeLoop 1783 closech chan struct{} // closed when conn closed 1784 isProxy bool 1785 sawEOF bool // whether we've seen EOF from conn; owned by readLoop 1786 readLimit int64 // bytes allowed to be read; owned by readLoop 1787 // writeErrCh passes the request write error (usually nil) 1788 // from the writeLoop goroutine to the readLoop which passes 1789 // it off to the res.Body reader, which then uses it to decide 1790 // whether or not a connection can be reused. Issue 7569. 1791 writeErrCh chan error 1792 1793 writeLoopDone chan struct{} // closed when write loop ends 1794 1795 // Both guarded by Transport.idleMu: 1796 idleAt time.Time // time it last become idle 1797 idleTimer *time.Timer // holding an AfterFunc to close it 1798 1799 mu sync.Mutex // guards following fields 1800 numExpectedResponses int 1801 closed error // set non-nil when conn is closed, before closech is closed 1802 canceledErr error // set non-nil if conn is canceled 1803 broken bool // an error has happened on this connection; marked broken so it's not reused. 1804 reused bool // whether conn has had successful request/response and is being reused. 1805 // mutateHeaderFunc is an optional func to modify extra 1806 // headers on each outbound request before it's written. (the 1807 // original Request given to RoundTrip is not modified) 1808 mutateHeaderFunc func(Header) 1809 } 1810 1811 func (pc *persistConn) maxHeaderResponseSize() int64 { 1812 if v := pc.t.MaxResponseHeaderBytes; v != 0 { 1813 return v 1814 } 1815 return 10 << 20 // conservative default; same as http2 1816 } 1817 1818 func (pc *persistConn) Read(p []byte) (n int, err error) { 1819 if pc.readLimit <= 0 { 1820 return 0, fmt.Errorf("read limit of %d bytes exhausted", pc.maxHeaderResponseSize()) 1821 } 1822 if int64(len(p)) > pc.readLimit { 1823 p = p[:pc.readLimit] 1824 } 1825 n, err = pc.conn.Read(p) 1826 if err == io.EOF { 1827 pc.sawEOF = true 1828 } 1829 pc.readLimit -= int64(n) 1830 return 1831 } 1832 1833 // isBroken reports whether this connection is in a known broken state. 1834 func (pc *persistConn) isBroken() bool { 1835 pc.mu.Lock() 1836 b := pc.closed != nil 1837 pc.mu.Unlock() 1838 return b 1839 } 1840 1841 // canceled returns non-nil if the connection was closed due to 1842 // CancelRequest or due to context cancellation. 1843 func (pc *persistConn) canceled() error { 1844 pc.mu.Lock() 1845 defer pc.mu.Unlock() 1846 return pc.canceledErr 1847 } 1848 1849 // isReused reports whether this connection has been used before. 1850 func (pc *persistConn) isReused() bool { 1851 pc.mu.Lock() 1852 r := pc.reused 1853 pc.mu.Unlock() 1854 return r 1855 } 1856 1857 func (pc *persistConn) gotIdleConnTrace(idleAt time.Time) (t httptrace.GotConnInfo) { 1858 pc.mu.Lock() 1859 defer pc.mu.Unlock() 1860 t.Reused = pc.reused 1861 t.Conn = pc.conn 1862 t.WasIdle = true 1863 if !idleAt.IsZero() { 1864 t.IdleTime = time.Since(idleAt) 1865 } 1866 return 1867 } 1868 1869 func (pc *persistConn) cancelRequest(err error) { 1870 pc.mu.Lock() 1871 defer pc.mu.Unlock() 1872 pc.canceledErr = err 1873 pc.closeLocked(errRequestCanceled) 1874 } 1875 1876 // closeConnIfStillIdle closes the connection if it's still sitting idle. 1877 // This is what's called by the persistConn's idleTimer, and is run in its 1878 // own goroutine. 1879 func (pc *persistConn) closeConnIfStillIdle() { 1880 t := pc.t 1881 t.idleMu.Lock() 1882 defer t.idleMu.Unlock() 1883 if _, ok := t.idleLRU.m[pc]; !ok { 1884 // Not idle. 1885 return 1886 } 1887 t.removeIdleConnLocked(pc) 1888 pc.close(errIdleConnTimeout) 1889 } 1890 1891 // mapRoundTripError returns the appropriate error value for 1892 // persistConn.roundTrip. 1893 // 1894 // The provided err is the first error that (*persistConn).roundTrip 1895 // happened to receive from its select statement. 1896 // 1897 // The startBytesWritten value should be the value of pc.nwrite before the roundTrip 1898 // started writing the request. 1899 func (pc *persistConn) mapRoundTripError(req *transportRequest, startBytesWritten int64, err error) error { 1900 if err == nil { 1901 return nil 1902 } 1903 1904 // If the request was canceled, that's better than network 1905 // failures that were likely the result of tearing down the 1906 // connection. 1907 if cerr := pc.canceled(); cerr != nil { 1908 return cerr 1909 } 1910 1911 // See if an error was set explicitly. 1912 req.mu.Lock() 1913 reqErr := req.err 1914 req.mu.Unlock() 1915 if reqErr != nil { 1916 return reqErr 1917 } 1918 1919 if err == errServerClosedIdle { 1920 // Don't decorate 1921 return err 1922 } 1923 1924 if _, ok := err.(transportReadFromServerError); ok { 1925 // Don't decorate 1926 return err 1927 } 1928 if pc.isBroken() { 1929 <-pc.writeLoopDone 1930 if pc.nwrite == startBytesWritten { 1931 return nothingWrittenError{err} 1932 } 1933 return fmt.Errorf("net/http: HTTP/1.x transport connection broken: %v", err) 1934 } 1935 return err 1936 } 1937 1938 // errCallerOwnsConn is an internal sentinel error used when we hand 1939 // off a writable response.Body to the caller. We use this to prevent 1940 // closing a net.Conn that is now owned by the caller. 1941 var errCallerOwnsConn = errors.New("read loop ending; caller owns writable underlying conn") 1942 1943 func (pc *persistConn) readLoop() { 1944 closeErr := errReadLoopExiting // default value, if not changed below 1945 defer func() { 1946 pc.close(closeErr) 1947 pc.t.removeIdleConn(pc) 1948 }() 1949 1950 tryPutIdleConn := func(trace *httptrace.ClientTrace) bool { 1951 if err := pc.t.tryPutIdleConn(pc); err != nil { 1952 closeErr = err 1953 if trace != nil && trace.PutIdleConn != nil && err != errKeepAlivesDisabled { 1954 trace.PutIdleConn(err) 1955 } 1956 return false 1957 } 1958 if trace != nil && trace.PutIdleConn != nil { 1959 trace.PutIdleConn(nil) 1960 } 1961 return true 1962 } 1963 1964 // eofc is used to block caller goroutines reading from Response.Body 1965 // at EOF until this goroutines has (potentially) added the connection 1966 // back to the idle pool. 1967 eofc := make(chan struct{}) 1968 defer close(eofc) // unblock reader on errors 1969 1970 // Read this once, before loop starts. (to avoid races in tests) 1971 testHookMu.Lock() 1972 testHookReadLoopBeforeNextRead := testHookReadLoopBeforeNextRead 1973 testHookMu.Unlock() 1974 1975 alive := true 1976 for alive { 1977 pc.readLimit = pc.maxHeaderResponseSize() 1978 _, err := pc.br.Peek(1) 1979 1980 pc.mu.Lock() 1981 if pc.numExpectedResponses == 0 { 1982 pc.readLoopPeekFailLocked(err) 1983 pc.mu.Unlock() 1984 return 1985 } 1986 pc.mu.Unlock() 1987 1988 rc := <-pc.reqch 1989 trace := httptrace.ContextClientTrace(rc.req.Context()) 1990 1991 var resp *Response 1992 if err == nil { 1993 resp, err = pc.readResponse(rc, trace) 1994 } else { 1995 err = transportReadFromServerError{err} 1996 closeErr = err 1997 } 1998 1999 if err != nil { 2000 if pc.readLimit <= 0 { 2001 err = fmt.Errorf("net/http: server response headers exceeded %d bytes; aborted", pc.maxHeaderResponseSize()) 2002 } 2003 2004 select { 2005 case rc.ch <- responseAndError{err: err}: 2006 case <-rc.callerGone: 2007 return 2008 } 2009 return 2010 } 2011 pc.readLimit = maxInt64 // effectively no limit for response bodies 2012 2013 pc.mu.Lock() 2014 pc.numExpectedResponses-- 2015 pc.mu.Unlock() 2016 2017 bodyWritable := resp.bodyIsWritable() 2018 hasBody := rc.req.Method != "HEAD" && resp.ContentLength != 0 2019 2020 if resp.Close || rc.req.Close || resp.StatusCode <= 199 || bodyWritable { 2021 // Don't do keep-alive on error if either party requested a close 2022 // or we get an unexpected informational (1xx) response. 2023 // StatusCode 100 is already handled above. 2024 alive = false 2025 } 2026 2027 if !hasBody || bodyWritable { 2028 pc.t.setReqCanceler(rc.req, nil) 2029 2030 // Put the idle conn back into the pool before we send the response 2031 // so if they process it quickly and make another request, they'll 2032 // get this same conn. But we use the unbuffered channel 'rc' 2033 // to guarantee that persistConn.roundTrip got out of its select 2034 // potentially waiting for this persistConn to close. 2035 // but after 2036 alive = alive && 2037 !pc.sawEOF && 2038 pc.wroteRequest() && 2039 tryPutIdleConn(trace) 2040 2041 if bodyWritable { 2042 closeErr = errCallerOwnsConn 2043 } 2044 2045 select { 2046 case rc.ch <- responseAndError{res: resp}: 2047 case <-rc.callerGone: 2048 return 2049 } 2050 2051 // Now that they've read from the unbuffered channel, they're safely 2052 // out of the select that also waits on this goroutine to die, so 2053 // we're allowed to exit now if needed (if alive is false) 2054 testHookReadLoopBeforeNextRead() 2055 continue 2056 } 2057 2058 waitForBodyRead := make(chan bool, 2) 2059 body := &bodyEOFSignal{ 2060 body: resp.Body, 2061 earlyCloseFn: func() error { 2062 waitForBodyRead <- false 2063 <-eofc // will be closed by deferred call at the end of the function 2064 return nil 2065 2066 }, 2067 fn: func(err error) error { 2068 isEOF := err == io.EOF 2069 waitForBodyRead <- isEOF 2070 if isEOF { 2071 <-eofc // see comment above eofc declaration 2072 } else if err != nil { 2073 if cerr := pc.canceled(); cerr != nil { 2074 return cerr 2075 } 2076 } 2077 return err 2078 }, 2079 } 2080 2081 resp.Body = body 2082 if rc.addedGzip && strings.EqualFold(resp.Header.Get("Content-Encoding"), "gzip") { 2083 resp.Body = &gzipReader{body: body} 2084 resp.Header.Del("Content-Encoding") 2085 resp.Header.Del("Content-Length") 2086 resp.ContentLength = -1 2087 resp.Uncompressed = true 2088 } 2089 2090 select { 2091 case rc.ch <- responseAndError{res: resp}: 2092 case <-rc.callerGone: 2093 return 2094 } 2095 2096 // Before looping back to the top of this function and peeking on 2097 // the bufio.Reader, wait for the caller goroutine to finish 2098 // reading the response body. (or for cancellation or death) 2099 select { 2100 case bodyEOF := <-waitForBodyRead: 2101 pc.t.setReqCanceler(rc.req, nil) // before pc might return to idle pool 2102 alive = alive && 2103 bodyEOF && 2104 !pc.sawEOF && 2105 pc.wroteRequest() && 2106 tryPutIdleConn(trace) 2107 if bodyEOF { 2108 eofc <- struct{}{} 2109 } 2110 case <-rc.req.Cancel: 2111 alive = false 2112 pc.t.CancelRequest(rc.req) 2113 case <-rc.req.Context().Done(): 2114 alive = false 2115 pc.t.cancelRequest(rc.req, rc.req.Context().Err()) 2116 case <-pc.closech: 2117 alive = false 2118 } 2119 2120 testHookReadLoopBeforeNextRead() 2121 } 2122 } 2123 2124 func (pc *persistConn) readLoopPeekFailLocked(peekErr error) { 2125 if pc.closed != nil { 2126 return 2127 } 2128 if n := pc.br.Buffered(); n > 0 { 2129 buf, _ := pc.br.Peek(n) 2130 if is408Message(buf) { 2131 pc.closeLocked(errServerClosedIdle) 2132 return 2133 } else { 2134 log.Printf("Unsolicited response received on idle HTTP channel starting with %q; err=%v", buf, peekErr) 2135 } 2136 } 2137 if peekErr == io.EOF { 2138 // common case. 2139 pc.closeLocked(errServerClosedIdle) 2140 } else { 2141 pc.closeLocked(fmt.Errorf("readLoopPeekFailLocked: %v", peekErr)) 2142 } 2143 } 2144 2145 // is408Message reports whether buf has the prefix of an 2146 // HTTP 408 Request Timeout response. 2147 // See golang.org/issue/32310. 2148 func is408Message(buf []byte) bool { 2149 if len(buf) < len("HTTP/1.x 408") { 2150 return false 2151 } 2152 if string(buf[:7]) != "HTTP/1." { 2153 return false 2154 } 2155 return string(buf[8:12]) == " 408" 2156 } 2157 2158 // readResponse reads an HTTP response (or two, in the case of "Expect: 2159 // 100-continue") from the server. It returns the final non-100 one. 2160 // trace is optional. 2161 func (pc *persistConn) readResponse(rc requestAndChan, trace *httptrace.ClientTrace) (resp *Response, err error) { 2162 if trace != nil && trace.GotFirstResponseByte != nil { 2163 if peek, err := pc.br.Peek(1); err == nil && len(peek) == 1 { 2164 trace.GotFirstResponseByte() 2165 } 2166 } 2167 num1xx := 0 // number of informational 1xx headers received 2168 const max1xxResponses = 5 // arbitrary bound on number of informational responses 2169 2170 continueCh := rc.continueCh 2171 for { 2172 resp, err = ReadResponse(pc.br, rc.req) 2173 if err != nil { 2174 return 2175 } 2176 resCode := resp.StatusCode 2177 if continueCh != nil { 2178 if resCode == 100 { 2179 if trace != nil && trace.Got100Continue != nil { 2180 trace.Got100Continue() 2181 } 2182 continueCh <- struct{}{} 2183 continueCh = nil 2184 } else if resCode >= 200 { 2185 close(continueCh) 2186 continueCh = nil 2187 } 2188 } 2189 is1xx := 100 <= resCode && resCode <= 199 2190 // treat 101 as a terminal status, see issue 26161 2191 is1xxNonTerminal := is1xx && resCode != StatusSwitchingProtocols 2192 if is1xxNonTerminal { 2193 num1xx++ 2194 if num1xx > max1xxResponses { 2195 return nil, errors.New("net/http: too many 1xx informational responses") 2196 } 2197 pc.readLimit = pc.maxHeaderResponseSize() // reset the limit 2198 if trace != nil && trace.Got1xxResponse != nil { 2199 if err := trace.Got1xxResponse(resCode, textproto.MIMEHeader(resp.Header)); err != nil { 2200 return nil, err 2201 } 2202 } 2203 continue 2204 } 2205 break 2206 } 2207 if resp.isProtocolSwitch() { 2208 resp.Body = newReadWriteCloserBody(pc.br, pc.conn) 2209 } 2210 2211 resp.TLS = pc.tlsState 2212 return 2213 } 2214 2215 // waitForContinue returns the function to block until 2216 // any response, timeout or connection close. After any of them, 2217 // the function returns a bool which indicates if the body should be sent. 2218 func (pc *persistConn) waitForContinue(continueCh <-chan struct{}) func() bool { 2219 if continueCh == nil { 2220 return nil 2221 } 2222 return func() bool { 2223 timer := time.NewTimer(pc.t.ExpectContinueTimeout) 2224 defer timer.Stop() 2225 2226 select { 2227 case _, ok := <-continueCh: 2228 return ok 2229 case <-timer.C: 2230 return true 2231 case <-pc.closech: 2232 return false 2233 } 2234 } 2235 } 2236 2237 func newReadWriteCloserBody(br *bufio.Reader, rwc io.ReadWriteCloser) io.ReadWriteCloser { 2238 body := &readWriteCloserBody{ReadWriteCloser: rwc} 2239 if br.Buffered() != 0 { 2240 body.br = br 2241 } 2242 return body 2243 } 2244 2245 // readWriteCloserBody is the Response.Body type used when we want to 2246 // give users write access to the Body through the underlying 2247 // connection (TCP, unless using custom dialers). This is then 2248 // the concrete type for a Response.Body on the 101 Switching 2249 // Protocols response, as used by WebSockets, h2c, etc. 2250 type readWriteCloserBody struct { 2251 br *bufio.Reader // used until empty 2252 io.ReadWriteCloser 2253 } 2254 2255 func (b *readWriteCloserBody) Read(p []byte) (n int, err error) { 2256 if b.br != nil { 2257 if n := b.br.Buffered(); len(p) > n { 2258 p = p[:n] 2259 } 2260 n, err = b.br.Read(p) 2261 if b.br.Buffered() == 0 { 2262 b.br = nil 2263 } 2264 return n, err 2265 } 2266 return b.ReadWriteCloser.Read(p) 2267 } 2268 2269 // nothingWrittenError wraps a write errors which ended up writing zero bytes. 2270 type nothingWrittenError struct { 2271 error 2272 } 2273 2274 func (pc *persistConn) writeLoop() { 2275 defer close(pc.writeLoopDone) 2276 for { 2277 select { 2278 case wr := <-pc.writech: 2279 startBytesWritten := pc.nwrite 2280 err := wr.req.Request.write(pc.bw, pc.isProxy, wr.req.extra, pc.waitForContinue(wr.continueCh)) 2281 if bre, ok := err.(requestBodyReadError); ok { 2282 err = bre.error 2283 // Errors reading from the user's 2284 // Request.Body are high priority. 2285 // Set it here before sending on the 2286 // channels below or calling 2287 // pc.close() which tears town 2288 // connections and causes other 2289 // errors. 2290 wr.req.setError(err) 2291 } 2292 if err == nil { 2293 err = pc.bw.Flush() 2294 } 2295 if err != nil { 2296 wr.req.Request.closeBody() 2297 if pc.nwrite == startBytesWritten { 2298 err = nothingWrittenError{err} 2299 } 2300 } 2301 pc.writeErrCh <- err // to the body reader, which might recycle us 2302 wr.ch <- err // to the roundTrip function 2303 if err != nil { 2304 pc.close(err) 2305 return 2306 } 2307 case <-pc.closech: 2308 return 2309 } 2310 } 2311 } 2312 2313 // maxWriteWaitBeforeConnReuse is how long the a Transport RoundTrip 2314 // will wait to see the Request's Body.Write result after getting a 2315 // response from the server. See comments in (*persistConn).wroteRequest. 2316 const maxWriteWaitBeforeConnReuse = 50 * time.Millisecond 2317 2318 // wroteRequest is a check before recycling a connection that the previous write 2319 // (from writeLoop above) happened and was successful. 2320 func (pc *persistConn) wroteRequest() bool { 2321 select { 2322 case err := <-pc.writeErrCh: 2323 // Common case: the write happened well before the response, so 2324 // avoid creating a timer. 2325 return err == nil 2326 default: 2327 // Rare case: the request was written in writeLoop above but 2328 // before it could send to pc.writeErrCh, the reader read it 2329 // all, processed it, and called us here. In this case, give the 2330 // write goroutine a bit of time to finish its send. 2331 // 2332 // Less rare case: We also get here in the legitimate case of 2333 // Issue 7569, where the writer is still writing (or stalled), 2334 // but the server has already replied. In this case, we don't 2335 // want to wait too long, and we want to return false so this 2336 // connection isn't re-used. 2337 t := time.NewTimer(maxWriteWaitBeforeConnReuse) 2338 defer t.Stop() 2339 select { 2340 case err := <-pc.writeErrCh: 2341 return err == nil 2342 case <-t.C: 2343 return false 2344 } 2345 } 2346 } 2347 2348 // responseAndError is how the goroutine reading from an HTTP/1 server 2349 // communicates with the goroutine doing the RoundTrip. 2350 type responseAndError struct { 2351 res *Response // else use this response (see res method) 2352 err error 2353 } 2354 2355 type requestAndChan struct { 2356 req *Request 2357 ch chan responseAndError // unbuffered; always send in select on callerGone 2358 2359 // whether the Transport (as opposed to the user client code) 2360 // added the Accept-Encoding gzip header. If the Transport 2361 // set it, only then do we transparently decode the gzip. 2362 addedGzip bool 2363 2364 // Optional blocking chan for Expect: 100-continue (for send). 2365 // If the request has an "Expect: 100-continue" header and 2366 // the server responds 100 Continue, readLoop send a value 2367 // to writeLoop via this chan. 2368 continueCh chan<- struct{} 2369 2370 callerGone <-chan struct{} // closed when roundTrip caller has returned 2371 } 2372 2373 // A writeRequest is sent by the readLoop's goroutine to the 2374 // writeLoop's goroutine to write a request while the read loop 2375 // concurrently waits on both the write response and the server's 2376 // reply. 2377 type writeRequest struct { 2378 req *transportRequest 2379 ch chan<- error 2380 2381 // Optional blocking chan for Expect: 100-continue (for receive). 2382 // If not nil, writeLoop blocks sending request body until 2383 // it receives from this chan. 2384 continueCh <-chan struct{} 2385 } 2386 2387 type httpError struct { 2388 err string 2389 timeout bool 2390 } 2391 2392 func (e *httpError) Error() string { return e.err } 2393 func (e *httpError) Timeout() bool { return e.timeout } 2394 func (e *httpError) Temporary() bool { return true } 2395 2396 var errTimeout error = &httpError{err: "net/http: timeout awaiting response headers", timeout: true} 2397 2398 // errRequestCanceled is set to be identical to the one from h2 to facilitate 2399 // testing. 2400 var errRequestCanceled = http2errRequestCanceled 2401 var errRequestCanceledConn = errors.New("net/http: request canceled while waiting for connection") // TODO: unify? 2402 2403 func nop() {} 2404 2405 // testHooks. Always non-nil. 2406 var ( 2407 testHookEnterRoundTrip = nop 2408 testHookWaitResLoop = nop 2409 testHookRoundTripRetried = nop 2410 testHookPrePendingDial = nop 2411 testHookPostPendingDial = nop 2412 2413 testHookMu sync.Locker = fakeLocker{} // guards following 2414 testHookReadLoopBeforeNextRead = nop 2415 ) 2416 2417 func (pc *persistConn) roundTrip(req *transportRequest) (resp *Response, err error) { 2418 testHookEnterRoundTrip() 2419 if !pc.t.replaceReqCanceler(req.Request, pc.cancelRequest) { 2420 pc.t.putOrCloseIdleConn(pc) 2421 return nil, errRequestCanceled 2422 } 2423 pc.mu.Lock() 2424 pc.numExpectedResponses++ 2425 headerFn := pc.mutateHeaderFunc 2426 pc.mu.Unlock() 2427 2428 if headerFn != nil { 2429 headerFn(req.extraHeaders()) 2430 } 2431 2432 // Ask for a compressed version if the caller didn't set their 2433 // own value for Accept-Encoding. We only attempt to 2434 // uncompress the gzip stream if we were the layer that 2435 // requested it. 2436 requestedGzip := false 2437 if !pc.t.DisableCompression && 2438 req.Header.Get("Accept-Encoding") == "" && 2439 req.Header.Get("Range") == "" && 2440 req.Method != "HEAD" { 2441 // Request gzip only, not deflate. Deflate is ambiguous and 2442 // not as universally supported anyway. 2443 // See: https://zlib.net/zlib_faq.html#faq39 2444 // 2445 // Note that we don't request this for HEAD requests, 2446 // due to a bug in nginx: 2447 // https://trac.nginx.org/nginx/ticket/358 2448 // https://golang.org/issue/5522 2449 // 2450 // We don't request gzip if the request is for a range, since 2451 // auto-decoding a portion of a gzipped document will just fail 2452 // anyway. See https://golang.org/issue/8923 2453 requestedGzip = true 2454 req.extraHeaders().Set("Accept-Encoding", "gzip") 2455 } 2456 2457 var continueCh chan struct{} 2458 if req.ProtoAtLeast(1, 1) && req.Body != nil && req.expectsContinue() { 2459 continueCh = make(chan struct{}, 1) 2460 } 2461 2462 if pc.t.DisableKeepAlives && !req.wantsClose() { 2463 req.extraHeaders().Set("Connection", "close") 2464 } 2465 2466 gone := make(chan struct{}) 2467 defer close(gone) 2468 2469 defer func() { 2470 if err != nil { 2471 pc.t.setReqCanceler(req.Request, nil) 2472 } 2473 }() 2474 2475 const debugRoundTrip = false 2476 2477 // Write the request concurrently with waiting for a response, 2478 // in case the server decides to reply before reading our full 2479 // request body. 2480 startBytesWritten := pc.nwrite 2481 writeErrCh := make(chan error, 1) 2482 pc.writech <- writeRequest{req, writeErrCh, continueCh} 2483 2484 resc := make(chan responseAndError) 2485 pc.reqch <- requestAndChan{ 2486 req: req.Request, 2487 ch: resc, 2488 addedGzip: requestedGzip, 2489 continueCh: continueCh, 2490 callerGone: gone, 2491 } 2492 2493 var respHeaderTimer <-chan time.Time 2494 cancelChan := req.Request.Cancel 2495 ctxDoneChan := req.Context().Done() 2496 for { 2497 testHookWaitResLoop() 2498 select { 2499 case err := <-writeErrCh: 2500 if debugRoundTrip { 2501 req.logf("writeErrCh resv: %T/%#v", err, err) 2502 } 2503 if err != nil { 2504 pc.close(fmt.Errorf("write error: %v", err)) 2505 return nil, pc.mapRoundTripError(req, startBytesWritten, err) 2506 } 2507 if d := pc.t.ResponseHeaderTimeout; d > 0 { 2508 if debugRoundTrip { 2509 req.logf("starting timer for %v", d) 2510 } 2511 timer := time.NewTimer(d) 2512 defer timer.Stop() // prevent leaks 2513 respHeaderTimer = timer.C 2514 } 2515 case <-pc.closech: 2516 if debugRoundTrip { 2517 req.logf("closech recv: %T %#v", pc.closed, pc.closed) 2518 } 2519 return nil, pc.mapRoundTripError(req, startBytesWritten, pc.closed) 2520 case <-respHeaderTimer: 2521 if debugRoundTrip { 2522 req.logf("timeout waiting for response headers.") 2523 } 2524 pc.close(errTimeout) 2525 return nil, errTimeout 2526 case re := <-resc: 2527 if (re.res == nil) == (re.err == nil) { 2528 panic(fmt.Sprintf("internal error: exactly one of res or err should be set; nil=%v", re.res == nil)) 2529 } 2530 if debugRoundTrip { 2531 req.logf("resc recv: %p, %T/%#v", re.res, re.err, re.err) 2532 } 2533 if re.err != nil { 2534 return nil, pc.mapRoundTripError(req, startBytesWritten, re.err) 2535 } 2536 return re.res, nil 2537 case <-cancelChan: 2538 pc.t.CancelRequest(req.Request) 2539 cancelChan = nil 2540 case <-ctxDoneChan: 2541 pc.t.cancelRequest(req.Request, req.Context().Err()) 2542 cancelChan = nil 2543 ctxDoneChan = nil 2544 } 2545 } 2546 } 2547 2548 // tLogKey is a context WithValue key for test debugging contexts containing 2549 // a t.Logf func. See export_test.go's Request.WithT method. 2550 type tLogKey struct{} 2551 2552 func (tr *transportRequest) logf(format string, args ...interface{}) { 2553 if logf, ok := tr.Request.Context().Value(tLogKey{}).(func(string, ...interface{})); ok { 2554 logf(time.Now().Format(time.RFC3339Nano)+": "+format, args...) 2555 } 2556 } 2557 2558 // markReused marks this connection as having been successfully used for a 2559 // request and response. 2560 func (pc *persistConn) markReused() { 2561 pc.mu.Lock() 2562 pc.reused = true 2563 pc.mu.Unlock() 2564 } 2565 2566 // close closes the underlying TCP connection and closes 2567 // the pc.closech channel. 2568 // 2569 // The provided err is only for testing and debugging; in normal 2570 // circumstances it should never be seen by users. 2571 func (pc *persistConn) close(err error) { 2572 pc.mu.Lock() 2573 defer pc.mu.Unlock() 2574 pc.closeLocked(err) 2575 } 2576 2577 func (pc *persistConn) closeLocked(err error) { 2578 if err == nil { 2579 panic("nil error") 2580 } 2581 pc.broken = true 2582 if pc.closed == nil { 2583 pc.closed = err 2584 pc.t.decConnsPerHost(pc.cacheKey) 2585 // Close HTTP/1 (pc.alt == nil) connection. 2586 // HTTP/2 closes its connection itself. 2587 if pc.alt == nil { 2588 if err != errCallerOwnsConn { 2589 pc.conn.Close() 2590 } 2591 close(pc.closech) 2592 } 2593 } 2594 pc.mutateHeaderFunc = nil 2595 } 2596 2597 var portMap = map[string]string{ 2598 "http": "80", 2599 "https": "443", 2600 "socks5": "1080", 2601 } 2602 2603 // canonicalAddr returns url.Host but always with a ":port" suffix 2604 func canonicalAddr(url *url.URL) string { 2605 addr := url.Hostname() 2606 if v, err := idnaASCII(addr); err == nil { 2607 addr = v 2608 } 2609 port := url.Port() 2610 if port == "" { 2611 port = portMap[url.Scheme] 2612 } 2613 return net.JoinHostPort(addr, port) 2614 } 2615 2616 // bodyEOFSignal is used by the HTTP/1 transport when reading response 2617 // bodies to make sure we see the end of a response body before 2618 // proceeding and reading on the connection again. 2619 // 2620 // It wraps a ReadCloser but runs fn (if non-nil) at most 2621 // once, right before its final (error-producing) Read or Close call 2622 // returns. fn should return the new error to return from Read or Close. 2623 // 2624 // If earlyCloseFn is non-nil and Close is called before io.EOF is 2625 // seen, earlyCloseFn is called instead of fn, and its return value is 2626 // the return value from Close. 2627 type bodyEOFSignal struct { 2628 body io.ReadCloser 2629 mu sync.Mutex // guards following 4 fields 2630 closed bool // whether Close has been called 2631 rerr error // sticky Read error 2632 fn func(error) error // err will be nil on Read io.EOF 2633 earlyCloseFn func() error // optional alt Close func used if io.EOF not seen 2634 } 2635 2636 var errReadOnClosedResBody = errors.New("http: read on closed response body") 2637 2638 func (es *bodyEOFSignal) Read(p []byte) (n int, err error) { 2639 es.mu.Lock() 2640 closed, rerr := es.closed, es.rerr 2641 es.mu.Unlock() 2642 if closed { 2643 return 0, errReadOnClosedResBody 2644 } 2645 if rerr != nil { 2646 return 0, rerr 2647 } 2648 2649 n, err = es.body.Read(p) 2650 if err != nil { 2651 es.mu.Lock() 2652 defer es.mu.Unlock() 2653 if es.rerr == nil { 2654 es.rerr = err 2655 } 2656 err = es.condfn(err) 2657 } 2658 return 2659 } 2660 2661 func (es *bodyEOFSignal) Close() error { 2662 es.mu.Lock() 2663 defer es.mu.Unlock() 2664 if es.closed { 2665 return nil 2666 } 2667 es.closed = true 2668 if es.earlyCloseFn != nil && es.rerr != io.EOF { 2669 return es.earlyCloseFn() 2670 } 2671 err := es.body.Close() 2672 return es.condfn(err) 2673 } 2674 2675 // caller must hold es.mu. 2676 func (es *bodyEOFSignal) condfn(err error) error { 2677 if es.fn == nil { 2678 return err 2679 } 2680 err = es.fn(err) 2681 es.fn = nil 2682 return err 2683 } 2684 2685 // gzipReader wraps a response body so it can lazily 2686 // call gzip.NewReader on the first call to Read 2687 type gzipReader struct { 2688 body *bodyEOFSignal // underlying HTTP/1 response body framing 2689 zr *gzip.Reader // lazily-initialized gzip reader 2690 zerr error // any error from gzip.NewReader; sticky 2691 } 2692 2693 func (gz *gzipReader) Read(p []byte) (n int, err error) { 2694 if gz.zr == nil { 2695 if gz.zerr == nil { 2696 gz.zr, gz.zerr = gzip.NewReader(gz.body) 2697 } 2698 if gz.zerr != nil { 2699 return 0, gz.zerr 2700 } 2701 } 2702 2703 gz.body.mu.Lock() 2704 if gz.body.closed { 2705 err = errReadOnClosedResBody 2706 } 2707 gz.body.mu.Unlock() 2708 2709 if err != nil { 2710 return 0, err 2711 } 2712 return gz.zr.Read(p) 2713 } 2714 2715 func (gz *gzipReader) Close() error { 2716 return gz.body.Close() 2717 } 2718 2719 type tlsHandshakeTimeoutError struct{} 2720 2721 func (tlsHandshakeTimeoutError) Timeout() bool { return true } 2722 func (tlsHandshakeTimeoutError) Temporary() bool { return true } 2723 func (tlsHandshakeTimeoutError) Error() string { return "net/http: TLS handshake timeout" } 2724 2725 // fakeLocker is a sync.Locker which does nothing. It's used to guard 2726 // test-only fields when not under test, to avoid runtime atomic 2727 // overhead. 2728 type fakeLocker struct{} 2729 2730 func (fakeLocker) Lock() {} 2731 func (fakeLocker) Unlock() {} 2732 2733 // cloneTLSConfig returns a shallow clone of cfg, or a new zero tls.Config if 2734 // cfg is nil. This is safe to call even if cfg is in active use by a TLS 2735 // client or server. 2736 func cloneTLSConfig(cfg *tls.Config) *tls.Config { 2737 if cfg == nil { 2738 return &tls.Config{} 2739 } 2740 return cfg.Clone() 2741 } 2742 2743 type connLRU struct { 2744 ll *list.List // list.Element.Value type is of *persistConn 2745 m map[*persistConn]*list.Element 2746 } 2747 2748 // add adds pc to the head of the linked list. 2749 func (cl *connLRU) add(pc *persistConn) { 2750 if cl.ll == nil { 2751 cl.ll = list.New() 2752 cl.m = make(map[*persistConn]*list.Element) 2753 } 2754 ele := cl.ll.PushFront(pc) 2755 if _, ok := cl.m[pc]; ok { 2756 panic("persistConn was already in LRU") 2757 } 2758 cl.m[pc] = ele 2759 } 2760 2761 func (cl *connLRU) removeOldest() *persistConn { 2762 ele := cl.ll.Back() 2763 pc := ele.Value.(*persistConn) 2764 cl.ll.Remove(ele) 2765 delete(cl.m, pc) 2766 return pc 2767 } 2768 2769 // remove removes pc from cl. 2770 func (cl *connLRU) remove(pc *persistConn) { 2771 if ele, ok := cl.m[pc]; ok { 2772 cl.ll.Remove(ele) 2773 delete(cl.m, pc) 2774 } 2775 } 2776 2777 // len returns the number of items in the cache. 2778 func (cl *connLRU) len() int { 2779 return len(cl.m) 2780 }